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Abstract

Recently, kernelized locality sensitive hash-
codes have been successfully employed
as representations of natural language
text, especially showing high relevance to
biomedical relation extraction tasks. In
this paper, we propose to optimize the
hashcode representations in a nearly unsu-
pervised manner, in which we only use data
points, but not their class labels, for learn-
ing. The optimized hashcode representa-
tions are then fed to a supervised classifier
following the prior work. This nearly unsu-
pervised approach allows fine-grained op-
timization of each hash function, which is
particularly suitable for building hashcode
representations generalizing from a train-
ing set to a test set. We empirically evalu-
ate the proposed approach for biomedical
relation extraction tasks, obtaining signif-
icant accuracy improvements w.r.t. state-
of-the-art supervised and semi-supervised
approaches.

1 Introduction

In natural language processing, one important
but a highly challenging task is of identify-
ing biological entities and their relations from
biomedical text, as illustrated in Fig. 1, rele-
vant for real world problems, such as personal-
ized cancer treatments (Rzhetsky, 2016; Hahn
and Surdeanu, 2015; Cohen, 2015). In the pre-
vious works, the task of biomedical relation
extraction is formulated as of binary classifi-
cation of natural language structures; one of
the primary challenges to solve the problem
is that the number of data points annotated
with class labels (in a training set) is small
due to high cost of annotations by biomedi-
cal domain experts, and further, bio-text sen-
tences in a test set can vary significantly w.r.t.

the ones from a training set due to practi-
cal aspects, such as high diversity of research
topics or writing styles, hedging, etc. Con-
sidering such challenges for the task, many
classification models based on kernel similar-
ity functions have been proposed (Garg et al.,
2016; Chang et al., 2016; Tikk et al., 2010;
Miwa et al., 2009; Airola et al., 2008; Mooney
and Bunescu, 2005), and recently, many neural
networks based classification models have also
been explored (Kavuluru et al., 2017; Peng
and Lu, 2017; Hsieh et al., 2017; Rao et al.,
2017; Nguyen and Grishman, 2015), including
the ones doing adversarial learning using the
knowledge of data points (excluding class la-
bels) from a test set, or semi-supervised vari-
ational autoencoders (Rios et al., 2018; Ganin
et al., 2016; Zhang and Lu, 2019; Kingma
et al., 2014).

In a very recent work, kernelized local-
ity sensitive hashcodes based representation
learning approach has been proposed that has
shown to be the most successful in terms of
accuracy and computational efficiency for the
task (Garg et al., 2019). The model param-
eters, shared between all the hash functions,
are optimized in a supervised manner, whereas
an individual hash function is constructed in
a randomized fashion. The authors suggest
to obtain thousands of (randomized) semantic
features extracted from natural language data
points into binary hashcodes, and then making
classification decision as per the features using
hundreds of decision trees, which is the core
of their robust classification approach. Even
if we extract thousands of semantic features
using the hashing approach, it is difficult to
ensure that the features extracted from train-
ing data points would generalize to a test set.
While the inherent randomness in construct-
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Figure 1: On the left, we show an abstract meaning representation (AMR) of a sentence. As per the
semantics of the sentence, there is a valid biomedical relationship between the two proteins, Ras and
Raf, i.e. Ras catalyzes phosphorylation of Raf; the relation corresponds to a subgraph extracted from
the AMR. On the other hand, one of the many invalid biomedical relationships that one could infer is,
Ras catalyzes activation of Raf, for which we show the corresponding subgraph too. A given candidate
relation automatically hypothesized from the sentence, is binary classified, as valid or invalid, using the
subgraph as features.

ing hash functions from a training set can help
towards generalization in the case of absence
of a test set, there should be better alterna-
tives if we do have the knowledge of a test set
of data points, or a subset of a training set
treated as a pseudo-test set. What if we con-
struct hash functions in an intelligent manner
via exploiting the additional knowledge of un-
labeled data points in a test/pseudo-test set,
performing fine-grained optimization of each
hash function rather than relying upon ran-
domness, so as to extract semantic features
which generalize?

Along these lines, we propose a new frame-
work for learning hashcode representations ac-
complishing two important (inter-related) ex-
tensions w.r.t. the previous work:

(a) We propose to use a nearly unsuper-
vised hashcode representation learning setting,
in which we use only the knowledge of which
set a data point comes from, a training set or a
test/pseudo-test set, along with the data point
itself, whereas the actual class labels of data
points from a training set are input only to
the final supervised-classifier, such as a Ran-
dom Forest, which takes input of the learned
hashcodes as representation (feature) vectors
of data points along with their class labels;

(b) We introduce multiple concepts for fine-
grained (discrete) optimization of hash func-
tions, employed in our novel information-
theoretic algorithm that constructs hash func-
tions greedily one by one. In supervised

settings, fine-grained (greedy) optimization
of hash functions could lead to overfitting
whereas, in our proposed nearly-unsupervised
framework, it allows flexibility for explicitly
maximizing the generalization capabilities of
hash functions.

For a task of biomedical relation extrac-
tion, we evaluate our approach on four pub-
lic datasets, and obtain significant gains in F1
scores w.r.t. state-of-the-art models includ-
ing kernel-based approaches as well the ones
based on semi-supervised learning of neural
networks. We also show how to employ our
framework for learning locality sensitive hash-
code representations using neural networks.1

2 Problem Formulation &
Background

In Fig. 1, we demonstrate how biomedical re-
lations between entities are extracted from the
semantic (or syntactic) parse of a sentence.
As we see, the task is formulated as of bi-
nary classification of natural language sub-
structures extracted from the semantic parse.
Suppose we have natural language structures,
S = {Si}N1 , such as parse trees, shortest paths,
text sentences, etc, with corresponding class
labels, y = {yi}N1 . For the data points com-
ing from a training set and a test set, we use
notations, ST , and S∗, respectively; same ap-
plies for the class labels. In addition, we define

1Code: https://github.com/sgarg87/nearly_
unsupervised_hashcode_representations

https://github.com/sgarg87/nearly_unsupervised_hashcode_representations
https://github.com/sgarg87/nearly_unsupervised_hashcode_representations
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(a) Hash function choices (b) Generalizing hash function

Figure 2: In this figure, we illustrate how to construct hash functions which generalize across a training
and a test set. Blue and red colors denote training and test data points respectively. A hash function is
constructed by splitting a very small subset of data points into two parts. In Fig. 2(a), given the set of
four data points selected randomly, there are many choices possible for splitting the set, corresponding
to difference choices of hash functions which are denoted with dashed lines. The optimal choice of hash
function is shown in Fig. 2(b) since it generalizes well, assigning same value to many data points from
both training & test sets.

indicator variable, x = {xi}Ni=1, for S, with
xi ∈ {0, 1} denoting if a data point Si is com-
ing from a test/pseudo-test set or a training
set. Our goal is to infer the class labels of the
data points from a test set, y∗.

2.1 Hashcode Representations

As per the hashcode representation approach,
S is mapped to a set of locality sensitive
hashcodes, C = {ci}N1 , using a set of H
binary hash functions, i.e. ci = h(Si) =
{h1(Si), · · · , hH(Si)}. hl(.;θ) is constructed
such that it splits a set of data points, SRl ,
into two subsets as shown in Fig. 2(a), while
choosing the set as a small random subset of
size α from the superset S, i.e. SRl ⊂ S s.t.
|SRl | = α � N . In this manner, we can
construct a large number of hash functions,
{hl(.;θ)}Hl=1, from a reference set of size M ,
SR = {SR1 ∪· · ·∪SRH}, |SR| = M ≤ αH � N .

While, mathematically, a locality sensitive
hash function can be of any form, kernel-
ized hash functions (Garg et al., 2019, 2018;
Joly and Buisson, 2011), rely upon a convolu-
tion kernel similarity function K(Si, Sj ;θ) de-
fined for any pair of structures Si and Sj with
kernel-parameters θ (Haussler, 1999). To con-
struct hl(.), a kernel-trick based model, such as
kNN, SVM, is fit to {SRl , zl}, with a randomly
sampled binary vector, zl ∈ {0, 1}α, that de-
fines the split of SRl . For computing hash-
code ci for Si, it requires only M number of
convolution-kernel similarities of Si w.r.t. the

data points in SR, which makes this approach
highly scalable in compute cost terms.

In the previous work (Garg et al., 2019),
it is proposed to optimize all the hash func-
tions jointly by learning only the parameters
which are shared amongst all the functions, i.e.
learning kernel parameters, θ and the choice of
reference set, SR ⊂ ST . This optimization is
performed in a supervised manner via max-
imization of the mutual information between
hashcodes of data points and their class labels,
using {ST ,yT } for training.

3 Nearly-Unsupervised Hashcode
Representations

Our key insight in regards to limitation of
the previous approach for supervised learning
of hashcode representations, is that, to avoid
overfitting, learning is intentionally restricted
only to the optimization of shared parame-
ters whereas each hash function hl(.) is con-
structed in a randomized manner, i.e. random
sub-sampling of a subset, SRl ⊂ S, and a ran-
dom split of the subset. On the other hand, in
a nearly-unsupervised hashcode learning set-
tings as we introduce next, we can have the
additional knowledge of data points from a
test/pseudo-test set which can be leveraged
to extend the optimization from the shared
(global) parameters to fine-grained optimiza-
tion of hash functions, not only to avoid over-
fitting but for higher generalization of hash-
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(a) Global sampling (b) Local sampling from a cluster (c) Local sampling from a high-
entropy cluster

Figure 3: In all the three figures, dark-gray lines denote hash functions optimized previously, and in-
tersections of the lines give us 2-D cells denoting hashcodes as well as clusters; black dots represent a
set of data points which are used to construct a hash function, and some of the choices to split the
subset are shown as green dashed lines. The procedure of sampling the subset varies across the three
figures. In Fig. 3(a), since the four data points from global sampling have already unique hashcodes (2-D
cells), the newly constructed hash function (one of the green dashed-lines) adds little information to their
representations. On the other hand in Fig. 3(b), a hash function constructed from a set of data points,
which are sampled locally from within a cluster, puts some of the data points in the sampled set into
two different cells (hashcodes), so adding more fine-grained information to their representations, hence
more advantageous from representation learning perspective. In Fig. 3(c), training and test data points
are denoted with blue and red colors respectively, and the data points to construct a new hash function
are sampled locally from within a high entropy cluster, i.e. the one containing a balanced proportion of
the training & test data points.

codes across training & test sets.

Nearly unsupervised learning settings
We propose to learn hash functions, h(.), using
S = {ST ,S∗}, x, and optionally, yT . Herein,
S∗ is a test set, or a pseudo-test set that can
be a random subset of the training set or a
large set of unlabeled data points outside the
training set.

3.1 Basic Concepts for Fine-Grained
Optimization

In the prior works on kernel-similarity based
locality sensitive hashing, the first step for con-
structing a hash function is to randomly sam-
ple a small subset of data points, from a su-
perset S, and in the second step, the subset is
split into two parts using a kernel-trick based
model (Garg et al., 2019, 2018; Joly and Buis-
son, 2011), serving as the hash function, as
described in Sec. 2.

In the following, we introduce basic concepts
for improving upon these two key aspects of
constructing a hash function, while later, in
Sec. 3.2, these concepts are incorporated in a
unified manner in our proposed information-
theoretic algorithm that greedily optimizes hash
functions one by one.

Informative split
In Fig. 2(a), construction of a hash function is
pictorially illustrated, showing multiple possi-
ble splits, as dotted lines, of a small set of four
data points (black dots). (Note that a hash
function is shown to be a linear hyperplane
only for simplistic explanations of the basic
concepts.) While in the previous works, one of
the many choices for splitting the set is chosen
randomly, we propose to optimize upon this
choice. Intuitively, one should choose a split of
the set, corresponding to a hash function, such
that it gives a balanced split for the whole set
of data points, and it should also generalize
across training & test sets. In reference to the
figure, one simple way to analyze the general-
ization of a split (so the hash function) is to
see if there are training as well as test data
points (or pseudo-test data points) on either
side of the dotted line. As per this concept,
an optimal split of the set of four data points
is shown in Fig. 2(b).

Referring back to Sec. 2, clearly, this is
a combinatorial optimization problem, where
we need to choose an optimal choice of zl ∈
{0, 1}α for set, SRl , to construct hl(.). For a
small value of α, one can either go through
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all the possible combinations in a brute force
manner, or use Markov Chain Monte Carlo
sampling. It is interesting to note that, even
though a hash function is constructed from a
very small set of data points (of size α 6� 1),
the generalization criterion, formulated in our
info-theoretic objective introduced in Sec. 3.2,
is computed using all the data points available
for the optimization, S.

Local sampling from a cluster
Another aspect of constructing a hash func-
tion, having a scope for improvement, is sam-
pling of a small subset of data points, SRl ⊂ S,
that is used to construct a hash function. In
the prior works, the selection of such a sub-
set is purely random, i.e. random selection of
data points globally from S. In Fig. 3, we
illustrate that, it is wiser to (randomly) se-
lect data points locally from one of the clus-
ters of the data points in S, rather than sam-
pling globally from S. Here, we propose that
clustering of all the data points in S can be
obtained using the hash functions itself, due
to their locality sensitive property. While us-
ing a large number of locality sensitive hash
functions give us fine-grained representations
of data points, a small subset of the hash func-
tions, of size ζ, defines a valid clustering of the
data points, since data points which are simi-
lar to each other should have same hashcodes
serving as cluster labels.

From this perspective, we can construct
first few hash functions from global sam-
pling of data points, what we refer as global
hash functions. These global hash functions
should serve to provide hashcode represen-
tations as well as clusters of data points.
Then, via local sampling from the clusters,
we can also construct local hash functions
to capture more finer details of data points.
As per this concept, we can learn hierar-
chical (multi-scale) hashcode representations
of data points, capturing differences between
data points from coarser (global hash func-
tions) to finer scales (local hash functions).

Further, we suggest to choose a cluster
that has a balanced proportion of training &
test (pseudo-test) data points, which is desir-
able from the perspective of having generalized
hashcode representations; see Fig. 3(c).

Figure 4: Dark-gray lines denote hash functions
optimized previously, and gray color represents
data points used for the optimization. The inter-
sections of the lines give us 2-D cells, correspond-
ing to hashcodes as well as clusters. For the set
of four data points sampled within a cluster, there
are many choices to split it (corresponding to hash
functions choices), shown with dashed lines. We
propose to choose the one which also splits the sets
of data points in other (neighboring) clusters in a
balanced manner, i.e. having data points in a clus-
ter on either side of the dashed line and cutting
through as many clusters as possible. As per this
criterion, the thick-green dashed lines are superior
choices w.r.t. the thin-green ones.

Splitting other clusters
In reference to Fig. 4, non-redundancy of a
hash function w.r.t. the other hash functions
can be characterized in terms of how well the
hash function splits the clusters defined as per
the other hash functions.

Next we mathematically formalize all the
concepts introduced above for fine-grained
optimization of hash functions into an
information-theoretic objective function.

3.2 Information-Theoretic Learning

We optimize hash functions greedily, one by
one. Referring back to Sec. 2, we define binary
random variable x denoting if a data point
comes from a training set or a test/pseudo-
test set. In a greedy step of optimizing a hash
function, random variable, c, represents the
hashcode of a data point S, as per the previ-
ously optimized hash functions hl−1(.). Along
same lines, c denotes the binary random vari-
able corresponding from the present hash func-
tion under optimization, hl(.). We maximize
the information-theoretic objective as below.
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Algorithm 1 Nearly-Unsupervised Hashcode Representation Learning

Require: Dataset {S,x}, and parameters, H,α, ζ.
1: h(.)← {}, C ← {}, f ← {}

%Greedy step for optimizing hash function, hl(.)
2: while |h(.)| < H do
3: αl ← sampleSubsetSize(α) %Sample a size for the subset of data points, SRl , to construct

a hash function
4: if |h(.)| < ζ then
5: SRl ← randomSampleGlobally(S, αl) %Randomly sample data points, globally from

S, for constructing a global hash function.
6: else
7: SRl ← randomSampleLocally(S,C,x, αl, ζ) %Sample data points randomly from, a

high entropy cluster, for constructing a local hash function.
8: end if
9: hl(.), fl← optimizeSplit

(
SRl ,S,C,x

)
%Optimize split of SRl .

10: c← computeHash(S, hl(.))
11: C ← C ∪ c, h(.)← h(.) ∪ hl(.), f ← f ∪ fl.
12: h(.),C,f ← deleteLowInfoFunc(h(.),C,f) %delete hash functions from the set with

lower objective values
13: end while
14: Return h(.),C.

argmax
hl()
H(x, c)− I(c : c) +H(x|c); (1)

c = hl−1(S), c = hl(S)

Herein the optimization of a hash function,
h(.), involves intelligent selection of SRl , an in-

formative split of SRl , i.e. optimizing zl for
SRl , and learning of the parameters θ of a (ker-
nel or neural) model, which is fit on {SRl , zl},
acting as the hash function.

In the objective function above, maximiz-
ing the first term, H(x, c), i.e. joint entropy
on x and c, corresponds to the concept of in-
formative split described above in Sec. 3.1; see
Fig. 2. This term is cheap to compute since x
and c are both 1-dimensional binary variables.

The second term in the objective, the mu-
tual information term, ensures minimal redun-
dancies between hash functions. This is re-
lated to the concept of constructing a hash
function such that it splits many of the ex-
isting clusters, as mentioned above in Sec. 3.1;
see Fig. 4. This mutual information function
can be computed using the approximation in
the previous work by (Garg et al., 2019).

The last quantity in the objective is H(x|c),
conditional entropy on x given c. We propose

to maximize this term indirectly via choosing a
cluster informatively, from which to randomly
select data points for constructing the hash
function, such that it contains a balanced ra-
tio of the count of training & test data points,
i.e. a cluster with high entropy on x, which
we refer as a high entropy cluster. In refer-
ence to Fig. 3(c), the new clusters emerging
from a split of a high entropy cluster should
have higher chances to be high entropy clus-
ters themselves, thus maximizing the last term
indirectly. We compute marginal entropy on x
for each cluster, and an explicit computation
of H(x|c) is not required.

Optionally one may extend the objective to
include the term, −H(y|c, c), with y denoting
the random variable for a class label.

The above described learning framework is
summarized in Alg. 1.

Besides kernelized locality sensitive hash-
codes, the above framework allows neural lo-
cality sensitive hashing. One can fit any (reg-
ularized) neural model on {SRl , zl}, acting as a
neural locality sensitive hash function. We ex-
pect that some of the many possible choices for
a split of SRl should lead to natural semantic
categorizations of the data points. For such
a natural split choice, even a parameterized
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model can act as a good hash function with-
out overfitting as we observed empirically.

In the algorithm, we also propose to delete
some of the hash functions from the set of op-
timized ones, the ones which have low objec-
tive function values w.r.t. the rest. This step
provides robustness against an arbitrarily bad
choice of randomly selected subset, SRl .

Our algorithm allows parallel computing, as
in the previous hashcode learning approach.

4 Experiments

We demonstrate the applicability of our ap-
proach for a challenging task of biomedical re-
lation extraction, using four public datasets.

Dataset details
For AIMed and BioInfer, cross-corpus evalua-
tions have been performed in many previous
works (Airola et al., 2008; Tikk et al., 2010;
Peng and Lu, 2017; Hsieh et al., 2017; Rios
et al., 2018; Garg et al., 2019). These datasets
have annotations on pairs of interacting pro-
teins (PPI) in a sentence while ignoring the in-
teraction type. Following the previous works,
for a given pair of proteins mentioned in a
text sentence from a training or a test set, we
obtain the corresponding undirected shortest
path from a Stanford dependency parse of the
sentence, that serves as a data point.

We also use PubMed45 and BioNLP
datasets which have been used for extensive
evaluations in recent works (Garg et al., 2019,
2018; Rao et al., 2017; Garg et al., 2016).
These two datasets consider a relatively more
difficult task of inferring an interaction be-
tween two or more bio-entities mentioned in
a sentence, along with the inference of their
interaction-roles, and the type of interaction
from an unrestricted list. As in the previ-
ous works, we use abstract meaning represen-
tation (AMR) to obtain shortest path-based
data points (Banarescu et al., 2013); same bio-
AMR parser (Pust et al., 2015) is employed as
in the previous works. PubMed45 dataset has
11 subsets, with evaluation performed for each
of the subsets as a test set leaving the rest
for training (not to be confused with cross-
validation). For BioNLP dataset (Kim et al.,
2009, 2011; Nédellec et al., 2013), the train-
ing set contains annotations from years 2009,
2011, 2013, and the test set contains develop-

ment set from year 2013. Overall, for a fair
comparison of the models, we keep same ex-
perimental setup as followed in (Garg et al.,
2019), for all the four datasets, so as to avoid
any bias due to engineering aspects; evaluation
metrics for the relation extraction task are, f1
score, precision, recall.

Baseline methods
The most important baseline method for the
comparison is the recent work of supervised
hashcode representations (Garg et al., 2019).
Their model is called as KLSH-RF, with
KLSH referring to kernelized locality sensitive
hashcodes, and RF denotes Random Forest.
Our approach differs from their work in the
sense that our hashcode representations are
nearly unsupervised, whereas their approach
is purely supervised, while both approaches
use a supervised RF. We refer to our model
as KLSH-NU-RF. Within the nearly unsuper-
vised learning setting, we consider transduc-
tive setting by default, i.e. using data points
from both training and test sets. Later, we
also show results for inductive settings, i.e. us-
ing a random subset of training data points,
as a pseudo-test set. In both scenarios, we do
not use class labels for learning hashcodes, but
only for training RF.

For AIMed and BioInfer datasets, adversar-
ial learning based four neural network models
had been evaluated in the prior works (Rios
et al., 2018; Ganin et al., 2016), referred
as CNN-RevGrad, Bi-LSTM-RevGrad, Adv-
CNN, Adv-CNN. Like our model KLSH-NU-
RF, these four models are also learned in
transductive settings of using data points
from the test set in addition to the train-
ing set. Semi-supervised Variational Autoen-
coders (SSL-VAE ) have also been explored for
biomedical relation extraction (Zhang and Lu,
2019), which we evaluate ourselves for all the
four datasets considered in this paper.

Parameter settings
We use path kernels with word vectors &
kernel parameter settings as in the previous
work (Garg et al., 2019). From a preliminary
tuning, we set the number of hash functions,
H = 100, and the number of decision trees
in a Random Forest classifier, R = 100; these
parameters are not sensitive, requiring mini-
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Models (A, B) (B, A)

SVM (Airola08) 0.47 0.47

SVM (Miwa09) 0.53 0.50

SVM (Tikk10) 0.41 0.42
(0.67, 0.29) (0.27, 0.87)

CNN (Nguyen15) 0.37 0.45

Bi-LSTM (Kavuluru17) 0.30 0.47

CNN (Peng17) 0.48 0.50
(0.40, 0.61) (0.40, 0.66)

RNN (Hsieh17) 0.49 0.51

CNN-RevGrad (Ganin16) 0.43 0.47

Bi-LSTM-RevGrad (Ganin16) 0.40 0.46

Adv-CNN (Rios18) 0.54 0.49

Adv-Bi-LSTM (Rios18) 0.57 0.49

KLSH-kNN (Garg18) 0.51 0.51
(0.41, 0.68) (0.38, 0.80)

KLSH-RF (Garg19) 0.57 0.54
(0.46, 0.75) (0.37, 0.95)

SSL-VAE (Zhang19) 0.50 0.46
(0.38, 0.72) (0.39, 0.57)

KLSH-NU-RF 0.57 0.57
(0.44, 0.81) (0.44, 0.81)

Table 1: Evaluation results from cross-corpus eval-
uation for (train, test) pairs of datasets, AIMed (A)
and BioInfer (B). For each model, we report F1
score, and if available, precision, recall scores are
also shown in brackets. For the adversarial neural
models by (Ganin et al., 2016), evaluation on the
datasets was provided by (Rios et al., 2018).

mal tuning. For any other parameters which
may require fine-grained tuning, we use 10%
of training data points, selected randomly, for
validation. Within kernel locality sensitive
hashing, we choose between Random Maxi-
mum Margin and Random k-Nearest Neigh-
bors techniques, and for neural locality sensi-
tive hashing, we use a simple 2-layer LSTM
model with 8 units per layer. In our nearly
unsupervised learning framework, we use sub-
sets of the hash functions, of size 10, to obtain
clusters (ζ = 10). We employ 8 cores on an
i7 processor, with 32GB memory, for all the
computations.

4.1 Experimental Results

In summary, our model KLSH-NU-RF signifi-
cantly outperforms its purely supervised coun-
terpart, KLSH-RF, and also semi-supervised
neural network models.

In reference to Tab. 1, we first discuss re-
sults for the evaluation setting of using AIMed
dataset as a test set, and BioInfer as a training
set. We observe that our model, KLSH-NU-
RF, obtains F1 score, 3 pts higher w.r.t. the

Models PubMed45 BioNLP

SVM (Garg16) 0.45±0.25 0.46
(0.58, 0.43) (0.35, 0.67)

LSTM (Rao17) N.A. 0.46
(0.51, 0.44)

LSTM (Garg19) 0.30±0.21 0.59
(0.38, 0.28) (0.89, 0.44)

Bi-LSTM (Garg19) 0.46±0.26 0.55
(0.59, 0.43) (0.92, 0.39)

LSTM-CNN (Garg19) 0.50±0.27 0.60
(0.55, 0.50) (0.77, 0.49)

CNN (Garg19) 0.51±0.28 0.60
(0.46, 0.46) (0.80, 0.48)

KLSH-kNN (Garg18) 0.46±0.21 0.60
(0.44, 0.53) (0.63, 0.57)

KLSH-RF (Garg19) 0.57±0.25 0.63
(0.63, 0.55) (0.78, 0.53)

SSL-VAE (Zhang19) 0.40± 0.16 0.48
(0.33, 0.69) (0.43, 0.56)

KLSH-NU-RF 0.61±0.23 0.67
(0.61, 0.62) (0.73, 0.61)

Table 2: Evaluation results for PubMed45 and
BioNLP datasets. We report F1 score (mean ±
standard deviation), and mean-precision & mean-
recall numbers in brackets. For BioNLP, we stan-
dard deviation numbers are not provided as there
is one fixed test subset.

most recent baseline, KLSH-RF. In compari-
son to the semi-supervised neural neural mod-
els, CNN-RevGrad, Bi-LSTM-RevGrad, Adv-
CNN, Adv-Bi-LSTM, SSL-VAE, which use the
knowledge of a test set just like our model,
we gain 8-11 pts in F1 score. On the other
hand, when evaluating on BioInfer dataset as
a test set and AIMed as a training set, our
model is in tie w.r.t. the adversarial neural
model, Adv-Bi-LSTM, though outperforming
the other three adversarial models and SSL-
VAE, by large margins in F1 score. In com-
parison to KLSH-RF, we retain same F1 score,
while gaining in recall by 6 pts at the cost of
losing 2 pts in precision.

For PubMed and BioNLP datasets, there
is no prior evaluation of adversarial mod-
els. Nevertheless, in Tab. 2, we see that
our model significantly outperforms SSL-VAE,
and it also outperforms the most relevant base-
line, KLSH-RF, gaining F1 score by 4 pts for
both the datasets.2 Note that, high standard
deviations reported for PubMed45 dataset are
due to high diversity across the 11 test sets,

2These two datasets have high importance to gauge
practical relevance of a model for the task of biomedical
relation extraction.
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Figure 5: Comparison across the three types of
learning settings, supervised, transductive, and in-
ductive.

while the performance of our model for a given
test set is highly stable (improvements are sta-
tistically significant with p-value: 6e-3).

One general trend to observe is that the pro-
posed nearly unsupervised learning approach
leads to a significantly higher recall, at the
cost of marginal drop in precision, w.r.t. its
supervised baseline.

Further, note that the number of hash func-
tions used in the prior work is 1000 whereas we
use only 100 hash functions. Compute time is
same as for their model.

Our approach is easily extensible for other
modeling aspects such as non-stationary ker-
nel functions, document level inference, joint
use of semantic & syntactic parses, ontology or
database usage (Garg et al., 2019, 2016; Ali-
cante et al., 2016), though we refrain from pre-
senting system level evaluations, and have fo-
cused only upon analyzing improvements from
our principled extension of the recently pro-
posed technique that has already been shown
to be successful for the task.

Transductive vs inductive settings
In the above discussed results, hashcode repre-
sentations in our models are learned in trans-
ductive setting. For inductive settings, we ran-
domly select 25% of the training data points
for use as a pseudo-test set instead of the test
set. In Fig. 5, we observe that both inductive
and transductive settings are more favorable
w.r.t. the supervised one, KLSH-RF, which
is the baseline in this paper. F1 scores ob-
tained from the inductive setting are on a par
with the transductive settings. It is worth not-
ing that, in inductive settings, our model is
trained on information even lesser than the
baseline model KLSH-RF, yet it obtains F1

Figure 6: Comparison of neural hashing w.r.t. ker-
nel hashing, and the best of neural baselines.

scores significantly higher.

Neural hashing
In Fig. 6, we show results for neural locality
sensitive hashing within our proposed frame-
work, and observe that neural hashing is a
little worse than its kernel based counter-
part, however it performs significantly supe-
rior w.r.t. the best of other neural models.

5 Conclusions

We proposed a nearly-unsupervised frame-
work for learning of kernelized locality sensi-
tive hashcode representations, a recent tech-
nique, that was originally supervised, which
has shown state-of-the-art results for a difficult
task of biomedical relation extraction. Within
our proposed framework, we use the additional
knowledge of test/pseudo-test data points for
fine-grained optimization of hash functions so
as to obtain hashcode representations general-
izing across training & test sets. Our experi-
ment results show significant improvements in
accuracy numbers w.r.t. the supervised base-
line, as well as semi-supervised neural network
models, for the same task of bio-medical rela-
tion extraction across four public datasets.
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