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Abstract

Although Seq2Seq models for table-to-text
generation have achieved remarkable progress,
modeling table representation in one dimen-
sion is inadequate. This is because (1) the table
consists of multiple rows and columns, which
means that encoding a table should not de-
pend only on one dimensional sequence or set
of records and (2) most of the tables are time
series data (e.g. NBA game data, stock mar-
ket data), which means that the description of
the current table may be affected by its histori-
cal data. To address aforementioned problems,
not only do we model each table cell consid-
ering other records in the same row, we also
enrich table’s representation by modeling each
table cell in context of other cells in the same
column or with historical (time dimension)
data respectively. In addition, we develop a ta-
ble cell fusion gate to combine representations
from row, column and time dimension into one
dense vector according to the saliency of each
dimension’s representation. We evaluated our
methods on ROTOWIRE, a benchmark dataset
of NBA basketball games. Both automatic and
human evaluation results demonstrate the ef-
fectiveness of our model with improvement of
2.66 in BLEU over the strong baseline and out-
performance of state-of-the-art model.

1 Introduction

Table-to-text generation is an important and chal-
lenging task in natural language processing, which
aims to produce the summarization of numeri-
cal table (Reiter and Dale, 2000; Gkatzia, 2016).
The related methods can be empirically divided
into two categories, pipeline model and end-to-
end model. The former consists of content selec-
tion, document planning and realisation, mainly
for early industrial applications, such as weather
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Figure 1: Generated example on ROTOWIRE by us-
ing Conditional Copy (CC) as baseline (Wiseman et al.,
2017). Text that accurately reflects records in the table
is in red, and text that contradicts the records is in blue.

forecasting and medical monitoring, etc. The lat-
ter generates text directly from the table through
a standard neural encoder-decoder framework to
avoid error propagation and has achieved remark-
able progress. In this paper, we particularly focus
on exploring how to improve the performance of
neural methods on table-to-text generation.
Recently, ROTOWIRE, which provides tables
of NBA players’ and teams’ statistics with a de-
scriptive summary, has drawn increasing attention
from academic community. Figure 1 shows an ex-
ample of parts of a game’s statistics and its corre-
sponding computer generated summary. We can
see that the tables has a formal structure includ-
ing table row header, table column header and ta-
ble cells. “Al Jefferson” is a table row header
that represents a player, “PTS” is a table column
header indicating the column contains player’s
score and “18” is the value of the table cell, that
is, Al Jefferson scored 18 points. Several related
models have been proposed . They typically en-
code the table’s records separately or as a long se-
quence and generate a long descriptive summary
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by a standard Seq2Seq decoder with some mod-
ifications. Wiseman et al. (2017) explored two
types of copy mechanism and found conditional
copy model (Gulcehre et al., 2016) perform better
. Puduppully et al. (2019) enhanced content se-
lection ability by explicitly selecting and planning
relevant records. Li and Wan (2018) improved the
precision of describing data records in the gen-
erated texts by generating a template at first and
filling in slots via copy mechanism. Nie et al.
(2018) utilized results from pre-executed opera-
tions to improve the fidelity of generated texts.
However, we claim that their encoding of tables as
sets of records or a long sequence is not suitable.
Because (1) the table consists of multiple play-
ers and different types of information as shown in
Figure 1. The earlier encoding approaches only
considered the table as sets of records or one di-
mensional sequence, which would lose the infor-
mation of other (column) dimension. (2) the ta-
ble cell consists of time-series data which change
over time. That is to say, sometimes historical
data can help the model select content. Moreover,
when a human writes a basketball report, he will
not only focus on the players’ outstanding per-
formance in the current match, but also summa-
rize players’ performance in recent matches. Lets
take Figure 1 again. Not only do the gold texts
mention Al Jefferson’s great performance in this
match, it also states that “It was the second time in
the last three games he’s posted a double-double”.
Also gold texts summarize John Wall’s “double-
double” performance in the similar way. Summa-
rizing a player’s performance in recent matches re-
quires the modeling of table cell with respect to
its historical data (time dimension) which is ab-
sent in baseline model. Although baseline model
Conditional Copy (CC) tries to summarize it for
Gerald Henderson, it clearly produce wrong state-
ments since he didn’t get “double-double” in this
match.

To address the aforementioned problems, we
present a hierarchical encoder to simultaneously
model row, column and time dimension informa-
tion. In detail, our model is divided into three lay-
ers. The first layer is used to learn the represen-
tation of the table cell. Specifically, we employ
three self-attention models to obtain three repre-
sentations of the table cell in its row, column and
time dimension. Then, in the second layer, we
design a record fusion gate to identify the more

important representation from those three dimen-
sion and combine them into a dense vector. In the
third layer, we use mean pooling method to merge
the previously obtained table cell representations
in the same row into the representation of the ta-
ble’s row. Then, we use self-attention with content
selection gate (Puduppully et al., 2019) to filter
unimportant rows’ information. To the best of our
knowledge, this is the first work on neural table-
to-text generation via modeling column and time
dimension information so far. We conducted ex-
periments on ROTOWIRE. Results show that our
model outperforms existing systems, improving
baseline BLEU from 14.19 to 16.85 (+18.75%),
P% of relation generation (RG) from 74.80 to
91.46 (+22.27%), F1% of content selection (CS)
from 32.49 to 41.21 (+26.84%) and content order-
ing (CO) from 15.42 to 20.86 (+35.28%) on test
set. It also exceeds the state-of-the-art model in
terms of those metrics.

2 Preliminaries

2.1 Notations

The input to the model are tables S = {s!, 52, s3}.
s, 52, and s contain records about players’ per-
formance in home team, players’ performance in
visiting team and team’s overall performance re-
spectively. We regard each cell in the table as
record. Each record r consists of four types of in-
formation including value r.v (e.g. 18), entity r.e
(e.g. Al Jefferson), type r.c (e.g. POINTS) and a
feature 7. f (e.g. visiting) which indicate whether
a player or a team compete in home court or not.
Each player or team takes one row in the table
and each column contains a type of record such
as points, assists, etc. Also, tables contain the date
when the match happened and we let k£ denote the
date of the record. We also create timelines for
records. The details of timeline construction is de-
scribed in Section 2.2. For simplicity, we omit ta-
ble id / and record date k in the following sections
and let r; ; denotes a record of i‘" row and j" col-
umn in the table. We assume the records come
from the same table and k is the date of the men-
tioned record. Given those information, the model
is expected to generate text y = (Y1, .o, Yt, -, YT)
describing these tables. 7' denotes the length of
the text.
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Figure 2: The architecture of our proposed model.

2.2 Record Timeline Constrcution

In this paper, we construct timelines t/ =
{tle’c}f:’(f . for records. E denotes the num-
ber of distinct record entities and C' denotes the
number of record types. For each timeline t/, .,
we first extract records with the same entity e and
type c from dataset. Then we sort them into a se-
quence according to the record’s date from old to
new. This sequence is considered as timeline ¢/, ..
For example, in Figure 2, the “Timeline” part in
the lower-left corner represents a timeline for en-
tity Al Jefferson and type PTS (points).

2.3 Baseline Model

We use Seq2Seq model with attention (Luong
et al., 2015) and conditional copy (Gulcehre et al.,
2016) as the base model. During training, given
tables .S and their corresponding reference texts y,
the model maximized the conditional probability
P(y|S) = Hthl P(yt|y<t,S) . tis the timestep of
decoder. First, for each record of the i*" row and
4% column in the table, we utilize 1-layer MLP to
encode the embeddings of each record’s four types
of information into a dense vector 7; j, T; j

RGLU(WG[T‘,',J'.E; T4,5.C; T4,5-V; ’I“i’j.f] + ba).
W, and b, are trainable parameters. The word
embeddings for each type of information are train-
able and randomly initialized before training fol-
lowing Wiseman et al. (2017). [;] denotes the
vector concatenation. Then, we use a LSTM de-
coder with attention and conditional copy to model
the conditional probability P(y;|y<, S). The base
model first use attention mechanism (Luong et al.,
2015) to find relevant records from the input tables
and represent them as context vector. Please note
that the base model doesn’t utilize the structure

of three tables and normalize the attention weight
Qi j» across every records in every tables. Then it
combines the context vector with decoder’s hidden
state d; and form a new attentional hidden state
d; which is used to generate words from vocab-
ulary Pyen (ye|y<t, S) = softmax(Wady + ba)
Also the conditional copy mechanism is adopted
in base model. It introduces a variable z; to de-
cide whether to copy from tables or generate from
vocabulary. The probability to copy from table is
P(z = 1|y<t, S) = sigmoid(we - d¢ + be). Then
it decomposes the conditional probability of gen-
erating t'" word P(y|y<¢, S), given the tables S
and previously generated words 3¢, as follows.

P(yt,Zt\y<t75) =

P(Zt = 1‘y<t7 S) ZthT‘il it at,i’,j’ 2t = 1
P(z = 0ly<t, S) Pyen(yt|y<t, S) 2z =0
(1

3 Approach

In this section, we propose an effective hierarchi-
cal encoder to utilize three dimensional structure
of input data in order to improve table represen-
tation. Those three dimensions include row, col-
umn and time. As shown in Figure 2, during en-
coding, our model consists of three layers includ-
ing record encoders, record fusion gate and row-
level encoder. Given tables S as described in Sec-
tion 2.1, we first encode each record in each di-
mension respectively. Then we use the record fu-
sion gate to combine them into a dense representa-
tion. Afterwards, we obtain row-level representa-
tion via mean pooling and self-attention with con-
tent selection gate. In decoding phase, the decoder

3145



can first find important row then attend to impor-
tant record when generating texts. We describe
model’s details in following parts.

3.1 Layer 1: Record Encoders

3.1.1 Row Dimension Encoder

Based on our observation, when someone’s points
is mentioned in texts, some related records such
as “field goals made” (FGM) and “field goals at-
tempted” (FGA) will also be included in texts.
Taken gold texts in Figure 1 as example, when Al
Jefferson’s point 18 is mentioned, his FGM 9 and
FGA 19 are also mentioned. Thus, when modeling
arecord, other records in the same row can be use-
ful. Since the record in the row is not sequential,
we use a self-attention network which is similar to
Liu and Lapata (2018) to model records in the con-
text of other records in the same row. Let r"‘;w be
the row dlIIlCl’lSlOIl representation of the record of

i*" row and j** column. Then, we obtain the con-
text vector in row dimension cf";-w by attending to
other records in the same row as follows. Please
note that a9, o e:cp('r Wor; jr) is normal-

0,5,
ized across records in the same row i. Wy, is a
trainable parameter.
Tow _ row
E Q5 51T, 2)

33" #i

Then, we combine record’s representation with
c;,j and obtain the row dimension record repre-
sentation 775 = tanh(Wyr;;; c;5*]). Wy is

1,3
a trainable parameter.

3.1.2 Column Dimension Encoder

Each input table consists of multiple rows and
columns. Each column in the table covers one type
of information such as points. Only few of the row
may have high points or other type of information
and thus become the important one. For exam-
ple, in “Column Dimension” part of Figure 2, “Al
Jefferson” is more important than “Gary Neal” be-
cause the former one have more impressive points.
Therefore, when encoding a record, it is helpful to
compare it with other records in the same column
in order to understand the performance level re-
flected by the record among his teammates (rows).
We employ self-attention similar to the one used
in Section 3.1.1 in column dimension to compare
between records. We let rics-l be the column rep-

resentation of the record of i** row and j** col-
umn. We obtain context vector in column dimen-

sion ccgl as follows. Please note that «; ; ;+ is nor-

malized across records from different rows i’ but
of the same column j. The column dimension rep-

resentation rf‘;l is obtained similar to row dimen-
sion.
col co
E a] i, z’ Tit,g 3)
i il £

3.1.3 Time Dimension Encoder

As mentioned in Section 1, we find some expres-
sions in texts require information about players’
historical (time dimension) performance. So the
history information of record r; ; is important.
Note that we have already constructed timeline for
each record entity and type as described in Sec-
tion 2.2. Given those timelines, We collect records
with same entity and type in the timeline which
has date before date k of the record 7; ; as his-
tory information. Since for some record, the his-
tory information can be too long, we set a his-
tory window. Thus, we keep most recent his-
tory information sequence within history window
and denote them as hist(r;;). We model this
kind of information in time dimension via self-
attention. However, unlike the unordered nature
of rows and columns, the history information is se-
quential. Therefore, we introduce a trainable po-
sition embedding embyes(k’) and add it to the
record’s representation and obtain a new record
representation rpy,. It denotes the representation
of a record with the same entity and type of r; ;
but of the date &’ before & in the corresponding
history window. We use rffjme to denote the his-

tory representation of the record of i row and j*"
column. Then the history dimension context vec-
tor is obtained by attending to history records in
the window. Please note that we use 1-layer MLP
as score function here and a'iz’,?,e is normalized

within the history window. We obtain the time di-

mension representation T,tsze similar to row di-
mension.
afj’ﬁe x exp(score(rpy, rP)) 4)
t'”"e = E ozk’,’} TPy Q)
k' <k

3.2 Layer 2: Record Fusion Gate

After obtaining record representations in three di-
mension, it is important to figure out which rep-
resentation plays a more important role in reflect-
ing the record’s information. If a record stands
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out from other row’s records of same column,
the column dimension representation may have a
higher weight in forming the overall record repre-
sentation. If a record differs from previous match
significantly, the history dimension representation
may have a higher weight. Also, some types of
information may appear in texts more frequently
together which can be reflected by row dimension
representation. Therefore, we propose a record fu-
sion gate to adaptively combine all three dimen-
sion representations. First, we concatenate rf";w,
ffj’.l and rffjme, then adopt a 1-layer MLP to ob-
tain a general representation 7" which we con-
sider as a baseline representation of records’ infor-
mation. Then, we compare each dimension repre-
sentation with the baseline and obtain its weight
in the final record representation. We use 1-layer
MLP as the score function. Equation 6 shows an
example of calculating column dimension repre-
sentation’s weight in the final record representa-
tion. The weight of row and time dimension rep-
resentation is obtained similar to the weight of col-
umn dimension representation.

r

l l
s o< exp(score(rys ,rf:';’-n)) (6)
In the end, the fused record representation 7; j is
the weighted sum of the three dimension represen-
tations.

. . _ . TOw,TOW col .col time,,time
Tij = OfusTig T OFusTig T fus Ty (1)

3.3 Layer 3: Row-level Encoder

For each row, we combine its records via mean
pooling (Equation 8) in order to obtain a general
representation of the row which may reflect the
row (player or team)’s overall performance. C de-
notes the number of columns.

row; = MeanPooling(7; 1,742, ....,Ti,c) (8)

Then, we adopt content selection gate g;, which
is proposed by Puduppully et al. (2019) on rows’
representations 7ow;, and obtain a new represen-
tation row; = g; © row; to choose more impor-
tant information based on each row’s context.

3.4 Decoder with Dual Attention

Since record encoders with record fusion gate
provide record-level representation and row-level
encoder provides row-level representation. In-
spired by Cohan et al. (2018), we can modify

the decoder in base model to first choose impor-
tant row then attend to records when generating
each word. Following notations in Section 2.3,
Bii o exp(score(ds, row;)) obtains the atten-
tion weight with respect to each row. Please note
that 3;; is normalized across all row-level repre-
sentations from all three tables. Then, ~;;; o
exp(score(dy, T;,;)) obtains attention weight for
records. Please note that we normalize ~;; ;
among records in the same row.

We use the row-level attention 3;; as guidance
for choosing row based on row’s general represen-
tation. Then we use it to re-weight the record-level
attention 7, ; ; and change the attention weight in
base model to ¢ ; ;. Please note that dy ; j sum to
1 across all records in all tables.

Qi = BtiVeij )

3.5 Training

Given a batch of input tables {S}¢ and reference
output {Y'}5, we use negative log-likelihood as
the loss function for our model. We train the
model by minimizing L. G is the number of ex-
amples in the batch and T}, represents the length
of ¢g'" reference’s length.

G Ty

1
I — - 2 ; log P (yt,4ly<t.g, Sg)

(10)

4 [Experiments

4.1 Dataset and Evaluation Metrics

We conducted experiments on ROTOWIRE
(Wiseman et al., 2017). For each example, it
provides three tables as described in Section 2.1
which consists of 628 records in total with a long
game summary. The average length of game sum-
mary is 337.1. In this paper, we followed the data
split introduced in Wiseman et al. (2017): 3398
examples in training set, 727 examples in develop-
ment set and 728 examples in test set. We followed
Wiseman et al. (2017)’s work and use BLEU (Pa-
pineni et al., 2002) and three extractive evaluation
metrics RG, CS and CO (Wiseman et al., 2017) for
evaluation. The main idea of the extractive evalu-
ation metrics is to use an Information Extraction
(IE) model to identify records mentioned in texts.
Then compare them with tables or records ex-
tracted from reference to evaluate the model. RG
(Relation Generation) measures content fidelity of
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Development

Model RG CS CO  pLEU
P % # P% R% F1% DLD%

Gold 94,79 23.31 100.00 100.00 100.00 100.00 100.00
Template 99.92 54.23 26.60 59.13 36.69 14.39 8.62
CC (Wiseman et al., 2017) 75.10 2395 28.11 3586 31.52 15.33 14.57
NCP+CC (Puduppully et al., 2019) 87.51 33.88 3352 51.21 40.52 1857 16.19
Hierarchical LSTM Encoder 91.59 32,56 31.62 4422 3687 1749 1521
Hierarchical CNN Encoder 90.86 30.59 30.32 40.28 34.60 15.75 14.08
Hierarchical SA Encoder 90.46 29.82 3439 4543 39.15 19.81 15.62
Hierarchical MHSA Encoder 92.87 2842 3487 4241 3827 1828 15.12
CC (Our implementation) 76.50 2248 29.18 3422 31.50 1543 13.65
Our Model 91.84 32.11 3539 4898 41.09 20.70 16.24
-row-level encoder 90.19 2790 34.70 4253 38.22 20.02 15.32
-row 91.08 30.95 35.03 47.09 40.17 20.03 15.50
-column 91.66 28.63 3483 43.62 3873 19.59 15.99
-time 90.94 3143 34.62 47.74 40.13 19.81 16.10
-position embedding 89.97 2837 34.72 43.69 38.69 19.54 16.05
-record fusion gate 89.34 3222 3228 46.68 38.17 1849 14.97

Test

Gold 94.89 24.14 100.00 100.00 100.00 100.00 100.00
Template 9994 54.21 27.02 58.22 3691 1507 8.58
CC (Wiseman et al., 2017) 74.80 2372 2949 36.18 3249 1542 14.19
OpAtt (Nie et al., 2018) - - - - - - 14.74
NCP+CC (Puduppully et al., 2019) 87.47 3428 3418 5122 41.00 1858 16.50
CC (Our implementation) 75.37 2232 2891 33.12 30.87 1534 14.02
Our model 9146 3147 36.09 48.01 41.21 20.86 16.85

Table 1: Automatic evaluation results. Results were obtained using Puduppully et al. (2019)’s updated models

texts. CS (Content Selection) measures model’s
ability on content selection. CO (Content Order-
ing) measures model’s ability on ordering the cho-
sen records in texts. We refer the readers to Wise-
man et al. (2017)’s paper for more details.

4.2 Implementation Details

Following configurations in Puduppully et al.
(2019), we set word embedding and LSTM de-
coder hidden size as 600. The decoder’s layer
was set to be 2. Input feeding (Luong et al.,
2015) was also used for decoder. We applied
dropout at a rate 0.3. For training, we used Ada-
grad (Duchi et al., 2010) optimizer with learning
rate of 0.15, truncated BPTT (block length 100),
batch size of 5 and learning rate decay of 0.97.
For inferring, we set beam size as 5. We also
set the history windows size as 3 from {3,5,7}
based on the results. Code of our model can be
found at https://github.com/ernestgong/data2text-
three-dimensions/.

4.3 Results

4.3.1 Automatic Evaluation

Table 1 displays the automatic evaluation results
on both development and test set. We chose Con-
ditional Copy (CC) model as our baseline, which
is the best model in Wiseman et al. (2017). We
included reported scores with updated IE model
by Puduppully et al. (2019) and our implementa-
tion’s result on CC in this paper. Also, we com-
pared our models with other existing works on this
dataset including OpATT (Nie et al., 2018) and
Neural Content Planning with conditional copy
(NCP+CC) (Puduppully et al., 2019). In addition,
we implemented three other hierarchical encoders
that encoded tables’ row dimension information in
both record-level and row-level to compare with
the hierarchical structure of encoder in our model.
The decoder was equipped with dual attention
(Cohan et al., 2018). The one with LSTM cell
is similar to the one in Cohan et al. (2018) with
1 layer from {1,2,3}. The one with CNN cell
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(Gehring et al., 2017) has kernel width 3 from
{3, 5} and 10 layer from {5,10,15,20}. The one
with transformer-style encoder (MHSA) (Vaswani
et al., 2017) has 8 head from {8, 10} and 5 layer
from {2,3,4,5,6}. The heads and layers mentioned
above were for both record-level encoder and row-
level encoder respectively. The self-attention (SA)
cell we used, as described in Section 3, achieved
better overall performance in terms of F1% of CS,
CO and BLEU among the hierarchical encoders.
Also we implemented a template system same as
the one used in Wiseman et al. (2017) which out-
putted eight sentences: an introductory sentence
(two teams’ points and who win), six top players’
statistics (ranked by their points) and a conclusion
sentence. We refer the readers to Wiseman et al.
(2017)’s paper for more detailed information on
templates. The gold reference’s result is also in-
cluded in Table 1. Overall, our model performs
better than other neural models on both develop-
ment and test set in terms of RG’s P%, F1% score
of CS, CO and BLEU, indicating our model’s clear
improvement on generating high-fidelity, informa-
tive and fluent texts. Also, our model with three
dimension representations outperforms hierarchi-
cal encoders with only row dimension represen-
tation on development set. This indicates that
cell and time dimension representation are impor-
tant in representing the tables. Compared to re-
ported baseline result in Wiseman et al. (2017),
we achieved improvement of 22.27% in terms of
RG, 26.84% in terms of CS F1%, 35.28% in terms
of CO and 18.75% in terms of BLEU on test set.
Unsurprisingly, template system achieves best on
RG P% and CS R% due to the included domain
knowledge. Also, the high RG # and low CS P%
indicates that template will include vast informa-
tion while many of them are deemed redundant.
In addition, the low CO and low BLEU indicates
that the rigid structure of the template will pro-
duce texts that aren’t as adaptive to the given tables
and natural as those produced by neural models.
Also, we conducted ablation study on our model
to evaluate each component’s contribution on de-
velopment set. Based on the results, the absence of
row-level encoder hurts our model’s performance
across all metrics especially the content selection
ability.

Row, column and time dimension information
are important to the modeling of tables because
subtracting any of them will result in performance

RG CS Cco
Model "y pg, R% DLD%PEV

Gold 96.0117.17100.00100.00100.00 100.00
TEM 99.9754.1423.88 72.63 11.90 8.33

CC  75.2616.3732.63 39.62 15.34 14.03
DEL* 84.8619.3130.81 38.79 16.34 16.19
NCP 87.9924.5035.97 55.85 16.98 16.22
Ours 92.5122.7338.52 52.98 19.95 16.69

Table 2: Automatic evaluation results on test set. Re-
sults were obtained using Wiseman et al. (2017)’s
trained extractive evaluation models with relexicaliza-
tion (Li and Wan, 2018). * We include delayed copy
(DEL)’s result in the paper (Li and Wan, 2018) for com-
parison.

drop. Also, position embedding is critical when
modeling time dimension information according
to the results. In addition, record fusion gate plays
an important role because BLEU, CO, RG P%
and CS P% drop significantly after subtracting it
from full model. Results show that each compo-
nent in the model contributes to the overall perfor-
mance. In addition, we compare our model with
delayed copy model (DEL) (Li and Wan, 2018)
along with gold text, template system (TEM), con-
ditional copy (CC) (Wiseman et al., 2017) and
NCP+CC (NCP) (Puduppully et al., 2019). Li and
Wan (2018)’s model generate a template at first
and then fill in the slots with delayed copy mech-
anism. Since its result in Li and Wan (2018)’s pa-
per was evaluated by IE model trained by Wise-
man et al. (2017) and “relexicalization” by Li and
Wan (2018), we adopted the corresponding IE
model and re-implement “relexicalization” as sug-
gested by Li and Wan (2018) for fair comparison.
Please note that CC’s evaluation results via our re-
implemented ‘“relexicalization” is comparable to
the reported result in Li and Wan (2018). We ap-
plied them on models other than DEL as shown in
Table 2 and report DEL’s result from (Li and Wan,
2018)’s paper. It shows that our model outperform
Li and Wan (2018)’s model significantly across all
automatic evaluation metrics in Table 2.

4.3.2 Human Evaluation

In this section, we hired three graduates who
passed intermediate English test (College English
Test Band 6) and were familiar with NBA games
to perform human evaluation.

First, in order to check if history information is
important, we sampled 100 summaries from train-
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Model #Sup #Cont #Gram #Coher #Conc

Gold 348 0.19 16.67 2422 25.78
Temp 7.83 0.00 1156 -16.67 21.11
cC 391 123 -1133 -7.78 -28.00
NCP 5.15 0.82 -1733 -533 -17.11
Ours 3.63 044 0.44 5.56 -1.78

Table 3: Human evaluation results.

ing set and asked raters to manually check whether
the summary contained expressions that need to be
inferred from history information. It turns out that
56.7% summaries of the sampled summaries need
history information.

Following human evaluation settings in Pudup-
pully et al. (2019), we conducted the following hu-
man evaluation experiments at the same scale. The
second experiment is to assess whether the im-
provement on relation generation metric reported
in automatic evaluation is supported by human
evaluation. We compared our full model with
gold texts, template-based system, CC (Wiseman
et al.,, 2017) and NCP+CC (NCP) (Puduppully
et al., 2019). We randomly sampled 30 examples
from test set. Then, we randomly sampled 4 sen-
tences from each model’s output for each exam-
ple. We provided the raters of those sampled sen-
tences with the corresponding NBA game statis-
tics. They were asked to count the number of sup-
porting and contradicting facts in each sentence.
Each sentence is rated independently. We report
the average number of supporting facts (#Sup) and
contradicting facts (#Cont) in Table 3. Unsurpris-
ingly, template-based system includes most sup-
porting facts and least contradicting facts in its
texts because the template consists of a large num-
ber of facts and all of those facts are extracted from
the table. Also, our model produces less contra-
dicting facts than other two neural models. Al-
though our model produces less supporting facts
than NCP and CC, it still includes enough sup-
porting facts (slightly more than gold texts). Also,
comparing to NCP+CC (NCP)s tendency to in-
clude vast information that contain redundant in-
formation, our models ability to select and accu-
rately convey information is better. All other re-
sults (Gold, CC, NCP and ours) are significantly
different from template-based system’s results in
terms of number of supporting facts according to
one-way ANOVA with posthoc Tukey HSD tests.
All significance difference reported in this paper
are less than 0.05. Our model is also significantly

different from the NCP model. As for average
number of contradicting facts, our model is sig-
nificantly different from other two neural mod-
els. Surprisingly, gold texts were found contain-
ing contradicting facts. We checked the raters’s re-
sult and found that gold texts occasionally include
wrong field-goal or three-point percent or wrong
points difference between the winner and the de-
feated team. We can treat the average contradict-
ing facts number of gold texts as a lower bound.
In the third experiment, following Puduppully
et al. (2019), we asked raters to evaluate those
models in terms of grammaticality (is it more flu-
ent and grammatical?), coherence (is it easier to
read or follows more natural ordering of facts? )
and conciseness (does it avoid redundant informa-
tion and repetitions?). We adopted the same 30
examples from above and arranged every 5-tuple
of summaries into 10 pairs. Then, we asked the
raters to choose which system performs the best
given each pair. Scores are computed as the differ-
ence between percentage of times when the model
is chosen as the best and percentage of times when
the model is chosen as the worst. Gold texts is sig-
nificantly more grammatical than others across all
three metrics. Also, our model performs signif-
icantly better than other two neural models (CC,
NCP) in all three metrics. Template-based system
generates significantly more grammatical and con-
cise but significantly less coherent results, com-
pared to all three neural models. Because the rigid
structure of texts ensures the correct grammatical-
ity and no repetition in template-based system’s
output. However, since the templates are stilted
and lack variability compared to others, it was
deemed less coherent than the others by the raters.

4.3.3 Qualitative Example

" Our model: The Charlotte Hornets (21 - 27 ) defeated the Washington )
Wizards (31 - 18 ) 92 - 88 on Monday ... The Hornets were led by Al
Jefferson , who recorded a double - double of his own with 18 points
(9-19FG,0-2FT ) and 12 rebounds . It was his second double -
double over his last three games ... The only other Wizard to reach
double - digit points was Kris Humphries , who came off the bench

N for 13 points (4 - 8 FG , 5 - 6 FT') and five rebounds in 26 minutes ... y

Figure 3: An generation example of our model based
on the same tables in Figure 1. Text that accurately
reflects players (Al Jefferson and Kris Humphries) per-
formance is in red.

Figure 3 shows an example generated by our
model. It evidently has several nice properties:
it can accurately select important player “Al Jef-
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ferson” from the tables who is neglected by base-
line model, which need the model to understand
performance difference of a type of data (column)
between each rows (players). Also it correctly
summarize performance of “Al Jefferson” in this
match as “double-double” which requires abil-
ity to capture dependency from different columns
(different type of record) in the same row (player).
In addition, it models “Al Jefferson” history per-
formance and correctly states that “It was his sec-
ond double-double over his last three games”,
which is also mentioned in gold texts included in
Figure 1 in a similar way.

5 Related Work

In recent years, neural data-to-text systems make
remarkable progress on generating texts directly
from data. Mei et al. (2016) proposes an encoder-
aligner-decoder model to generate weather fore-
cast, while Jain et al. (2018) propose a mixed
hierarchical attention. Sha et al. (2018) pro-
poses a hybrid content- and linkage-based atten-
tion mechanism to model the order of content. Liu
et al. (2018) propose to integrate field informa-
tion into table representation and enhance decoder
with dual attention. Bao et al. (2018) develops
a table-aware encoder-decoder model. Wiseman
et al. (2017) introduced a document-scale data-to-
text dataset, consisting of long text with more re-
dundant records, which requires the model to se-
lect important information to generate. We de-
scribe recent works in Section 1. Also, some
studies in abstractive text summarization encode
long texts in a hierarchical manner. Cohan et al.
(2018) uses a hierarchical encoder to encode in-
put, paired with a discourse-aware decoder. Ling
and Rush (2017) encode document hierarchically
and propose coarse-to-fine attention for decoder.
Recently, Liu et al. (2019) propose a hierarchi-
cal encoder for data-to-text generation which uses
LSTM as its cell. Murakami et al. (2017) propose
to model stock market time-series data and gen-
erate comments. As for incorporating historical
background in generation, Robin (1994) proposed
to build a draft with essential new facts at first,
then incorporate background facts when revising
the draft based on functional unification gram-
mars. Different from that, we encode the historical
(time dimension) information in the neural data-
to-text model in an end-to-end fashion. Existing
works on data-to-text generation neglect the joint

representation of tables’ row, column and time di-
mension information. In this paper, we propose an
effective hierarchical encoder which models infor-
mation from row, column and time dimension si-
multaneously.

6 Conclusion

In this work, we present an effective hierarchi-
cal encoder for table-to-text generation that learns
table representations from row, column and time
dimension. In detail, our model consists of
three layers, which learn records’ representation
in three dimension, combine those representations
via their sailency and obtain row-level representa-
tion based on records’ representation. Then, dur-
ing decoding, it will select important table row be-
fore attending to records. Experiments are con-
ducted on ROTOWIRE, a benchmark dataset of
NBA games. Both automatic and human evalua-
tion results show that our model achieves the new
state-of-the-art performance.
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