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Abstract

Explanations are central to everyday life, and
are a topic of growing interest in the AI com-
munity. To investigate the process of providing
natural language explanations, we leverage the
dynamics of the /r/ChangeMyView subred-
dit to build a dataset with 36K naturally occur-
ring explanations of why an argument is per-
suasive. We propose a novel word-level pre-
diction task to investigate how explanations se-
lectively reuse, or echo, information from what
is being explained (henceforth, explanandum).
We develop features to capture the properties
of a word in the explanandum, and show that
our proposed features not only have relatively
strong predictive power on the echoing of a
word in an explanation, but also enhance neu-
ral methods of generating explanations. In
particular, while the non-contextual properties
of a word itself are more valuable for stop-
words, the interaction between the constituent
parts of an explanandum is crucial in predict-
ing the echoing of content words. We also find
intriguing patterns of a word being echoed.
For example, although nouns are generally less
likely to be echoed, subjects and objects can,
depending on their source, be more likely to be
echoed in the explanations.

1 Introduction

Explanations are essential for understanding and
learning (Keil, 2006). They can take many forms,
ranging from everyday explanations for questions
such as why one likes Star Wars, to sophisti-
cated formalization in the philosophy of science
(Salmon, 2006), to simply highlighting features
in recent work on interpretable machine learning
(Ribeiro et al., 2016).

Although everyday explanations are mostly en-
coded in natural language, natural language expla-
nations remain understudied in NLP, partly due
to a lack of appropriate datasets and problem

formulations. To address these challenges, we
leverage /r/ChangeMyView, a community dedi-
cated to sharing counterarguments to controver-
sial views on Reddit, to build a sizable dataset
of naturally-occurring explanations. Specifically,
in /r/ChangeMyView, an original poster (OP)
first delineates the rationales for a (controver-
sial) opinion (e.g., in Table 1, “most hit music
artists today are bad musicians”). Members of
/r/ChangeMyView are invited to provide counter-
arguments. If a counterargument changes the OP’s
view, the OP awards a ∆ to indicate the change
and is required to explain why the counterargu-
ment is persuasive. In this work, we refer to
what is being explained, including both the orig-
inal post and the persuasive comment, as the ex-
planandum.1

An important advantage of explanations in
/r/ChangeMyView is that the explanandum con-
tains most of the required information to provide
its explanation. These explanations often select
key counterarguments in the persuasive comment
and connect them with the original post. As shown
in Table 1, the explanation naturally points to, or
echoes, part of the explanandum (including both
the persuasive comment and the original post) and
in this case highlights the argument of “music
serving different purposes.”

These naturally-occurring explanations thus en-
able us to computationally investigate the selective
nature of explanations: “people rarely, if ever, ex-
pect an explanation that consists of an actual and
complete cause of an event. Humans are adept
at selecting one or two causes from a sometimes
infinite number of causes to be the explanation”
(Miller, 2018). To understand the selective pro-
cess of providing explanations, we formulate a
word-level task to predict whether a word in an

1The plural of explanandum is explananda.
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Original post (OP): CMV: most hit music artists today are bad musicians
Now I know, music is art and art has no rules, but this is only so true. Movies are art too but I think most of us can agree
the emoji movie was objectively bad. That aside: I really feel like once you remove the persona and performances of
the artists from the ”top 40” songs and listen to them as just a song, most are objectively bad. They’re super repetitive,
the lyrics and painfully generic, and there’s hardly ever anything new or challenging. And from what I understand most
of these artists don’t even write their own songs. Of course there are exceptions but I find them to be extremely rare. It
seems to me they’re only popular become of who they are and how they look/perform. I realize this is probably a very
snobbish view which is why I want to be enlightened, so can anyone convince me otherwise? Are they actually good
musicians or just good performers? [one more paragraph ...]

Persuasive comment (PC): Music appreciation is a skill, and it’s all about pattern recognition.
When we’re children, we need songs that are really simple, repetitive and with easy to recognize patterns. The younger
we are, the simpler the songs. Toddlers like nursery rhymes, lullabies, jingles. Teens like pop music. And teens spend
more on music than anyone else. [four more paragraphs ...]
Lastly, you have to consider that music can be listened to in different ways and for different purposes. You can listen to it
alone on headphones, and think about what it means and how it makes you feel. Or you can dance to it with your friends.
Or maybe you need something on in the background during a dinner party, or a house party, or while you study, or are
trying to fall asleep, or work out. Pop music is really good in some of these situations, really bad in others. But it serves
a definite purpose and isn’t bad in any essential way.

Explanation: ∆ I guess I never really looked at it as music serving different purposes. I can see how pop music fills a
certain purpose, and I guess the artist does n’t necessarily have to be the one to write the song (although I appreciate it
when they do).

Table 1: An illustration of the pointers in an example explanation of /r/ChangeMyView. We color the words
in the explanation based on whether it is used in the original post (e.g., artist), in the persuasive comment (e.g.,
purpose), or both (e.g., music). We stem all the words before matching and do not color stopwords for readability.

explanandum will be echoed in its explanation.
Inspired by the observation that words that are

likely to be echoed are either frequent or rare,
we propose a variety of features to capture how
a word is used in the explanandum as well as its
non-contextual properties in Section 4. We find
that a word’s usage in the original post and in the
persuasive argument are similarly related to being
echoed, except in part-of-speech tags and gram-
matical relations. For instance, verbs in the origi-
nal post are less likely to be echoed, while the re-
lationship is reversed in the persuasive argument.

We further demonstrate that these features can
significantly outperform a random baseline and
even a neural model with significantly more
knowledge of a word’s context. The difficulty
of predicting whether content words (i.e., non-
stopwords) are echoed is much greater than that of
stopwords,2 among which adjectives are the most
difficult and nouns are relatively the easiest. This
observation highlights the important role of nouns
in explanations. We also find that the relationship
between a word’s usage in the original post and in
the persuasive comment is crucial for predicting
the echoing of content words. Our proposed fea-
tures can also improve the performance of pointer
generator networks with coverage in generating
explanations (See et al., 2017).

2We use the stopword list in NLTK.

To summarize, our main contributions are:
• We highlight the importance of computationally

characterizing human explanations and formu-
late a concrete problem of predicting how in-
formation is selected from explananda to form
explanations, including building a novel dataset
of naturally-occurring explanations.

• We provide a computational characterization of
natural language explanations and demonstrate
the U-shape in which words get echoed.

• We identify interesting patterns in what gets
echoed through a novel word-level classification
task, including the importance of nouns in shap-
ing explanations and the importance of contex-
tual properties of both the original post and per-
suasive comment in predicting the echoing of
content words.

• We show that vanilla LSTMs fail to learn some
of the features we develop and that the proposed
features can even improve performance in gen-
erating explanations with pointer networks.
Our code and dataset is available at

https://chenhaot.com/papers/
explanation-pointers.html.

2 Related Work

To provide background for our study, we first
present a brief overview of explanations for the
NLP community, and then discuss the connection

https://chenhaot.com/papers/explanation-pointers.html
https://chenhaot.com/papers/explanation-pointers.html
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of our study with pointer networks, linguistic ac-
commodation, and argumentation mining.

The most developed discussion of explanations
is in the philosophy of science. Extensive stud-
ies aim to develop formal models of explanations
(e.g., the deductive-nomological model in Hempel
and Oppenheim (1948), see Salmon (2006) and
Woodward (2005) for a review). In this view, ex-
planations are like proofs in logic. On the other
hand, psychology and cognitive sciences examine
“everyday explanations” (Keil, 2006; Lombrozo,
2006). These explanations tend to be selective, are
typically encoded in natural language, and shape
our understanding and learning in life despite the
absence of “axioms.” Please refer to Wilson and
Keil (1998) for a detailed comparison of these two
modes of explanation.

Although explanations have attracted signifi-
cant interest from the AI community thanks to the
growing interest on interpretable machine learn-
ing (Doshi-Velez and Kim, 2017; Lipton, 2016;
Guidotti et al., 2019), such studies seldom refer
to prior work in social sciences (Miller, 2018).
Recent studies also show that explanations such
as highlighting important features induce limited
improvement on human performance in detecting
deceptive reviews and media biases (Lai and Tan,
2019; Horne et al., 2019). Therefore, we believe
that developing a computational understanding of
everyday explanations is crucial for explainable
AI. Here we provide a data-driven study of every-
day explanations in the context of persuasion.

In particular, we investigate the “pointers” in
explanations, inspired by recent work on pointer
networks (Vinyals et al., 2015). Copying mecha-
nisms allow a decoder to generate a token by copy-
ing from the source, and have been shown to be
effective in generation tasks ranging from sum-
marization to program synthesis (See et al., 2017;
Ling et al., 2016; Gu et al., 2016). To the best of
our knowledge, our work is the first to investigate
the phenomenon of pointers in explanations.

Linguistic accommodation and studies on quo-
tations also examine the phenomenon of reusing
words (Danescu-Niculescu-Mizil et al., 2011;
Giles and Ogay, 2007; Leskovec et al., 2009;
Simmons et al., 2011). For instance, Danescu-
Niculescu-Mizil et al. show that power differences
are reflected in the echoing of function words; Tan
et al. (2018) find that news media prefer to quote
locally distinct sentences in political debates. In

comparison, our word-level formulation presents
a fine-grained view of echoing words, and puts a
stronger emphasis on content words than work on
linguistic accommodation.

Finally, our work is concerned with an es-
pecially challenging problem in social interac-
tion: persuasion. A battery of studies have done
work to enhance our understanding of persua-
sive arguments (Wang et al., 2017; Zhang et al.,
2016; Habernal and Gurevych, 2016; Lukin et al.,
2017; Durmus and Cardie, 2018), and the area
of argumentation mining specifically investigates
the structure of arguments (Lippi and Torroni,
2016; Walker et al., 2012; Somasundaran and
Wiebe, 2009). We build on previous work by
Tan et al. (2016) and leverage the dynamics of
/r/ChangeMyView. Although our findings are cer-
tainly related to the persuasion process, we focus
on understanding the self-described reasons for
persuasion, instead of the structure of arguments
or the factors that drive effective persuasion.

3 Dataset

Our dataset is derived from the /r/ChangeMyView

subreddit, which has more than 720K subscribers
(Tan et al., 2016). /r/ChangeMyView hosts con-
versations where someone expresses a view and
others then try to change that person’s mind. De-
spite being fundamentally based on argument,
/r/ChangeMyView has a reputation for being re-
markably civil and productive (CMV moderators,
2019a), e.g., a journalist wrote “In a culture of
brittle talking points that we guard with our lives,
Change My View is a source of motion and sur-
prise” (Heffernan, 2018).

The delta mechanism in /r/ChangeMyView al-
lows members to acknowledge opinion changes
and enables us to identify explanations for opinion
changes (CMV moderators, 2019b). Specifically,
it requires “Any user, whether they’re the OP or
not, should reply to a comment that changed their
view with a delta symbol and an explanation of
the change.” As a result, we have access to tens of
thousands of naturally-occurring explanations and
associated explananda. In this work, we focus on
the opinion changes of the original posters.

Throughout this paper, we use the following ter-
minology:
• An original post (OP) is an initial post where

the original poster justifies his or her opinion.
We also use OP to refer to the original poster.
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(a) Length correlations. (b) Fraction of words that are echoed
from the explanandum.

(c) Word-level echoing probability vs.
document frequency.

Figure 1: Figure 1a shows the pairwise Pearson correlation coefficient between lengths of OP, PC, and explanation
(all values are statistically significant with p < 1e−10). Figure 1b shows the average fraction of words in an
explanation that are in its OP or PC, and the fraction of words in a PC that are in its OP. In Figure 1c, the y-axis
represents the probability of a word in an OP or PC being echoed in the explanation, while the x-axis shows the
inverse document frequency of that word in training data. For each document frequency decile, we calculate the
probability of a word in that decile being echoed, and plot those probabilities with the red line. In Figure 1b and
Figure 1c, the (small) error bars represent standard errors.

• A persuasive comment (PC) is a comment that
directly leads to an opinion change on the part
of the OP (i.e., winning a ∆).
• A top-level comment is a comment that directly

replies to an OP, and /r/ChangeMyView requires
the top-level comment to “challenge at least one
aspect of OPs stated view (however minor), un-
less they are asking a clarifying question.”
• An explanation is a comment where an OP ac-

knowledges a change in his or her view and pro-
vides an explanation of the change. As shown in
Table 1, the explanation not only provides a ra-
tionale, it can also include other discourse acts,
such as expressing gratitude.
Using https://pushshift.io, we col-

lect the posts and comments in /r/ChangeMyView

from January 17th, 2013 to January 31st, 2019,
and extract tuples of (OP, PC, explanation). We
use the tuples from the final six months of our
dataset as the test set, those from the six months
before that as the validation set, and the remaining
tuples as the training set. The sets contain 5,270,
5,831, and 26,617 tuples respectively. Note that
there is no overlap in time between the three sets
and the test set can therefore be used to assess gen-
eralization including potential changes in commu-
nity norms and world events.
Preprocessing. We perform a number of prepro-
cessing steps, such as converting blockquotes in
Markdown to quotes, filtering explicit edits made
by authors, mapping all URLs to a special @url@
token, and replacing hyperlinks with the link text.
We ignore all triples that contain any deleted com-

ments or posts. We use spaCy for tokenization
and tagging (Honnibal and Montani, 2017). We
also use the NLTK implementation of the Porter
stemming algorithm to store the stemmed version
of each word, for later use in our prediction task
(Loper and Bird, 2002; Porter, 1980). Refer to the
supplementary material for more information on
preprocessing.
Data statistics. Table 2 provides basic statistics of
the training tuples and how they compare to other
comments. We highlight the fact that PCs are on
average longer than top-level comments, suggest-
ing that PCs contain substantial counterarguments
that directly contribute to opinion change. There-
fore, we simplify the problem by focusing on the
(OP, PC, explanation) tuples and ignore any other
exchanges between an OP and a commenter.

Below, we highlight some notable features of
explanations as they appear in our dataset.
The length of explanations shows stronger cor-
relation with that of OPs and PCs than between
OPs and PCs (Figure 1a). This observation in-
dicates that explanations are somehow better re-
lated with OPs and PCs than PCs are with OPs in
terms of language use. A possible reason is that
the explainer combines their natural tendency to-
wards length with accommodating the PC.
Explanations have a greater fraction of “point-
ers” than do persuasive comments (Figure 1b).
We measure the likelihood of a word in an ex-
planation being copied from either its OP or PC
and provide a similar probability for a PC for
copying from its OP. As we discussed in Section

https://pushshift.io
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count #sentences #words

Tuples of (OP, PC, Explanations)
Original Posts 26.3K 16.8 298.8
Persuasive com-
ments

26.3K 12.6 218.3

Explanations 26.3K 5.3 79.8

All of /r/ChangeMyView during the training period
Original posts 93.4k 13.2 172.6
Top-level com-
ments

681.6k 9.1 147.4

All comments 3.6M 6.5 98.9

Table 2: Basic statistics of the training dataset.

1, the words in an explanation are much more
likely to come from the existing discussion than
are the words in a PC (59.8% vs 39.0%). This
phenomenon holds even if we restrict ourselves to
considering words outside quotations, which re-
moves the effect of quoting other parts of the dis-
cussion, and if we focus only on content words,
which removes the effect of “reusing” stopwords.
Relation between a word being echoed and its
document frequency (Figure 1c). Finally, as a
preview of our main results, the document fre-
quency of a word from the explanandum is related
to the probability of being echoed in the explana-
tion. Although the average likelihood declines as
the document frequency gets lower, we observe an
intriguing U-shape in the scatter plot.3 In other
words, the words that are most likely to be echoed
are either unusually frequent or unusually rare,
while most words in the middle show a moderate
likelihood of being echoed.

4 Understanding the Pointers in
Explanations

To further investigate how explanations select
words from the explanandum, we formulate a
word-level prediction task to predict whether
words in an OP or PC are echoed in its explana-
tion. Formally, given a tuple of (OP, PC, expla-
nation), we extract the unique stemmed words as
VOP,VPC,VEXP. We then define the label for each
word in the OP or PC, w ∈ VOP ∪ VPC, based on

3A similar U-shape exists if we examine the probability
of a PC echoing its OP, but does not show up if we compare
an OP echoing a different, randomly chosen OP. It is worth
noting that PCs can also be viewed as explaining why the OP
is problematic. However, constructing a PC involves select-
ing from a large number of possible counter perspectives (all
of which are unobservable). See the supplementary material
for a detailed discussion.

the explanation as follows:

yw =

{
1 if w ∈ VEXP,

0 otherwise.

Our prediction task is thus a straightforward bi-
nary classification task at the word level. We de-
velop the following five groups of features to cap-
ture properties of how a word is used in the ex-
planandum (see Table 3 for the full list):
• Non-contextual properties of a word. These fea-

tures are derived directly from the word and
capture the general tendency of a word being
echoed in explanations.

• Word usage in an OP or PC (two groups). These
features capture how a word is used in an OP or
PC. As a result, for each feature, we have two
values for the OP and PC respectively.

• How a word connects an OP and PC. These fea-
tures look at the difference between word usage
in the OP and PC. We expect this group to be
the most important in our task.

• General OP/PC properties. These features cap-
ture the general properties of a conversation.
They can be used to characterize the back-
ground distribution of echoing.
Table 3 further shows the intuition for includ-

ing each feature, and condensed t-test results af-
ter Bonferroni correction. Specifically, we test
whether the words that were echoed in explana-
tions have different feature values from those that
were not echoed. In addition to considering all
words, we also separately consider stopwords and
content words in light of Figure 1c. Here, we high-
light a few observations:
• Although we expect more complicated words

(#characters) to be echoed more often, this is
not the case on average. We also observe an in-
teresting example of Simpson’s paradox in the
results for Wordnet depth (Blyth, 1972): shal-
lower words are more likely to be echoed across
all words, but deeper words are more likely to
be echoed in content words and stopwords.

• OPs and PCs generally exhibit similar behav-
ior for most features, except for part-of-speech
and grammatical relation (subject, object, and
other.) For instance, verbs in an OP are less
likely to be echoed, while verbs in a PC are
more likely to be echoed.



2916

Feature group Features and intuitions Echoed?

Non-contextual
properties

Inverse document frequency. As shown in Figure 1c, although document frequency
can have non-linear relationships with being copied, the average echoing probability is
greater for more common words.

↓↓↓↓

Number of characters. Longer words tend to be more complicated, and may be more
likely to be echoed as part of the core argument.

↓↓↓↓

Wordnet depth. Similar to number of characters, the depth in wordnet can indicate the
complexity of a word and we expect words with greater depth to be echoed.

↓↓↓↓RC,RS

Echoing likelihood. We also compute the general tendency of a word being echoed in
the training data. We expect the feature to be positively correlated with the label.

↑↑↑↑

How a word is
used in an OP
or PC (OP/PC
usage)

Part-of-speech (POS) tags. We compute the percentage of times that the surface forms of a stemmed
word appear as different part-of-speech tags. We expect nouns and verbs more likely to be echoed.
Results: verb in an OP ↓↓↓↓RS , noun in an OP (↓↓↓↓), verb in a PC (↑↑↑↑), noun in a PC: ↓↓↓↓RC .
Subjects and objects from dependency labels. We compute the percentage of times that the word appears
as subjects, objects, and others. We expect subjects and objects more likely to be echoed. Results:
subjects in an OP: ↑↑↑↑, objects in an OP: ↓↓↓↓RC , others in an OP: ↑↑↑↑RC , subjects in a PC: ↓↓↓↓,
objects in a PC: ↓↓↓↓; others in a PC: ↑↑↑↑.
(Normalized) term frequency. We expect frequent terms to be echoed. ↑↑↑↑
#surface forms. We expect words that have diverse surface forms to be echoed. ↑↑↑↑
Location. For words that never show up in an OP or PC, the default value is 0.5. We expect later words
to be echoed. Results: location in an OP: ↑↑↑↑ (not significant in stopwords); location in a PC: ↑RS .
In quotes. We expect words in quotes to be echoed as they are already emphasized. ↑↑↑↑
Entity. We expect entities to be echoed. ↑↑↑↑

How a word
connects an OP
and PC (OP-PC
relation)

Occurs both in an OP and PC. ↑↑↑↑
#Surface forms in an OP but not in the PC. ↓↓↓↓
#Surface forms in a PC but not in the OP. ↑↑↑↑RS

Jensen-Shannon (JS) distance between the OP and PC POS tag distributions of the word. ↓↓↓↓
JS distance between subjects/objects distributions of the word in an OP and PC. ↓↓↓↓

General OP/PC
properties

OP length. ↓↓↓↓RS

PC length. ↑↑↑↑
Difference in #words. ↓↓↓↓RS

Difference in average #characters in words. ↓↓↓↓
Part-of-speech tags distributional differences between an OP and PC. ↓↓↓↓
Depth of the PC in the thread. ↑↑↑↑

Table 3: Features to capture the properties of a word in the context of an explanandum. The last column shows
t−test results after Bonferroni correction. ↑ indicates that words that are echoed have a greater value in the feature,
while ↓ indicates the reverse. The number of arrows indicates the level of p-value: ↑↑↑↑: p < 0.0001, ↑↑↑:
p < 0.001, ↑↑: p < 0.01, ↑: p < 0.05. RC and RS indicate that the direction is flipped in content words and
stopwords respectively. We show significance testing results in a condensed format for space reasons. Refer to the
supplementary material for the complete testing results.

• Although nouns from both OPs and PCs are less
likely to be echoed, within content words, sub-
jects and objects from an OP are more likely to
be echoed. Surprisingly, subjects and objects in
a PC are less likely to be echoed, which sug-
gests that the original poster tends to refer back
to their own subjects and objects, or introduce
new ones, when providing explanations.

• Later words in OPs and PCs are more likely to
be echoed, especially in OPs. This could re-
late to OPs summarizing their rationales at the
end of their post and PCs putting their strongest
points last.

• Although the number of surface forms in an OP
or PC is positively correlated with being echoed,
the differences in surface forms show reverse
trends: the more surface forms of a word that

show up only in the PC (i.e., not in the OP),
the more likely a word is to be echoed. How-
ever, the reverse is true for the number of sur-
face forms in only the OP. Such contrast echoes
Tan et al. (2016), in which dissimilarity in word
usage between the OP and PC was a predictive
feature of successful persuasion.

5 Predicting Pointers

We further examine the effectiveness of our pro-
posed features in a predictive setting. These fea-
tures achieve strong performance in the word-level
classification task, and can enhance neural mod-
els in both the word-level task and generating ex-
planations. However, the word-level task remains
challenging, especially for content words.
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(a) Overall Performance comparison be-
tween models.

(b) Feature importance of an ablated
model with OP-PC relation.

(c) Performance vs. word source.

Figure 2: Figure 2a presents the performance of different models. We evaluate the performance of each model
on the subset of stopwords and content words. Our features with XGBoost and logistic regression outperform
the vanilla LSTM model, and adding our features to the vanilla LSTM model achieves similar performance as
XGBoost. Figure 2b shows the normalized total gain of the classifier only based on features in OP-PC relation,
while Figure 2c further breaks down the performance based on where the words come from.

5.1 Experiment setup

We consider two classifiers for our word-level
classification task: logistic regression and gradi-
ent boosting tree (XGBoost) (Chen and Guestrin,
2016). We hypothesized that XGBoost would out-
perform logistic regression because our problem is
non-linear, as shown in Figure 1c.

To examine the utility of our features in a neural
framework, we further adapt our word-level task
as a tagging task, and use LSTM as a baseline.
Specifically, we concatenate an OP and PC with
a special token as the separator so that an LSTM
model can potentially distinguish the OP from PC,
and then tag each word based on the label of its
stemmed version. We use GloVe embeddings to
initialize the word embeddings (Pennington et al.,
2014). We concatenate our proposed features of
the corresponding stemmed word to the word em-
bedding; the resulting difference in performance
between a vanilla LSTM demonstrates the utility
of our proposed features. We scale all features to
[0, 1] before fitting the models. As introduced in
Section 3, we split our tuples of (OP, PC, expla-
nation) into training, validation, and test sets, and
use the validation set for hyperparameter tuning.
Refer to the supplementary material for additional
details in the experiment.
Evaluation metric. Since our problem is imbal-
anced, we use the F1 score as our evaluation met-
ric. For the tagging approach, we average the la-
bels of words with the same stemmed version to
obtain a single prediction for the stemmed word.
To establish a baseline, we consider a random

method that predicts the positive label with 0.15
probability (the base rate of positive instances).

5.2 Prediction Performance

Overall performance (Figure 2a). Although our
word-level task is heavily imbalanced, all of our
models outperform the random baseline by a wide
margin. As expected, content words are much
more difficult to predict than stopwords, but the
best F1 score in content words more than doubles
that of the random baseline (0.286 vs. 0.116). No-
tably, although we strongly improve on our ran-
dom baseline, even our best F1 scores are rela-
tively low, and this holds true regardless of the
model used. Despite involving more tokens than
standard tagging tasks (e.g., Marcus et al. (1994)
and Plank et al. (2016)), predicting whether a word
is going to be echoed in explanations remains a
challenging problem.

Although the vanilla LSTM model incorporates
additional knowledge (in the form of word em-
beddings), the feature-based XGBoost and logis-
tic regression models both outperform the vanilla
LSTM model. Concatenating our proposed fea-
tures with word embeddings leads to improved
performance from the LSTM model, which be-
comes comparable to XGBoost. This suggests that
our proposed features can be difficult to learn with
an LSTM alone.

Despite the non-linearity observed in Figure 1c,
XGBoost only outperforms logistic regression by
a small margin. In the rest of this section, we
use XGBoost to further examine the effectiveness
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content stop
all features 0.286 0.600
random 0.116 0.205

forward backward
content stop content stop

Non-contextual prop. 0.177 0.582 0.285 0.561
OP usage 0.191 0.527 0.281 0.599
PC usage 0.233 0.520 0.275 0.598
OP-PC relation 0.280 0.542 0.289 0.600
General OP/PC prop. 0.153 0.266 0.285 0.598

Table 4: Ablation performance with XGBoost on con-
tent words and stopwords (each ablated model is tuned
based on performance on all words). “forward” refers
to only using a group of features, while “backward”
refers to only removing a group of features.

of different groups of features, and model perfor-
mance in different conditions.
Ablation performance (Table 4). First, if we
only consider a single group of features, as we
hypothesized, the relation between OP and PC is
crucial and leads to almost as strong performance
in content words as using all features. To further
understand the strong performance of OP-PC rela-
tion, Figure 2b shows the feature importance in the
ablated model, measured by the normalized total
gain (see the supplementary material for feature
importance in the full model). A word’s occur-
rence in both the OP and PC is clearly the most
important feature, with distance between its POS
tag distributions as the second most important. Re-
call that in Table 3 we show that words that have
similar POS behavior between the OP and PC are
more likely to be echoed in the explanation.

Overall, it seems that word-level properties con-
tribute the most valuable signals for predicting
stopwords. If we restrict ourselves to only in-
formation in either an OP or PC, how a word is
used in a PC is much more predictive of content
word echoing (0.233 vs 0.191). This observation
suggests that, for content words, the PC captures
more valuable information than the OP. This find-
ing is somewhat surprising given that the OP sets
the topic of discussion and writes the explanation.

As for the effects of removing a group of fea-
tures, we can see that there is little change in the
performance on content words. This can be ex-
plained by the strong performance of the OP-PC
relation on its own, and the possibility of the OP-
PC relation being approximated by OP and PC us-
age. Again, word-level properties are valuable for
strong performance in stopwords.

Performance vs. word source (Figure 2c). We
further break down the performance by where a
word is from. We can group a word based on
whether it shows up only in an OP, a PC, or both
OP and PC, as shown in Table 1. There is a
striking difference between the performance in the
three categories (e.g., for all words, 0.63 in OP &
PC vs. 0.271 in PC only). The strong performance
on words in both the OP and PC applies to stop-
words and content words, even accounting for the
shift in the random baseline, and recalls the impor-
tance of occurring both in OP and PC as a feature.

Furthermore, the echoing of words from the
PC is harder to predict (0.271) than from the OP
(0.347) despite the fact that words only in PCs are
more likely to be echoed than words only in OPs
(13.5% vs. 8.6%). The performance difference
is driven by stopwords, suggesting that our over-
all model is better at capturing signals for stop-
words used in OPs. This might relate to the fact
that the OP and the explanation are written by the
same author; prior studies have demonstrated the
important role of stopwords for authorship attribu-
tion (Raghavan et al., 2010).
Nouns are the most reliably predicted part-
of-speech tag within content words (Table 5).
Next, we break down the performance by part-of-
speech tags. We focus on the part-of-speech tags
that are semantically important, namely, nouns,
proper nouns, verbs, adverbs, and adjectives.

Prediction performance can be seen as a proxy
for how reliably a part-of-speech tag is reused
when providing explanations. Consistent with
our expectations for the importance of nouns and
verbs, our models achieve the best performance
on nouns within content words. Verbs are more
challenging, but become the least difficult tag to
predict when we consider all words, likely due to
stopwords such as “have.” Adjectives turn out to
be the most challenging category, suggesting that
adjectival choice is perhaps more arbitrary than
other parts of speech, and therefore less central to
the process of constructing an explanation. The
important role of nouns in shaping explanations
resonates with the high recall rate of nouns in
memory tasks (Reynolds and Flagg, 1976).

5.3 The Effect on Generating Explanations

One way to measure the ultimate success of un-
derstanding pointers in explanations is to be able
to generate explanations. We use the pointer gen-
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content all random

noun 0.354 0.361 0.130
adverb 0.342 0.411 0.127
verb 0.306 0.466 0.122
proper noun 0.280 0.336 0.109
adjective 0.237 0.289 0.111

Table 5: Performance on five non-function part-of-
speech tags (sorted by performance within content
words). As a comparison, we also show the perfor-
mance of the random baseline on content words, which
is relatively stable across part-of-speech tags.

ROUGE-1 ROUGE-2 ROUGE-L

w/o features 18.91 4.12 17.05
with features 22.01 3.93 19.02

Table 6: ROUGE scores (F1) on the test dataset (Lin,
2004). The differences in ROUGE-1 and ROUGE-L
are statistically significant with p < 1e−10.

erator network with coverage as our starting point
(See et al., 2017; Klein et al., 2017) (see the sup-
plementary material for details). We investigate
whether concatenating our proposed features with
word embeddings can improve generation perfor-
mance, as measured by ROUGE scores.

Consistent with results in sequence tagging for
word-level echoing prediction, our proposed fea-
tures can enhance a neural model with copying
mechanisms (see Table 6). Specifically, their use
leads to statistically significant improvement in
ROUGE-1 and ROUGE-L, while slightly hurting
the performance in ROUGE-2 (the difference is
not statistically significant). We also find that our
features can increase the likelihood of copying: an
average of 17.59 unique words get copied to the
generated explanation with our features, compared
to 14.17 unique words without our features. For
comparison, target explanations have an average
of 34.81 unique words. We emphasize that gener-
ating explanations is a very challenging task (evi-
denced by the low ROUGE scores and examples in
the supplementary material), and that fully solving
the generation task requires more work.

6 Concluding Discussions

In this work, we conduct the first large-scale em-
pirical study of everyday explanations in the con-
text of persuasion. We assemble a novel dataset
and formulate a word-level prediction task to un-
derstand the selective nature of explanations. Our
results suggest that the relation between an OP

and PC plays an important role in predicting the
echoing of content words, while a word’s non-
contextual properties matter for stopwords. We
show that vanilla LSTMs fail to learn some of the
features we develop and that our proposed features
can improve the performance in generating expla-
nations using pointer networks. We also demon-
strate the important role of nouns in shaping ex-
planations.

Although our approach strongly outperforms
random baselines, the relatively low F1 scores in-
dicate that predicting which word is echoed in
explanations is a very challenging task. It fol-
lows that we are only able to derive a limited un-
derstanding of how people choose to echo words
in explanations. The extent to which explana-
tion construction is fundamentally random (Nis-
bett and Wilson, 1977), or whether there exist
other unidentified patterns, is of course an open
question. We hope that our study and the resources
that we release encourage further work in under-
standing the pragmatics of explanations.

There are many promising research directions
for future work in advancing the computational
understanding of explanations. First, although
/r/ChangeMyView has the useful property that
its explanations are closely connected to its ex-
plananda, it is important to further investigate the
extent to which our findings generalize beyond
/r/ChangeMyView and Reddit and establish uni-
versal properties of explanations. Second, it is im-
portant to connect the words in explanations that
we investigate here to the structure of explanations
in pyschology (Lombrozo, 2006). Third, in ad-
dition to understanding what goes into an expla-
nation, we need to understand what makes an ex-
planation effective. A better understanding of ex-
planations not only helps develop explainable AI,
but also informs the process of collecting expla-
nations that machine learning systems learn from
(Hancock et al., 2018; Rajani et al., 2019; Cam-
buru et al., 2018).
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Lukasiewicz, and Phil Blunsom. 2018. e-SNLI:
Natural language inference with natural language
explanations. In Proceedings of NeurIPS.

Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A
scalable tree boosting system. In Proceedings of
KDD.

CMV moderators. 2019a. CMV media cover-
age. https://changemyview.net/
subreddit/#media-coverage. [Online;
accessed 27-Apr-2019].

CMV moderators. 2019b. The Delta Sys-
tem. https://www.reddit.com/r/
changemyview/wiki/deltasystem. [On-
line; accessed 27-Apr-2019].

Cristian Danescu-Niculescu-Mizil, Michael Gamon,
and Susan Dumais. 2011. Mark my words!: Lin-
guistic style accommodation in social media. In
Proceedings of WWW.

Cristian Danescu-Niculescu-Mizil, Lillian Lee,
Bo Pang, and Jon Kleinberg. Echoes of power:
Language effects and power differences in social
interaction. In Proceedings of WWW.

Finale Doshi-Velez and Been Kim. 2017. Towards a
rigorous science of interpretable machine learning.
arXiv preprint arXiv:1702.08608.

Esin Durmus and Claire Cardie. 2018. Exploring the
role of prior beliefs for argument persuasion. In Pro-
ceedings of NAACL.

Howard Giles and Tania Ogay. 2007. Communication
accommodation theory. Explaining communication:
Contemporary theories and exemplars, pages 293–
310.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O. K.
Li. 2016. Incorporating Copying Mechanism in
Sequence-to-Sequence Learning. In Proceedings of
ACL.

Riccardo Guidotti, Anna Monreale, Salvatore Rug-
gieri, Franco Turini, Fosca Giannotti, and Dino Pe-
dreschi. 2019. A survey of methods for explaining
black box models. ACM computing surveys (CSUR),
51(5):93.

Ivan Habernal and Iryna Gurevych. 2016. What makes
a convincing argument? Empirical analysis and de-
tecting attributes of convincingness in web argumen-
tation. In Proceedings of EMNLP.

Braden Hancock, Paroma Varma, Stephanie Wang,
Martin Bringmann, Percy Liang, and Christopher R.
2018. Training Classifiers with Natural Language
Explanations. In Proceedings of ACL.

Virgina Heffernan. 2018. Our best hope for civil dis-
course online is on ... Reddit. Wired.

Carl G Hempel and Paul Oppenheim. 1948. Studies
in the logic of explanation. Philosophy of science,
15(2):135–175.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremen-
tal parsing.

Benjamin D Horne, Dorit Nevo, John O’Donovan, Jin-
Hee Cho, and Sibel Adali. 2019. Rating reliability
and bias in news articles: Does ai assistance help
everyone? In Proceedings of ICWSM.

Frank C Keil. 2006. Explanation and understanding.
Annu. Rev. Psychol., 57:227–254.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander M. Rush. 2017. Open-
NMT: Open-source toolkit for neural machine trans-
lation. In Proceedings of ACL.

Vivian Lai and Chenhao Tan. 2019. On human predic-
tions with explanations and predictions of machine
learning models: A case study on deception detec-
tion. In Proceedings of FAT*.

Jure Leskovec, Lars Backstrom, and Jon Kleinberg.
2009. Meme-tracking and the dynamics of the news
cycle. In Proceedings of KDD.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summa-
rization Branches Out: Proceedings of the ACL-04
Workshop, pages 74–81, Barcelona, Spain. Associa-
tion for Computational Linguistics.

Wang Ling, Phil Blunsom, Edward Grefenstette,
Karl Moritz Hermann, Tomáš Kočiský, Fumin
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