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Abstract
Many existing relation extraction (RE) models
make decisions globally using integer linear
programming (ILP). However, it is nontrivial
to make use of integer linear programming as
a blackbox solver for RE. Its cost of time and
memory may become unacceptable with the
increase of data scale, and redundant informa-
tion needs to be encoded cautiously for ILP. In
this paper, we propose an easy first approach
for relation extraction with information redun-
dancies, embedded in the results produced by
local sentence level extractors, during which
conflict decisions are resolved with domain
and uniqueness constraints. Information re-
dundancies are leveraged to support both easy
first collective inference for easy decisions in
the first stage and ILP for hard decisions in a
subsequent stage. Experimental study shows
that our approach improves the efficiency and
accuracy of RE, and outperforms both ILP and
neural network-based methods.

1 Introduction

Relation extraction (RE) has been extensively
studied due to its crucial role for many knowl-
edge based applications (Fan et al., 2012; Zhang
et al., 2012; Chen et al., 2014a), such as ques-
tion answering and knowledge graph. There are
two types of relation extractors: local and global.
The former identify relationships between en-
tity pairs individually according to the local fea-
tures of sentences, e.g., lexical and syntactic fea-
tures (Bunescu and Mooney, 2007; Mintz et al.,
2009; Surdeanu et al., 2010; Hoffmann et al.,
2011; Surdeanu et al., 2012; Zeng et al., 2015; Lin
et al., 2016). The latter make decisions by further
considering joint features of the entire corpus (Yao
et al., 2010; Li et al., 2011, 2013; de Lacalle and
Lapata, 2013; Chen et al., 2014a). Global rela-
tion extractors are able to resolve conflict deci-
sions, and to utilize the dependencies among ex-

tracted facts to improve the performance (Li et al.,
2011; Chen et al., 2014a), commonly by formal-
izing RE as a constrained optimization problem
and solving RE with integer linear programming
(ILP) (Roth and Yih, 2004; Choi et al., 2006;
Roth and Yih, 2007; Li et al., 2011; Ji et al., 2013;
Chen et al., 2014a,b). However, global optimiza-
tion remains dominated by the ILP solvers, suffer-
ing from heavy time expenses.

Using integer linear programming for RE as a
blackbox solver is a challenging task. First, with
the increase of entity pairs and candidate relations,
the variables and constraints encoded for ILP in-
crease dramatically, which in return may consume
too much computing time and memory. Second,
redundant information needs to be encoded cau-
tiously. Consider <United States, capital : 0.6,
New York>, <United States, capital : 0.7, New
York> and <United States, capital : 0.96, Wash-
ington D.C.> in Table 1. Simple statistical meth-
ods, such as confidence summation, may easily
lead to a wrong decision in this case.

To address the above issues, we propose to
make easy (most confident) decisions first, and
then to make hard decisions with ILP. The ratio-
nale lies in that easy decisions should be made
early, and eliminating conflicts with constraints
aids hard decision making. We leverage informa-
tion redundancies, embedded in the results pro-
duced by sentence level extractors, to compute
the confidences of candidate relations for entity
pairs. Redundancy commonly exists in various
corpora, e.g., subject “United States” and object
“New York” appear multiple times in Table 1.
Even if there exists a specific relation between a
subject and an object, the relation may not be re-
flected in certain mentions due to the lack of em-
bedded evidence in single mentions, and informa-
tion redundancies are essentially to alleviate such
insufficiency for decision making.
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ID Entity Pair Top-3 Candidate Relations
1 Australia, Canberra capital : 0.7 locationCity : 0.2 nationality : 0.1
2 United States, New York capital : 0.6 birthPlace : 0.35 nationality : 0.05
3 United States, New York capital : 0.7 country : 0.23 deathPlace : 0.07
4 United States, Washington D.C. capital : 0.96 country : 0.03 birthPlace : 0.01
5 Australia, Sydney locationCountry : 0.6 capital : 0.2 largestCity : 0.2
6 University of Sydney, Sydney locationCity : 0.7 locationCountry : 0.2 city : 0.1
7 Geoff Ogilvy, Australia nationality : 0.4 locationCountry : 0.3 city : 0.3

Table 1: Example entity pairs and their candidate relations.

When making easy decisions, we keep the con-
sistency among candidate relations by making use
of constraints (i.e., domain and uniqueness con-
straints) to eliminate conflicts directly, instead of
implicitly encoding constraints in ILP (Yao et al.,
2010; de Lacalle and Lapata, 2013; Chen et al.,
2014a; Koch et al., 2014; Chen et al., 2014b). As
a result, the number of variables and constraints to
be encoded in ILP is significantly reduced, which
speeds up the entire decision making process.

In short, our approach employs an easy-first
strategy with information redundancies to make
most confident decisions first during which con-
flict candidate relations are resolved directly by
domain and uniqueness constraints, and it only
makes the remaining hard decisions with ILP. Our
approach is an important improvement of ILP-
models, and it is not a new RE model, but an effi-
cient and effective approach to fully exploiting the
results of (any) local RE extractors. As shown in
the experiments, our approach improves the per-
formance, on average (4.58%, 17.90%) more ac-
curate and (21, 37) times faster than existing ILP
and neural network-based methods, respectively.

In the rest, we first introduce constraints and re-
dundancies in Section 2, then present our detailed
approach in Section 3, followed by experimental
study in Section 4, related work in Section 5, and
conclusions in Section 6.

2 Constraints and Redundancies

Consider a setM of mentions and a setR of prede-
fined relations {r1, . . . , rk}. For each mention m,
a sentence level extractor produces an entity pair
(subject s and object o) and a confidence score ci
for each relation ri (i ∈ [1, k]), which represents
the probability that s and o have relation ri (Berger
et al., 1996; Hoffmann et al., 2011). Here an NA
(unknown) relation is typically included in R.

A mention m preprocessed by a sentence level
extractor is essentially a k + 2 tuple (s, o, r1 :
c1, . . . , rk : ck), as illustrated in Table 1, where

1 ≥ ci ≥ cj ≥ 0 for any i > j ∈ [1, k] and∑k
i=1 ci = 1. Observe that an entity pair (sub-

ject s and object o) with a relation r ∈ R can be
treated as an SRO triple (s, r, o), and a mention m
contains k SRO triples. For convenience, given a
mention m and a relation r ∈ R, we also denote
the score of relation r in m as m[r].c.

Given a set M of mentions preprocessed by a
sentence level extractor, our task for relation ex-
traction is to determine the set of correct relations
for each entity pair inM , and our approach adopts
an easy-first strategy to make fast and accurate de-
cisions, by leveraging constraints and redundan-
cies that are to be introduced below.

In the following, a mention is referred to the one
preprocessed by a sentence level extractor.

2.1 Constraints
We consider two types of constraints: domain and
uniqueness constraints, commonly used to enforce
agreements on decisions for RE (Yao et al., 2010;
de Lacalle and Lapata, 2013; Chen et al., 2014a;
Koch et al., 2014; Chen et al., 2014b).
Domain constraints. This type of constrains en-
forces constraints among the subject and object
domains of relations. Given relations ri and rj
(1 ≤ i, j ≤ k), (1) an S-S domain constraint en-
sures that ri and rj share no common entities be-
tween their subjects, i.e., ri.subject ∩ rj .subject
= ∅, (2) an O-O domain constraint ensures that ri
and rj share no common entities between their ob-
jects, i.e., ri.object ∩ rj .object = ∅, and (3) an S-
O domain constraint ensures that ri and rj share
no common entities between the subject of ri and
the object of rj , i.e., ri.subject ∩ rj .object = ∅.

For example, (1) relations largestCity and lo-
cationCity have their subjects as countries (e.g.,
“Australia”) and organizations (e.g., “University
of Sydney”), respectively. They hold an S-S do-
main constraint; (2) relations locationCity and
locationCountry have their objects as cities and
countries, respectively. They hold an O-O domain
constraint; (3) locationCity has its subjects as or-
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# of
mentions

# of
entity
pairs

# of
subjects

# of
objects

# / ratio of entity
pairs mentioned
multiple times

# / ratio of sub-
jects mentioned
multiple times

# / ratio of ob-
jects mentioned
multiple times

Top 3 relation
precision (%)

≥ 3 ≥ 5 ≥ 3 ≥ 5 ≥ 3 ≥ 5

53162 30864 11360 9709 2754/
8.92%

1225/
3.97%

2914/
25.65%

1591/
14.01%

2442/
25.15%

1351/
13.91%

DB_me: 77.3/ 11.8/ 5.0
DB_nn: 76.5/ 10.6/ 5.0

Table 2: Redundancy statistics of DBpedia - ( see Section 4 for details about the datasets).

ganizations and nationality has its objects as coun-
tries. It holds an S-O domain constraint.
Uniqueness constraints. This type of constrains
enforces the uniqueness of the subjects and objects
of relations. Given a relation ri (1 ≤ i ≤ k), (1)
an S uniqueness constraint ensures that there ex-
ist no subject s and objects oh 6= ol such that both
(s, ri, oh) and (s, ri, ol) hold, and (2) an O unique-
ness constraint ensures that there exist no object o
and subjects sh 6= sl such that both (sh, ri, o) and
(sl, ri, o) hold, respectively.

For example, relation capital holds both S and
O uniqueness constraints, since a country as the
subject of capital has only one capital, and a city
as the object of capital can only be the capital of
one country.

We refer to the total set of relations with S-S
(resp. O-O and S-O) domain constraints as DCss

(resp. DCoo and DCso). We also refer to the total
set of relations with S (resp. O) uniqueness con-
straints as UCs (resp. UCo).

2.2 Information Redundancies
Redundancies are used to pick up hidden informa-
tion (Downey et al., 2005; Banko et al., 2007; Li
et al., 2011), and are very common in the corpus,
as revealed by the statistics in Table 2. They are es-
sentially the statistical characteristics (knowledge)
of the results produced by local sentence level ex-
tractors, and are very important for global predic-
tions. In this study, we introduce and leverage four
classes of information redundancies: S-O, S-R, O-
R and R redundancies.
S-O redundancies are introduced to aid the deci-
sion making of the top-one relations of mentions
with the same subjects and objects. For a men-
tion m = (s, o, r1 : c1, . . . , rk : ck) preprocessed
by a sentence level extractor, its certainty degree
ent(m) is defined as follows.

ent(m) = −
k∑

i=1

ci ln ci. (1)

The redundancy score RC(s, r1, o) of the top-one
relation r1 for subject s and object o in m, based

on its S-O redundancies, is defined as

RC(s, r1, o) =
∑

m′∈Ms,o,r1

αent(m′), (2)

where Ms,o,r1 is the set of mentions in M whose
subjects are s, objects are o, and top-one relations
are r1, and α is a small positive number in (0, 1)
(set to 0.05 by default) to enforce that αent(m′)

falls into (0, 1). Informally, RC(s, r1, o) is a col-
lective score based on its S-O redundancies, which
makes use of information entropy to judge the con-
fidence, and considers both the relative confidence
scores and repeated times.
S-R redundancies are introduced to aid the deci-
sion making whether a subject meets the domain
requirement of a relation. The likelihood score
LC(s, r) for subject s and relation r, based on its
S-R redundancies, is

LC(s, r) =

∑
m∈Ms

m[r].c∑
m∈Ms

∑
r′∈R\{NA}m[r′].c

, (3)

whereMs is the set of mentions with the same sub-
ject s. Informally, LC(s, r) measures the probabil-
ity that relation r has a subject s among all rela-
tions except NA.
O-R redundancies are introduced to aid the deci-
sion making whether an object meets the domain
requirement of a relation. The likelihood score
LC(o, r) for object o and relation r, based on its
O-R redundancies, is

LC(o, r) =

∑
m∈Mo

m[r].c∑
m∈Mo

∑
r′∈R\{NA}m[r′].c

, (4)

where Mo is the set of mentions with the same ob-
ject o. Informally, LC(o, r) measures the probabil-
ity that relation r has an object o among all rela-
tions except NA.
R redundancies are introduced to aid the deci-
sion making whether a subject and an object have
a non-NA relation. The likelihood score LC(s, o)
for subject s and object o, based on its R redun-
dancies, is

LC(s, o) = max
m∈Ms,o

∑
r∈R\{NA}

m[r].c, (5)
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Figure 1: Framework of our approach eFIRE.

where Ms,o is the set of mentions with the same
subject s and object o. Informally, LC(s, o) se-
lects prominent information from local decisions
to measure the probability of having at least one
non-NA relation between s and o.

As will be seen in the next section, redundancy
scores RC(s, r1, o) are used for making easy deci-
sions, and likelihood scores LC(s, r), LC(o, r) and
LC(s, o) are used for hard decisions, respectively.

3 Easy First Relation Extraction

We propose a novel easy FIrst approach for
Relation Extraction with information redundan-
cies, referred to as eFIRE. As shown by the frame-
work in Figure 1, our approach obtains S-O re-
dundancies, and makes easy decisions with easy
first collective inference in the first stage. Then it
derives S-R, O-R and R redundancies, and makes
hard decisions with ILP in the second stage. We
next introduce our approach in detail.

3.1 Easy First Collective Inference
In the first stage, decisions must be highly accurate
to avoid error propagation. As revealed by Table
2, the decisions produced by local extractors are
only reliable for top-one relations. Hence, eFIRE
first makes decisions for entity pairs using their
top-one relations only. The confidences are the re-
dundancy scores obtained with the S-O redundan-
cies (Section 2.2). Once a decision is made, dis-
agreements are resolved immediately with domain
and uniqueness constraints directly (Section 2.1).
Confidence computing and ordering. It com-
putes the redundancy scores RC(s, r1, o) of all the
entity pairs (s, o) with their top-one relations r1 in
mentions M , using S-O redundancies. The higher
the redundancy scores RC(s, r1, o) are, the more
confident subject s and object o have a relation r1.
Hence, entity pairs with their top-one relations are
sorted in a descending order of their redundancy

Input: a set M of mentions, a set of domain and uniqueness
constraints, and a threshold ε.

Output: a set E of decision and updated M .
1. E := ∅;
2. Compute redundancy scores and sort with a max-heap MH;
3. while MH.Max() > ε do
4. (s, r, o, c) := MH.popMax();
5. E := E ∪ {(s, r, o, c)} ;
6. Conflict resolving by updating MH and M ;
7. return E, M .

Figure 2: Algorithm for making easy decisions.

scores. As updating operations happen very of-
ten during the process of decision making, we in-
troduce a max-heap MH to maintain all the entity
pairs with their top-one relations and redundancy
scores for the sake of efficiency.
Decision making and conflict resolving. It first
makes a decision for the entity pair (s, o) by
choosing its top-one relation r1 such that the re-
dundancy score RC(s, r1, o) is the highest in MH.

Then it resolves conflicts accordingly. (1) For
any relation r ∈ R having an S-S domain con-
straint with r1, all entity pairs with subject s and
top-one relation r are deleted from MH, and for
entity pairs with subject s in M , their scores of re-
lation r are set to zeroes. It is similar for O-O and
S-O domain constraints. (2) If relation r1 has an S
uniqueness constraint, all entity pairs with subject
s and top-one relation r1 are deleted from MH, and
for entity pairs with subject s and object o′ 6= o in
M , their scores of relation r1 are set to zeroes. It
is similar for O uniqueness constraints.

The above process is repeated until the high-
est redundancy score in the max-heap MH is less
than a predefined threshold ε, which is to ensure
the correctness of decisions. For the benefit of ef-
ficiency, we also index mentions by subjects, by
objects and by entity pairs, separately.

The intention of threshold ε is to distinguish
easy decisions from hard ones based on S-O re-
dundancies. This indeed can be reflected from
the redundancy scores. Consider an extreme case
when there is only one mention m in M with sub-
ject s, object o and top-one relation r1 whose score
is 1.0, i.e., there are no S-O redundancies for men-
tion m. In this case, we have RC(s, r1, o) = 1.0.
However, for cases when multiple mentions with
the same subject s, object o and top-one relation
r1, it is likely that the redundancy score is less than
1.0. Hence, threshold ε is typically set to a value a
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little less than 1.0.
Our approach makes a better use of information

redundancies in the corpus to aid the decision
making process. Recall the example on deter-
mining whether the capital of “United States” is
“New York” or “Washington D.C.” in Section 1.
With the S-O redundancies, “Washington D.C.”
is chosen as the capital of “United States”, as
RC(United States, capital,New York) = 0.18 and
RC(United States, capital,Washington D.C.) =
0.57, which justifies the rationale of introducing
the certainty degree ent(m) for mentions m.
Complete algorithm for easy first inference.
The complete algorithm is presented in Figure 2.

It first initializes the set E of easy decisions
empty (line 1). It then computes the redundancy
scores of all the entity pairs with their top-one rela-
tions in mentionsM , using S-O redundancies, and
these entity pairs with their top-one relations are
sorted in a descending order of their redundancy
scores with a max heap MH (line 2). It repeatedly
deals with entity pairs and their top-one relations
in MH one by one until the highest redundancy
score in MH is no more than ε (lines 3-6). Once
a decision is made (lines 4, 5), conflicts are re-
solved immediately by updating MH and M (line
6). Finally, the modified mentions M and a set E
of easy decisions are returned (line 7).
Time and space complexity analyses. The al-
gorithm runs in O(|M |2(|R| + log |M |)) time,
where |M | and |R| are the numbers of mentions
and predefined relations, respectively. Observe the
following. For a mention, (1) it takes O(|R| +
log |M |) time to compute the redundancy scores
for all entity pairs with their top-one relations,
(2) maintaining MH can be done in O(log |M |)
time, and (3) decision making and conflict resolv-
ing takeO(|M |(|R|+log |M |)) time. As there are
in total |M | mentions, we have the conclusion.

It is easy to see that the algorithm takes a space
in the linear size of the set M of mentions.

3.2 Integer Linear Programming

In the second stage, our goal is to find an optimal
configuration for the remaining mentions, mak-
ing use of S-R, O-R and R redundancies, solving
the disagreements by domain and uniqueness con-
straints, and maximizing the overall confidence
of the made decisions. This is an NP-hard opti-
mization problem, and many optimization models
can be used to obtain approximate solutions. The

tricky part is the design of the objective functions.
Here, we adopt the ILP tool “IBM ILOG CPLEX”.

More specifically, for each mention m and each
of its candidate relations r in the set M of remain-
ing mentions returned in the first stage, we define a
binary decision variable vrm indicating whether re-
lation r is chosen for the entity pair (s, o) in m by
the solver. For each mention m in M , we choose
its top three relations with scores no less than 0.1
as the candidate relations. As revealed by Table 2,
candidates beyond top-3 are very unreliable.

Our objective is to maximize the total confi-
dence of all the selected candidates based on the
S-R, O-R and R redundancies, and the objective
function can be written as:

max
∑

m∈M,r∈Rm

(
LC(s, r)+LC(o, r)+LC(s, o)

+
∑

m′∈Mm

m′[r].c
)
vrm,

(6)

where s and o are the subject and object in m,
Rm is the set of candidate relations for s and o
in m, and Mm is the set of mentions in M hav-
ing the same subject and object as m. The first
component is the sum of S-R, O-R, and R redun-
dancies of the selected candidates, and the second
one is the sum of the original confidence scores of
the selected candidates. The former is designed to
encourage the model to select candidates meeting
the domain requirements of relations, and the lat-
ter is designed to give consideration to decisions
produced by sentence level extractors. That is,
although the sentence level extractors may make
wrong decisions, the global statistics of their deci-
sions are reliable, and should be preserved.

The domain and uniqueness constraints are en-
coded to avoid conflict decisions as follows.

vr
mi

mi
+ vr

mj

mj
≤ 1, (7)

where mi and mj have the same subject, rmi ∈
Rmi , rmj ∈ Rmj , and rmi and rmj have an S-S
domain constraint in DCss.

vr
mi

mi
+ vr

mj

mj
≤ 1, (8)

where mi and mj have the same object, rmi ∈
Rmi , rmj ∈ Rmj , and rmi and rmj have an O-O
domain constraint in DCoo.

vr
mi

mi
+ vr

mj

mj
≤ 1, (9)
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Datasets Methods Running
time(s)

# of ILP
variables

# of ILP
constraints

DB_me

baseline 52.70 12353 293361
eFIRE 1.88 8185 34931

eFIRE-1S 1.90 8185 34931
eFIRE-2S 52.35 12353 293361
CNN+ATT 69.49 - -
PCNN+ATT 34.55 - -

DB_nn

baseline 15.82 11770 94498
eFIRE 1.11 9678 24314

eFIRE-1S 1.20 9678 24314
eFIRE-2S 15.81 11770 94498
CNN+ATT 69.49 - -
PCNN+ATT 34.55 - -

Table 3: Efficiency of eFIRE and comparison methods.

where the subject of mi is the object of mj , rmi ∈
Rmi , rmj ∈ Rmj , and rmi and rmj have an S-O
domain constraint in DCso.∑

m∈Mr,s

vrm ≤ 1, (10)

where Mr,s is the set of mentions with candidate
relation r, subject s and pairwise distinct objects,
and r has an S uniqueness constraint in UCs.∑

m∈Mr,o

vrm ≤ 1, (11)

where Mr,o is the set of mentions with candidate
relation r, object o and pairwise distinct subjects,
and r has an O uniqueness constraint in UCo.

By adopting ILP, eFIRE combines the scores re-
fined in the first stage and the constraints to make
hard decisions. After the optimization problem is
solved, together with the easy decisions obtained
in the first stage, eFIRE finally produces a list of
selected candidate relations for each entity pair.

4 Experimental Study

In this section, we present an extensive experimen-
tal study of our easy first approach eFIRE.

4.1 Experimental Settings
We first present our experimental settings.
Datasets. The two datasets, DB_me and DB_nn,
stem from DBpedia (Bizer et al., 2009), mapping
the triples in DBpedia to sentences in the New
York Time corpus. We map 51 different rela-
tions to the dataset. We use both a maximum
entropy model MaxEnt (Chen et al., 2014a) and
neural network model NN (Lin et al., 2016) as
the sentence level extractors to output confidence
scores, denoted as DB_me and DB_nn, respec-
tively. The features of these two datasets are re-
ported in Table 2. There are 53162 mentions in

each dataset, including 38654 mentions with NA
relations. We learn domain and uniqueness con-
straints from Freebase as knowledge base (KB).
Algorithms for comparison. To evaluate our
approach, we compare with three methods: the
ILP based global method for RE in (Chen et al.,
2014a) as baseline that use the global clues to
help resolve the disagreements, and CNN+ATT
and PCNN+ATT in (Lin et al., 2016) that are neu-
ral network-based methods with attention mecha-
nism to use all informative sentences.
Implementation. All algorithms were imple-
mented with C++. All experiments were run on
a PC with 2 Intel(R) Xeon(R) E5ĺC2640 2.6GHz
CPUs and 64 GB of memory. When running time
is measured, the test was repeated over 5 times and
the average is reported.

4.2 Experimental Results

We next present our findings of the effectiveness
and efficiency of our easy first approach eFIRE.
Following previous work, we also use the preci-
sion in the low recall portion of the P-R curve as
the effectiveness criterion.
Exp-1: Overall performance. In the first set
of tests, we evaluated the effectiveness and effi-
ciency, and the results are reported in Figures 3(a),
3(b) and Table 3, respectively.

Our approach eFIRE outperforms the methods
for comparison. eFIRE is on average (4.80%,
4.36%), (17.99%, 28.10%) and (7.69%, 17.82%)
more accurate than baseline, CNN+ATT and
PCNN+ATT on (DB_me, DB_nn) in the low-
recall portion [0, 0.25] of the P-R curves, respec-
tively. eFIRE consistently outperforms CNN+ATT
and PCNN+ATT over the entire range of recall.
While baseline tends to have results with a higher
recall, it has a weakness of low precision, which
is alleviated by eFIRE that is able to obtain more
correct decisions. It is difficult to guarantee high
precision and recall at the same time. For most KB
population applications, only the high precision
part is considered for the effectiveness evaluation.
It is worth pointing out that we only compare the
testing time of CNN+ATT and PCNN+ATT here.

Our method eFIRE also reduces the running
time on all datasets. eFIRE is on average
(28, 14), (37, 63) and (18, 31) times faster
than baseline, CNN+ATT and PCNN+ATT on
(DB_me, DB_nn), respectively. This is because
the easy-first strategy of eFIRE significantly re-
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Figure 3: Overall performances: eFIRE vs. its variants vs. baseline vs. CNN+ATT vs. PCNN+ATT.

duces the number of variables and constraints en-
coded in the ILP solver, as shown in Table 3.

Note that the running time has no obvious lin-
ear relationships with the number of variables and
constraints among different datasets. In addition
to the number of variables and constraints, objec-
tive functions have a impact on the running time of
ILP too. Further, CPLEX is used as a black box,
which makes it hard to have a precise analysis.

These results tell us that the easy-first strategy
for RE, by making use of the redundancy infor-
mation embedded in the local results of sentence

level extractors, is an effective and efficient com-
plement for RE using ILP solvers.

Exp-2: Performance of easy first collective in-
ference with S-O redundancies. In the second
set of tests, in order to evaluate the impacts of S-O
redundancies, we implemented a variant of our ap-
proach, referred to as eFIRE-1S, that makes easy
decisions with the easy first collective inference,
and then adopts the same ILP method in baseline
for making the rest decisions. The results are re-
ported in Figures 3(c), 3(d), and Table 3.

Method eFIRE-1S outperforms baseline in the
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Figure 4: Impacts of threshold ε on time, variables and constraints.

low-recall portions of the P-R curves on all two
datasets. These results tell us that the easy first col-
lective inference using S-O redundancies can not
only improve the effectiveness of decision mak-
ing for RE, but also improve the efficiency, as it
significantly reduces the constraints and variables
encoded in the ILP solver.
Exp-3: Performance of ILP with S-R, O-R and
R redundancies. In the third set of tests, to eval-
uate the impacts of S-R, O-R and R redundancies,
we implemented a variant of eFIRE, referred to as
eFIRE-2S, that only consists of the second stage
of eFIRE. That is, all decisions of eFIRE-2S are
made by the ILP solver. The results are reported
in Figures 3(c), 3(d) and Table 3.

Method eFIRE-2S outperforms baseline on all
two datasets. It essentially improves the precision
without sacrificing the recall. For ILP based meth-
ods, their key differences are the objective func-
tions. eFIRE-2S incorporates more reliable statis-
tics of sentence level extractors, i.e., S-R, O-R and
R redundancies, while baseline only uses maxi-
mal scores to encourage choosing the candidates
with higher individual sentence level confidence
scores. So, S-R, O-R and R redundancies benefit
the decision making of ILP solvers. The efficiency
of eFIRE-2S and baseline are comparable, which
implies that the efficiency benefit of eFIRE comes
from its first stage easy first collective inference.
Exp-4: Setting verification of threshold ε. In the
last set of tests, to verify the setting of threshold

ε, we varied its values to [0.4, 1.6]. The results
of effectiveness and running time are reported in
Figures 3(e), 3(f) and Figure 4, respectively.

The results show that our approach eFIRE is ef-
fective and efficient when ε falls into [0.5, 0.9],
during which eFIRE outperforms baseline in the
low-recall portion. This justifies our setting for
threshold ε, which is typically a little less than 1.0
to distinguish easy decisions from hard ones (Sec-
tion 3.1). Threshold ε obviously has an impact on
the running time, as the smaller ε is, the more run-
ning time eFIRE has in the first stage, and the less
it has in the second stage.
Summary. From these tests, we find followings.

(1) Our approach eFIRE is both effective and
efficient. It is more accurate than baseline in the
low-recall portion [0, 0.25] and CNN+ATT and
PCNN+ATT consistently. eFIRE is on average
(4.58%, 23.05%, 12.76%) more accurate in the
low-recall portion and (21, 50, 25) times faster
than baseline, CNN+ATT and PCNN+ATT, re-
spectively. (2) The use of the easy-first strategy
and S-O redundancies both improves the accuracy
of RE and reduces the running time, and the use of
S-R, O-R and R redundancies improves the accu-
racy of RE. (3) The setting of threshold ε is flexible
in a range of [0.5, 0.9] for our approach eFIRE.

5 Related Work

Relation extraction has been studied extensively
in recent years, and can be divided into local re-
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lation extractors (Mintz et al., 2009; Surdeanu
et al., 2010; Hoffmann et al., 2011; Surdeanu et al.,
2012; Søgaard et al., 2015) using the lexical fea-
tures, syntactic features, and other local features of
sentences, and global relation extractors utilizing
the corpus features and relationships among lo-
cal decisions (Kate and Mooney, 2010; Yao et al.,
2010; Li et al., 2011; Singh et al., 2013; Li and
Ji, 2014; Nguyen et al., 2017; Su et al., 2017).
Global relation extractors leverage more informa-
tion to resolve conflict decisions, which typically
leads to more accurate decisions than local ones.

Recently, neural network-based models (Zeng
et al., 2014; Ji et al., 2017) have been proposed
for RE. Lin et al. (2016) proposes an attention
mechanism to calculate weights for all sentences
of one entity pair and selects plausible sentences
from noisy sentences. Different from these are su-
pervised methods that need label data for training,
we propose an unsupervised method in this study.

Disagreements among decisions can be re-
solved by constraints. Yao et al. (2010) propose a
relation extraction model that captures selectional
preferences and functionality constraints to inte-
grate information across documents. Fader et al.
(2011) implement syntactic and lexical constraints
on binary relations expressed by verbs in Open IE
systems. Koch et al. (2014) impose type (or do-
main) constraints to only allow relations over ap-
propriately typed mentions for relation extraction.
Similar to (Chen et al., 2014a), our approach uti-
lizes both domain and uniqueness constraints to
resolve disagreements.

Many global relation extractors use integer lin-
ear programming as a blackbox solver (Roth and
Yih, 2004; Choi et al., 2006; Roth and Yih, 2007;
Li et al., 2011; Ji et al., 2013; Chen et al., 2014a,b;
Wang et al., 2015). The ILP solver derives deci-
sions through a well designed objective function,
and resolves conflict decisions by encoding con-
straints into ILP. Our easy first approach is com-
plimentary to these methods with each other, as
these methods can take the easy first collective in-
ference of our approach for making easy decisions
as a first step, and our approach can make use of
any of these methods as its solution for making
hard decisions in its second stage.

Redundancies in the corpus have been used to
pick up hidden information. Downey et al. (2005)
consider redundant extractions for judging the cor-
rectness of extractions. Li et al. (2011) take ad-

vantage of redundant information to conduct rea-
soning across documents based on the information
network structure. We introduce four classes of in-
formation redundancies: S-O, S-R, O-R and R re-
dundancies, and we leverage S-O redundancies for
making easy decisions, and the others to aid hard
decision making.

Easy-first strategy relies on the intuition that
“easy decisions should be made early, while
harder decisions should be left for later when
more information is available (Stoyanov and Eis-
ner, 2012)”. Their method makes easy decisions
first for coreference resolution, and further makes
use of the information from coreference clusters
in the form of features to make later decisions. In
this study, we propose to make easy (most con-
fident) decisions first for relation extraction, and
then to make hard decisions with ILP, where easy
decisions are distinguished from hard ones with
redundance scores based on S-O redundancies.

Data dependencies have well studied for im-
proving data quality (Ma, 2011; Ma et al., 2015;
Fan and Geerts, 2012), which essentially make use
of data redundancies and dependencies. Our ap-
proach is partially inspired by these studies. In-
deed, the uniqueness constraints defined in this
study can be treated as functional dependen-
cies (Abiteboul et al., 1995).

6 Conclusions

In this paper, we have proposed a fast easy first
approach for relation extraction by making use of
information redundancies, embedded in the results
produced by local sentence level extractors, under
domain and uniqueness constraints. We have in-
troduced four classes of information redundancies
to aid both easy first collective inference for easy
decisions in the first stage and ILP for hard deci-
sions in the second stage. Finally, using datasets
processed by sentence level extractors with differ-
ent models, we have experimentally verified that
our easy first approach is both effective and effi-
cient compared with state-of-the-art both ILP and
neural network-based methods.
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