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Abstract

Management of collaborative documents can
be difficult, given the profusion of edits and
comments that multiple authors make during
a document’s evolution. Reliably modeling
the relationship between edits and comments
is a crucial step towards helping the user keep
track of a document in flux. A number of au-
thoring tasks, such as categorizing and sum-
marizing edits, detecting completed to-dos,
and visually rearranging comments could ben-
efit from such a contribution. Thus, in this pa-
per we explore the relationship between com-
ments and edits by defining two novel, related
tasks: Comment Ranking and Edit Anchoring.
We begin by collecting a dataset with more
than half a million comment-edit pairs based
on Wikipedia revision histories. We then pro-
pose a hierarchical multi-layer deep neural-
network to model the relationship between ed-
its and comments. Our architecture tackles
both Comment Ranking and Edit Anchoring
tasks by encoding specific edit actions such as
additions and deletions, while also accounting
for document context. In a number of evalu-
ation settings, our experimental results show
that our approach outperforms several strong
baselines significantly. We are able to achieve
a precision@1 of 71.0% and a precision@3
of 94.4% for Comment Ranking, while we
achieve 74.4% accuracy on Edit Anchoring.

1 Introduction

Comments are widely used in collaborative docu-
ment writing as a natural way to suggest and track
changes, annotate content and explain the intent of
edits. Table 1 shows an example of a comment left
by an editor in a Wikipedia revision. The com-
ment explains the intent of adding a missing re-
searcher’s name (Sutskever) to a citation.

∗ The work was done while these authors interned in
Microsoft Research.

This example demonstrates that user comments
closely relate to the intent of an edit, the actual
edit operation, and the content and location in the
document that underwent change. However, dur-
ing collaborative document authoring, the tracking
and maintenance of comments becomes increas-
ingly more challenging due to the large number
of edits and comments that authors make. For
example, structurally refactoring a document can
significantly change the order of paragraphs and
sentences, stranding comments in confusing and
contextually inappropriate locations. Or, com-
ments may have already been addressed but con-
tinue to linger in the document without having
been marked as completed. These issues, among
others, are exacerbated when multiple authors col-
laborate on a document, often asynchronously. It
becomes difficult to know which tasks have been
completed and which haven’t, especially if authors
are not proactive about marking comments as ad-
dressed. This situation stands to benefit from an
intelligent system capable of marking changes as
completed, by understanding the relationship be-
tween edits and comments.

Many tasks in document management, such as
summarizing and categorizing edits, detecting to-
do item completion, prioritizing writing tasks and
visually re-arranging document structure to reflect
state in multi-author scenarios, require users to un-
derstand edit-comment interactions. Consider the
scenario where multiple authors make edits to a
document using the track-change feature available
in popular document authoring apps. The result
can be extremely confusing, and it is difficult to
disentangle who edited what, over multiple ver-
sions. A feature that could summarize these ed-
its, so that the visual burden of tracking changes is
not on the UI, would certainly alleviate this prob-
lem. Such a system would necessarily first need
to learn mappings between edits and natural lan-
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guage comments, before it could learn to gener-
ate them. Therefore, automatic solutions to these
challenges stand to benefit from an ability to fun-
damentally model the relationship between edits
and comments.

Yet, most existing studies on document re-
visions focus on modeling the document edits
(Bronner and Monz, 2012) or comments (Shaver,
2016) separately; or using comments as a supple-
mentary source of information to study the edits
(Yatskar et al., 2010). To the best of our knowl-
edge, no prior work focuses on jointly modeling
the relationship between comments and edits.

Thus, in this paper we tackle two novel tasks.
Comment Ranking considers a document edit
operation and seeks to rank a set of candidate
comments in order of their relevance to the edit.
Edit Anchoring seeks to identify the locations
in a document that are most likely to have un-
dergone change as the result of a specific com-
ment. Crucially, both tasks require jointly mod-
eling comment-edit relationship.

We start by collecting a dataset of 780K
Wikipedia revisions, each with their associated
comment and edits. We then build a hierarchi-
cal multi-layer deep neural network, a model we
call CmntEdit, which is capable of learning the
relationship between comments and edits from
this data. Our approach addresses both Comment
Ranking and Edit Anchoring by sharing many of
the model’s components and parameters across
tasks. Since edits can apply to discontiguous se-
quences of text, which pose a challenge for se-
quence modeling approaches, we explore novel
ways to represent a document both before and af-
ter an edit, while also accounting for contextual in-
formation surrounding an edit. To differentiate the
context from edit words, we also explore a novel
mechanism to encode edit operations such as ad-
ditions and deletions explicitly in the model. 1

Finally, we evaluate our model on both tasks
and in a number of experimental settings, demon-
strating that our solution is significantly better than
several strong baselines on jointly capturing the
relationship between edits and comments. Our
model outperforms the best baseline by 34.6% on
NDCG for Comment Ranking and achieves a best
score of 0.687 F1 for Edit Anchoring. Addition-

1We are making the code for the CmntEdit model, and
generation of our dataset publicly available to the research
community at https://github.com/microsoft/
WikiCommentEdit.

Comment # Sutskever missing

Pre-edit
Version

In October 2012, a similar system by
Krizhevsky and Hinton won the large-scale
ImageNet competition by a significant margin
over shallow...

Post-edit
Version

In October 2012, a similar system by
Krizhevsky and Sutskever and Hinton won
the large-scale ImageNet competition by a
significant margin over shallow...

Table 1: Example of an edit and its associated comment. The
added words “Sutskever and” in post-edit version is marked
in red.

ally, in an ablation study we demonstrate that our
various modeling choices, which tackle the in-
herent challenges of comment-edit understanding,
each contribute positively to empirical results.

2 Related Work

Document revisions have been the subject of sev-
eral studies in recent years (Nunes et al., 2011; Fis-
cher, 2013). Most prior work focuses on modeling
document edits only. For instance, Bronner and
Monz (2012) build a classifier to distinguish flu-
ency edits from factual edits. Zhu et al. (2017)
study the semantic distance between the content
in different versions of documents to detect doc-
ument revisions. Grossman et al. (2013) propose
a hierarchical navigation method to display docu-
ment revision histories.

Some work utilizes comments associated with
document edits as supplementary information to
study the document revisions. For example,
Yatskar et al. (2010) consider both comment
and document revision for lexical simplification.
However, they use comments as meta-data to iden-
tify trusted revisions, rather than directly model-
ing the relationship between comments and edits.
Yang et al. (2017) featurize both comments and re-
visions to classify edit intent, but without explic-
itly modeling edit-comment relationship.

Wikipedia revision history data (Nunes et al.,
2008) has been used in many NLP tasks (Zesch,
2012; Max and Wisniewski, 2010; Ganter and
Strube, 2009). For instance, Yamangil and Nelken
(2008) model Wikipedia revision histories for im-
proving sentence compression, Aji et al. (2010)
propose a new term weighting model leveraging
Wikipedia revision histories, and Zanzotto and
Pennacchiotti (2010) expand textual entailment
corpora from Wikipedia revision histories using
co-training. Again, however, none of these meth-

https://github.com/microsoft/WikiCommentEdit
https://github.com/microsoft/WikiCommentEdit


5004

ods directly consider or model the relationship be-
tween comments and edits.

At a basic level, modeling the connection be-
tween comments and edits can be seen as a text
matching problem, with superficial similarity to
other common NLP tasks, such as Question An-
swering (Seo et al., 2016; Yu et al., 2018), docu-
ment search (Burges et al., 2005; Nalisnick et al.,
2016), and textual entailment (Androutsopoulos
and Malakasiotis, 2010), among others. Note
however, that edits are a (possibly discontinuous
and non-trivial) delta between two versions of a
text, making their representation and understand-
ing more challenging than that of a simple string.
We demonstrate this in our evaluation in Sec-
tion 5.2, where we compare against several com-
peting models that were designed for other text
matching challenges.

3 Dataset

Our dataset – which we call WikiCmnt – is gen-
erated from Wikipedia revision histories. In
the absence of publicly available document
data, Wikipedia is a particularly rich resource:
(i) It maintains full revision histories of every
Wikipedia page, along with associated editor com-
ments as meta-data. (ii) It is a large-scale instance
of multi-author collaboration, with many editors
contributing to and maintaining pages.

The specific historical dump we use is from
May 1, 2018. It contains approximately 52.7 mil-
lion pages, and 755.5 million unique revisions
made by 300.8 million users. WikiCmnt is a sub-
sample of 786,866 Wikipedia page revisions along
with their associated metadata. Revisions are fil-
tered out before sampling, if they violate any one
of the following criteria: (i) The length of the com-
ment is longer than 8 words. (ii) The edits made to
the Wikipedia page span more than one section2.
(iii) The Wikipedia page has an edit history con-
taining fewer than 10 unique revisions.

We extract and store a number of data fields
from the Wikipedia revision history as summa-
rized in Table 2. For each specific revision of a
page, we not only retrieve the text of the comment
and edit but also sample 10 non-related comments
(Neg-Cmnts) and 10 non-related edits (Neg-Edits)
from the same page’s history. Finally we also en-
code the individual edit operations in both pre-edit

2https://en.wikipedia.org/wiki/Help:
Section

l cookedEdit:

0 0 -1 -1 0 0 0 1 0

chicken wing salmon

Actions

before-editing version after-editing version

Tokens

yesterday

l cooked salmon yesterdayl cooked chicken wing yesterday

Figure 1: An example of the action encoding associated with
changing the phrase “chicken wing” to “salmon”. Specifi-
cally, the values -1, 1 and 0 are used to represent deletions,
additions and unchanged tokens, respectively.

Field Description

Revision ID Wiki revision ID
Parent ID Parent revision ID
Timestamp Timestamp of revision
Page Title Title of Wikipedia page

Comment Revision comment
Neg-Cmnts Negative sampled comments

Src-Tokens Tokens of pre-editing document
Src-Actions Action encoding of pre-editing document
Tgt-Tokens Tokens of post-editing document
Tgt-Actions Action encoding of post-editing docu-

ment
Pos-Edits Edited sentences in post-editing docu-

ment
Neg-Edits Negative sampled sentences in post-

editing document

Table 2: Data Fields in WikiCmnt Dataset

and post-edit versions of a text. For example, con-
sider Figure 1, which shows the edit action en-
coding associated with an change from “chicken
wing” to “salmon”.

4 Proposed Model

To model the relationship between edits and com-
ments, we first formulate the problem with respect
to the two tasks of Comment Ranking and Edit
Anchoring; we then provide details of the neural
architecture used to solve these problems; finally
we provide some implementation details. We be-
gin with preliminary notation.

Let us define c as a comment consisting of word
tokens {w1, ..., wq}. Minimally, let us also define
a pre-edit es, as the contiguous sequence of words
spanning the first to the last edited token (with
possibly intervening tokens that are not edited) in
a document’s pre-edit version. The edit es may
optionally also contain some surrounding context.
Formally this can be defined as:

{ wi−k, ...wi−1︸ ︷︷ ︸
context before edit

,wi, ...wi+p︸ ︷︷ ︸
edit words

,wi+p+1, ...wi+p+k︸ ︷︷ ︸
context after edit

}

where i and i + p are the indices of the first and
the last edited tokens in a revision, and k is the

https://en.wikipedia.org/wiki/Help:Section
https://en.wikipedia.org/wiki/Help:Section
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context window size. If there is more than one
contiguous block of edited tokens, these blocks are
concatenated to form the set of edit words with
their context words.

We define a document edit as the pair e =
{es, et}, where et is similarly defined over edited
tokens and their context words in a document’s
post-edit version.

4.1 Problem Formulation

Comment Ranking is the task of finding the
most relevant comment among a list of potential
candidates, given a document edit. The inputs of
the comment ranking task are some set of user
comments C = {c1, c2, . . . cm} pertaining to a
document, and an edit e = {es, et} in the same
document.The goal of the task is to produce a
ranking on C, such that the true comment ci with
respect to the edit e = {es, et} is ranked above
all the other comments (i.e. distractors). We use
standard ranking metrics to evaluate model per-
formance: Precision@K (P@K), Mean Reciprocal
Rank (MRR) and Normalized Discounted Cumu-
lative Gain (NDCG).

Edit Anchoring is the task of finding the sen-
tences in a document that most likely underwent
change, given a specific user comment. The inputs
to the task are a user comment c and a list of can-
didate sentences S = {s1, s2, . . . sn} in the post-
edit document et. Unlike with Comment Ranking,
we operate under the assumption that an edit has
already been completed, and therefore discard the
information from the pre-edit version es. In the
ground truth, at least one (but possibly more) of
the sentences is an edit location for the comment
c. The expected output is a list of binary classifi-
cations R = {ri}ni=1, where ri = 1 indicates that
the sentence si is a likely edit location, given com-
ment c. We use Accuracy and F1 score to evaluate
performance on this task.

4.2 Model Overview

For both tasks, our models are hierarchical deep
neural networks with four layers: an input em-
bedding layer, a contextual embedding layer, a
comment-edit attention layer, and an output layer.
The overall architecture is shown in Figure 2. We
describe each of the four layers in what follows.
Since both models share many components we
will describe the more general case that covers all
inputs for Comment Ranking; for Edit Anchoring

Edits (Pre-Edit Version)

Comment Ranking
Loss

Edit Anchoring
Loss

Edits (Post-Edit Version)Comment
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Figure 2: Overall Architecture of Proposed Model

those components that correspond to the pre-edit
input are suitably omitted.

Input Embedding Layer. The input embedding
layer maps each word in user comments c and
edits e = {es, et} to a high-dimensional vector
space. The output of the input embedding layer
are matrices: U ∈ Rd×M representing the pre-
edit document, V ∈ Rd×M representing the post-
edit document, and Q ∈ Rd×J representing the
comment. Here M is the length of edits and J is
the length of the comment, while d is the fixed-
length dimension of word vectors.

Contextual Embedding Layer. We use a bi-
directional Gated Recurrent Unit (GRU) (Chung
et al., 2014) to model the sequential interaction
between words. Operating over the output of the
previous layer we obtain the contextual embed-
ding matrices U c ∈ R2d×M and V c ∈ R2d×M

for both pre- and post-edit versions. Also, we ob-
tainQc ∈ R2d×J from the comment word vectors.
Note that the row dimension of contextual matri-
cesU c, V c andQc are 2d because of the concate-
nation of the GRU’s output in both forward and
backward directions.

Comment-Edit Attention Layer. Inspired by
the attention mechanisms utilized in machine
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comprehension (Seo et al., 2016; Yu et al., 2018),
the comment-edit attention layer is designed to
capture relationships between document edit and
comment words. The attention layer maintains
and processes both pre- and post-edit documents
separately. This is to reduce the information loss
that would have occurred if their representations
were fused before the attention layer. Addition-
ally, this layer incorporates an action encoding
vector, which is designed to reflect the three kinds
of edit operations: adding a word, deleting a word,
or leaving it unchanged.

The inputs to the layer are the contextual matri-
cesU c andV c of the pre- and post-edit documents
respectively, the matrix Qc representing the com-
ment, and the supplemental action encoding vec-
tors a†,a‡ ∈ ZM which encode the edit operation
each token undergoes in the pre- and post-edit doc-
uments, respectively. The output is the comment-
aware concatenated vector representations of the
edit words in both pre- and post-edit documents,
h ∈ R2J .

Internally, we first calculate the shared similar-
ity matrix S† ∈ RM×J between the comment Qc

and contextual matrix U c of pre-edit documents,
while also accounting for the action encoding vec-
tor a†. The elements of this shared similarity ma-
trix are defined as follows:

S†ij = G(U c
:i,Q

c
:j ,a

†
i ) (1)

where G is a trainable function that generates the
similarity between the word-level representations
of comments and edits with respect to an edit op-
eration.

Here U c
:i ∈ R

2d×1 is the vector representa-
tion of the i-th word in the pre-edit document and
Qc

:j ∈ R2d×1 is the vector representation of j-th

word in the comment. a†i ∈ {−1, 0, 1} is the ac-
tion encoding for the edit operation performed on
the i-th word in the pre-edit document. We choose
the trainable function G(u, q, a) = wT [u⊗ q; a],
where w ∈ R(2d+1)×1 is a trainable weight vec-
tor, ⊗ is the element-wise multiplication operator
and [; ] represents the vector concatenation across
the row dimension. Similarly, we can calculate the
shared similarity matrix S‡ ∈ RM×J between the
comment and contextual matrix of the post-edit
document as S‡ij = G(V c

:i ,Q
c
:j ,a

‡
i ). Note that the

weight vectors in function G are different for pre-
and post-edit versions, and both are trained simul-
taneously in the model.

After the similarity matrices are computed, we
use them to generate the Comment-to-Edit Atten-
tion (C2E) weights. C2E is used to represent the
relevance of words in the edit to those that ap-
pear in the comment. This is critical for model-
ing the relationship between comments and edits.
We obtain the C2E attention weights c† ∈ RM

for edit words in the pre-edit document by taking
c† = softmax(maxcol(S

†)), where the maxcol(·)
operator finds the column-wise maximum value
from a matrix. Similarly, for the post-edit docu-
ment, we have c‡ = softmax(maxcol(S

‡)).
Finally we multiply the attention vectors to the

previously computed similarity matrices for both
pre- and post-edit documents, and concatenate the
results to obtain the relevance vector h ∈ R2J :

h =

[(
c†
)T
S† ;

(
c‡
)T
S‡
]T

(2)

The vector h intuitively captures the weighted
sum of the relevance of the comment with respect
to the edits in both pre- and post-edit documents.

Output Layer and Loss Function. The output
layer and loss function of the network is task-
specific. Comment Ranking requires ranking the
relevance of candidate comments given a docu-
ment edit. Broadly we obtain a ranked list by com-
puting the relevance score between comments and
edits by the output r = βTh, where β is a train-
able weight vector.

A data sample i in Comment Ranking consists
of one true comment-edit pair and ni negative
comment-edit distractors. We denote r+i as the
relevance score of the true pair, and r−ij as the
relevance score of the j-th distractor pair (with
1 ≤ j ≤ ni). The goal of our task is to make
r+i > r−ij for all j. We therefore set the loss func-
tion to be a pairwise hinge loss between true and
distractor relevance scores.

Lc(Θ) =

N∑
i=1

ni∑
j=1

max(0, 1− r+i + r−ij) (3)

where Θ is the set of all trainable weights in the
model and N is the number of training samples in
the dataset.

For Edit Anchoring, the goal is to predict
whether a sentence in the document is likely to be
the location of an edit, given a comment. This is a
binary classification problem, and we can suitably
set the output layer as p = softmax(γTh) – the
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probability of predicting the positive class. Here
γ is a trainable weight vector.

Given the binary nature of the classification
problem we can use the cross entropy loss:

Le(Φ) = − 1

N

N∑
i=1

mi∑
j=1

[
yij log pij+

(
1− yij

)
log
(
1− pij

)]
,

(4)

where Φ is the set of all trainable weights in the
model, N is the number of data samples, mi is the
number of sentences in the i-th data sample, pij is
the predicted label of the j-th sentence in the i-th
data sample, and yij is the corresponding ground
truth label.

4.3 Implementation Details
The CmntEdit model described in this section is
implemented using the Pytorch3 framework and
trained on a single Tesla P100 GPU with 16GB
memory. The word vectors are initialized with
pre-trained Glove embeddings (Pennington et al.,
2014) using the default dimensionality of 100. We
set the number of training epochs to 5, the max-
imum length of a comment to 30 tokens and the
maximum length of an edit to 300 tokens. For
the Comment Ranking task, we set the batch size
to 10 and consider 5 candidate comments in each
data sample: one true comment and 4 distractors.
We thus have 5 comment-edit pairs for each data
sample and 50 pair-wise samples for each train-
ing batch. For the Edit Anchoring task, we also
set the batch size to 10 and consider 5 candidate
sentences, which yields an identical 50 training in-
stances per batch.

It should be noted that while we train our model
with only 5 candidate comments or sentences
(for Comment Ranking or Edit Anchoring respec-
tively), the models – once trained – can be applied
to any number of candidates at test time for either
task.

5 Experiment

In this section, we show evaluation results of
our model on the previously collected Wikipedia
dataset 3. We begin by introducing the experi-
mental settings in Section 5.1. We then compare
the performance achieved by the proposed method
against several baseline models in Section 5.2. We

3https://pytorch.org/

also conduct an ablation study to evaluate the var-
ious components of our model, as well as provide
some qualitative results to demonstrate it’s effec-
tiveness in practise.

5.1 Experimental Setup

We begin by introducing the evaluation setting,
metrics and baselines we use in our experiments.

5.1.1 Datasets and Labels
We use the WikiCmnt dataset described in Section
3 for training and evaluation. The dataset contains
786,886 data samples in total. We reserve 70%
of the data for training and split the remainder be-
tween 10% for validation and 20% for testing.

For the Comment Ranking task, we always have
a single true comment, but in our test we experi-
ment with both 4 and 9 distractors, yielding a total
of 5 and 10 candidate comments. Similarly for the
Edit Anchoring task, we also test with both 5 and
10 candidate sentences.

5.1.2 Evaluation Metrics
We use common ranking evaluation metrics from
the literature to evaluate models on the task of
Comment Ranking. These include: (i) Preci-
sion@K. The proportion of predicted instances
where the true comment appears in the ranked
top-K result, with K = 1, 3, 5. (ii) Mean Recip-
rocal Rank (MRR). The average multiplicative
inverse of the rank of the correct answer, repre-
sented mathematically as MRR = 1

N

∑N
i=1

1
ranki

,
where N is the number of samples and ranki is
the rank assigned to the true comment by a model.
(iii) Normalized Discounted Cumulative Gain
(NDCG). the normalized gain of each comment
based on its ranking position in the results. We set
the relevance score of the true comment to one and
those of the distractors to zero.

For the Edit Anchoring task, we use Accuracy
and F1 Score as evaluation metrics. These are
computed based on a model’s classification of can-
didate sentences in the post-edit version of the
document.

5.1.3 Baseline Methods
For the Comment Ranking task, we compare our
approach to the following baselines:
(i) Cosine-TfIdf uses the cosine similarity be-
tween the TfIdf-weighted vectors of the comment
and edit as a measure of relevance. (ii) Cosine-In-
ferSent computes the cosine similarity between

https://pytorch.org/
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Candidates=5 Candidates=10

P@1 P@3 MRR NDCG P@1 P@3 P@5 MRR NDCG

Cosine-TfIdf 0.266 0.519 0.470 0.597 0.137 0.291 0.444 0.296 0.453
Cosine-InferSent 0.228 0.597 0.471 0.600 0.115 0.305 0.497 0.302 0.461

RankNet 0.257 0.658 0.503 0.620 0.034 0.055 0.061 0.139 0.320
LambdaMART 0.310 0.726 0.549 0.661 0.152 0.384 0.593 0.352 0.502

Gated RNN 0.283 0.716 0.531 0.647 0.158 0.411 0.628 0.363 0.511

CmntEdit-MT 0.674 0.930 0.804 0.853 0.529 0.780 0.896 0.680 0.758
CmntEdit-CR 0.710 0.944 0.828 0.871 0.593 0.830 0.924 0.730 0.796

Table 3: Performance on Comment Ranking

comment and edit vectors generated by the
state-of-the-art sentence embedding method In-
ferSent (Conneau et al., 2017). (iii) RankNet
(Burges et al., 2005) minimizes the number
of inversions in ranking by optimizing a pair–
wise loss function. We use a previous neu-
ral network implementation4 with default set-
tings. (iv) LambdaMART (Burges, 2010) lever-
ages gradient boosted decision trees with a cost
function derived from LambdaRank (Burges et al.,
2007) for solving a ranking task. We use an exist-
ing python implementation5, with a learning rate
of 0.02 and 10 max leaf nodes. (v) Gated Recur-
rent Neural Network (Chung et al., 2014) models
the sequence of words in comments and edits us-
ing pre-trained GloVe vectors as embedding units.
Three fully-connected layers compute a final rele-
vance score between comments and edits.

For the Edit Anchoring task, we chose the fol-
lowing popular classifiers as baselines: (i) Ran-
dom Forest (Liaw et al., 2002) (ii) Adaboost
(Rätsch et al., 2001) (iii) Passive Aggressive clas-
sifiers (Crammer et al., 2006) (iv) Gated Recur-
rent Neural Network. The features used in these
models are based on both TfIdf scores, as well
as sentence embedding features generated by In-
ferSent. The Gated RNN model is trained with a
task-specific fully connect layer for Edit Anchor-
ing to compute the classification probability.

5.1.4 Model Variants

We train and evaluate several different variants of
our neural architecture. They include: (i) Cm-
ntEdit-CR, a variant of our model only trained
with data samples for the Comment Ranking task.
(ii) CmntEdit-EA, a variant of our model only
trained with data samples for the Edit Anchoring

4https://github.com/shiba24/
learning2rank

5https://github.com/jma127/pyltr

Candidates=5 Candidates=10

Acc F1 Acc F1

Passive-Aggr 0.581 0.533 0.716 0.262
RandForest 0.639 0.290 0.743 0.112
Adaboost 0.657 0.398 0.751 0.207

Gated RNN 0.696 0.651 0.665 0.539

CmntEdit-MT 0.635 0.587 0.619 0.468
CmntEdit-EA 0.744 0.687 0.726 0.583

Table 4: Performance on Edit Anchoring

task. (iii) CmntEdit-MT, a variant of our model
jointy trained on data samples of both Comment
Ranking and Edit Anchoring tasks. Unless other-
wise specified, all models use a standard context
window size of 5 tokens6.

5.2 Experimental Results

We now present and discuss the empirical results
of our evaluation on both Comment Ranking and
Edit Anchoring.

5.2.1 Comment Ranking
Table 3 summarizes results of the Comment Rank-
ing task. Our models significantly outperform all
the baselines in every setting and on all metrics.
The results are statistically significant at p < 0.01
using the Wilcoxon signed-rank test (Smucker
et al., 2007). Since the Comment Ranking task
only has one true comment, the other comments
being distractors, the P@1 result becomes espe-
cially important for practical applications. Our ap-
proach achieves 71% precision, which is signif-
icantly better than the 31% precision of the best
baseline method (LambdaMART) with 5 candi-
date comments. Our model similarly outperforms
the best baseline with 10 candidate comments, ob-

6We performed an extensive evaluation of context size
with window sizes ranging from 0 to 50. From the result, we
found the our model tends to perform best when the context
window size is close to 5 tokens.

https://github.com/shiba24/learning2rank
https://github.com/shiba24/learning2rank
https://github.com/jma127/pyltr


5009

Comment
Ranking

Candidates=5 Candidates=10

P@1 MRR P@1 MRR

w/o Action 0.630 0.778 0.495 0.659
w/o Attention 0.625 0.775 0.488 0.655
w/o Hadamard 0.624 0.774 0.483 0.652
CmntEdit-CR 0.710 0.828 0.593 0.730

Edit
Anchoring

Candidates=5 Candidates=10

Acc F1 Acc F1

w/o Action 0.713 0.668 0.684 0.556
w/o Attention 0.723 0.670 0.701 0.562
w/o Hadamard 0.722 0.660 0.706 0.558
CmntEdit-EA 0.744 0.687 0.726 0.583

Table 5: Ablation study

taining a P@1 score of 59.3%. Additionally, the
higher scores on MRR and NDCG indicate that
our approach consistently ranks the true comment
higher than the baseline methods.

The performance of CmntEdit-MT is 2% and
5.3% worse than CmntEdit-CR on NDCG and
P@1, respectively. Surprisingly, this suggests that
training our model in a multi-task fashion leads
to slightly lower scores, and a model specifically
trained for the individual task of Comment Rank-
ing is to be preferred.

5.2.2 Edit Anchoring

Table 4 shows the results for Edit Anchoring. Our
method, CmntEdit-EA, outperforms the best base-
line method, Gated-RNN, by 5.5% on F1 and
6.9% on accuracy. The improvements over all the
baselines are statistically significant at a p-value of
0.01. The baseline classifiers including Passive-
Aggressive, Random Forest and Adaboost have
high accuracies, but low F1 scores. This is be-
cause of the imbalance between positive and neg-
ative samples in our data. Specifically, the num-
ber of negative samples is 4 times greater than the
number of positive samples when the size of the
candidate set is 5 – and even greater when it is 10.
Therefore, the baseline classifiers tend to naively
predict a negative label, which artificially boosts
precision to the detriment of recall. In fact, Ad-
aboost actually outperforms our models on accu-
racy when the candidate set size is 10, but yields a
much lower F1 score.

As with Comment Ranking, the performance
of CmntEdit-MT is slightly worse than CmntEdit-
EA. Within the scope of our problem space, this
reinforces the finding that targeted training seems
to work better than joint training.

5.2.3 Ablation Study
To verify the effectiveness of our modeling
choices, we evaluate performance in the absence
of each of the following model components:
1. w/o Action: we remove the action encoding
from the trainable function G and instead simply
use G(u, q) = wT [uTq]. 2. w/o Attention: we
remove the edit-based attention from Equation (2).
Instead, we generate the relevance vector h as fol-
lows: h =

[
meancol(S

†); meancol(S
‡)
]T . 3. w/o

Hadamard: we use the inner product instead of
the Hadamard product in the trainable function G
as follows: G(u, q, a) = wT [uTq; a].

Results in Table 5 show that each compo-
nent improves the overall performance on both
Comment Ranking and Edit Anchoring tasks,
across our evaluation metrics. This indicates that
our modeling choices are particularly suited to
tackle the inherent challenges involved in model-
ing comment-edit relationship.

5.2.4 Qualitative Evaluation
Table 6 provides a few output examples from our
model on the Comment Ranking task, demonstrat-
ing its ability to learn abstract connections be-
tween comments and edits. Due to space con-
straints, only one illustrative distractor is shown.

The first example shows an edit summarized by
the high-level comment “date and capitalization
corrections”. This comment is correctly assigned
the highest relevance score by our model, despite
the fact that no words are shared between the com-
ment and edit. Meanwhile, one of the distractors
has a lower score even though it shares the lexical
item “Walgreens” with the context of the edit.

In the second example an entire sentence is re-
moved by the editor. Again, although no words
are shared between the comment and the edit, our
model is correctly able to identify the delete oper-
ation, possibly by learning the common Wikipedia
shorthand for deletions “rm”. Meanwhile, one of
the distractors contains the phrase “St Helens”,
which also appears in the edit, but is still assigned
a lower score.

6 Conclusion and Future Work

In this paper, we have explored the relationship be-
tween comments and edits by defining two novel
tasks: Comment Ranking and Editing Anchor-
ing. In order to model the problem we collected a
dataset with over 780K comment-edit pairs. Fur-
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Case 1: Grammar fixing

Pre-Edits In December of 2012, A judge ordered Walgreens to pay $16.57 million to settle a lawsuit claiming...
Post-Edits In December 2012, a judge ordered Walgreens to pay $16.57 million to settle a lawsuit claiming...

Comment Date and capitalization corrections [Relevance Score: 4.050]

Distractor Dane Cook’s comments about Walgreens do not belong in ”Facts” [Relevance Score: 3.028]

Case 2: Sentence removal

Pre-Edits [http://www.pilkington.co.uk/energikare Pilkington energiKare] - Pilkington product from St Helens
helping the environment...

Post-Edits (whole sentence removed)

Comment rm advertising, other link to major employer noted in text seems ok at first glance. [Relevance Score: 5.192]

Distractor Fixing link to Kevin Brown - You know I never knew he was from St Helens [Relevance Score: 3.479]

Table 6: Example of the edits and comments matched by the proposed model with one more deceptive distractor for each
case. The scores for each comment/distractor are presented after the comment/distractor. The addition and removal in edit are
highlighted in bold.

ther we proposed a hierarchical multi-layer neu-
ral network capable of tackling both our proposed
tasks by encoding specific edit actions, such as ad-
ditions and deletions, as well as document context.
In our experiments we show that our approach out-
performs several baselines by significant margins
on both tasks, yielding a best score of 71% pre-
cision@1 for Comment Ranking and 74.4% accu-
racy for Edit Anchoring.

In future work we plan to explore sequences of
revisions through the lifecycle of a document from
creation to completion, with the ultimate goal of
modeling document evolution. We also hope to
apply our modeling approach to practical down-
stream applications, including: i) detecting com-
pleted to-dos based on related edits; ii) localizing
the paragraphs that could be edited to address a
given comments; iii) summarizing document revi-
sions.
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