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Abstract

Humans observe and interact with the world

to acquire knowledge. However, most existing

machine reading comprehension (MRC) tasks

miss the interactive, information-seeking com-

ponent of comprehension. Such tasks present

models with static documents that contain all

necessary information, usually concentrated in

a single short substring. Thus, models can

achieve strong performance through simple

word- and phrase-based pattern matching. We

address this problem by formulating a novel

text-based question answering task: Ques-

tion Answering with Interactive Text (QAit)1.

In QAit, an agent must interact with a par-

tially observable text-based environment to

gather information required to answer ques-

tions. QAit poses questions about the exis-

tence, location, and attributes of objects found

in the environment. The data is built using a

text-based game generator that defines the un-

derlying dynamics of interaction with the en-

vironment. We propose and evaluate a set of

baseline models for the QAit task that includes

deep reinforcement learning agents. Experi-

ments show that the task presents a major chal-

lenge for machine reading systems, while hu-

mans solve it with relative ease.

1 Introduction

The research community has defined the task of

machine reading comprehension (MRC) to teach

machines to read and understand text. In most

MRC tasks, given a knowledge source (usually a

text document) and a question on its content, a

model is required to answer the question either by

pointing to words in the source or by generating a

text string. Recent years have seen a flourishing

of MRC works, including the release of numerous

∗ Equal contribution.
1The dataset and implementation of our baseline

agents are publicly available at https://github.com/
xingdi-eric-yuan/qait_public.

Game You find yourself in a backyard. You make out a patio

table. You see a patio chair. It’s stylish. In a corner you

can see a BBQ. There’s an open screen door leading south.

Quest Is ghargh edible?

Agent > Qapla’

Game That’s not a verb I recognize.

Agent > eat ghargh

Game You can’t see any such thing.

Agent > go south

Game You’ve just entered a kitchen. You can see an open fridge

here. It is empty! You see a closed oven. Look over there,

it’s a counter. On the counter you can see a diced potato,

a red ghargh and a knife. A an open door is leading north.

Agent > eat ghargh

Game You need to take the red ghargh first.

Agent > take red ghargh

Game You take the red ghargh from the counter.

Agent > eat ghargh

Game You eat the red ghargh. Not bad.

Agent > wait

Agent > answer: yes

Table 1: Example of a player interacting with an envi-

ronment to gather knowledge and answer a question.

datasets (Rajpurkar et al., 2016; Trischler et al.,

2016; Nguyen et al., 2016; Reddy et al., 2018;

Yang et al., 2018) and a host of neural models that

address them (Wang and Jiang, 2016; Wang et al.,

2017; Chen et al., 2017).

Most existing MRC datasets, as a consequence

of their construction, encourage models to do

fairly shallow phrase and word matching between

the question and the knowledge source. There

are three reasons for this. First, questions tend

to paraphrase or permute the text that expresses

the answer, making pattern matching an effec-

tive strategy. On the SQuAD development set,

for example, the average precision, recall, and F1

score between questions and the sentences con-

taining answer spans are 0.409, 0.271, 0.301, re-

spectively. Exploiting this overlap, Trischler et al.

https://github.com/xingdi-eric-yuan/qait_public
https://github.com/xingdi-eric-yuan/qait_public
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(2016) show that a simple Information Retrieval

method can achieve high sentence-level accuracy

on SQuAD.

Second, the information that supports predict-

ing the answer from the source is often fully

observed: the source is static, sufficient, and

presented in its entirety. This does not match

the information-seeking procedure that arises in

answering many natural questions (Kwiatkowski

et al., 2019), nor can it model the way humans ob-

serve and interact with the world to acquire knowl-

edge.

Third, most existing MRC studies focus on

declarative knowledge — the knowledge of facts

or events that can be stated explicitly (i.e., de-

clared) in short text snippets. Given a static de-

scription of an entity, declarative knowledge can

often be extracted straightforwardly through pat-

tern matching. For example, given the EMNLP

website text, the conference deadline can be

extracted by matching against a date mention.

This focus overlooks another essential category of

knowledge — procedural knowledge. Procedu-

ral knowledge entails executable sequences of ac-

tions. These might comprise the procedure for ty-

ing ones shoes, cooking a meal, or gathering new

declarative knowledge. The latter will be our fo-

cus in this work. As an example, a more general

way to determine EMNLP’s deadline is to open

a browser, head to the website, and then match

against the deadline mention; this involves execut-

ing several mouse and keyboard interactions.

In order to teach MRC systems procedures for

question answering, we propose a novel task:

Question Answering with Interactive Text (QAit).

Given a question q ∈ Q, rather than presenting a

model with a static document d ∈ D to read, QAit

requires the model to interact with a partially ob-

servable environment e ∈ E over a sequence of

turns. The model must collect and aggregate evi-

dence as it interacts, then produce an answer a to

q based on its experience.

In our case, the environment e is a text-based

game with no explicit objective. The game places

an agent in a simple modern house populated by

various everyday objects. The agent may explore

and manipulate the environment by issuing text

commands. An example is shown in Table 1. We

build a corpus of related text-based games using a

generator from Côté et al. (2018), which enables

us to draw games from a controlled distribution.

This means there are random variations across the

environment set E, in map layouts and in the exis-

tence, location, and names of objects, etc. Conse-

quently, an agent cannot answer questions merely

by memorizing games it has seen before. Because

environments are partially observable (i.e., not all

necessary information is available at a single turn),

an agent must take a sequence of decisions – anal-

ogous to following a search and reasoning pro-

cedure – to gather the required information. The

learning target in QAit is thus not the declarative

knowledge a itself, but the procedure for arriving

at a by collecting evidence.

The main contributions of this work are as fol-

lows:

1. We introduce a novel MRC dataset, QAit,

which focuses on procedural knowledge. In

it, an agent interacts with an environment to

discover the answer to a given question.

2. We introduce to the MRC domain the prac-

tice of generating training data on the fly.

We sample training examples from a distribu-

tion; hence, an agent is highly unlikely to en-

counter the same training example more than

once. This helps to prevent overfitting and

rote memorization.

3. We evaluate a collection of baseline agents

on QAit, including state-of-the-art deep rein-

forcement learning agents and humans, and

discuss limitations of existing approaches.

2 The QAit Dataset

2.1 Overview

We make the question answering problem interac-

tive by building text-based games along with rel-

evant question-answer pairs. We use TextWorld

(Côté et al., 2018) to generate these games. Each

interactive environment is composed of multiple

locations with paths connecting them in a ran-

domly drawn graph. Several interactable objects

are scattered across the locations. A player sends

text commands to interact with the world, while

the game’s interpreter only recognizes a small sub-

set of all possible command strings (we call these

the valid commands). The environment changes

state in response to a valid command and returns a

string of text feedback describing the change.

The underlying game dynamics arise from a set

of objects (e.g., doors) that possess attributes (e.g.,
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Butter knife 1 1

Oven 1 1 1

Raw chicken 1 1 1

Fried chicken 1 1 1 1

Table 2: Supported attributes along with examples.

doors are openable), and a set of rules (e.g., open-

ing a closed door makes the connected room ac-

cessible). The supported attributes are shown in

Table 2, while the rules can be inferred from the

list of supported commands (see Appendix C).

Note that player interactions might affect an ob-

ject’s attributes. For instance, cooking a piece of

raw chicken on the stove with a frying pan makes

it edible, transforming it into fried chicken.

In each game, the existence of objects, the lo-

cation of objects, and their names are randomly

sampled. Depending on the task, a name can be a

made-up word. However, game dynamics are con-

stant across all games – e.g., there will never be a

drinkable heat source.

Text in QAit is generated by the TextWorld en-

gine according to English templates, so it does

not express the full variation of natural language.

However, taking inspiration from the bAbI tasks

(Weston et al., 2015), we posit that controlled sim-

plifications of natural language are useful for iso-

lating more complex reasoning behaviors.

2.2 Available Information

At every game step, the environment returns an

observation string describing the information visi-

ble to the agent, as well as the command feedback,

which is text describing the response to the previ-

ously issued command.

Optional Information: Since we have access

to the underlying state representation of a gener-

ated game, various optional information can be

made available. For instance, it is possible to

access the subset of commands that are valid at

the current game step. Other available meta-

information includes all objects that exist in the

game, plus their locations, attributes, and states.

During training, one is free to use any optional

information to guide the agent’s learning, e.g., to

shape the rewards. However, at test time, only the

observation string and the command feedback are

available.

2.3 Question Types and Difficulty Levels

Using the game information described above, we

can generate questions with known ground truth

answers for any given game.

2.3.1 Question Types

For this initial version of QAit we consider three

straightforward question types.

Location: (“Where is the can of soda?”) Given

an object name, the agent must answer with the

name of the container that most directly holds the

object. This can be either a location, a holder

within a location, or the player’s inventory. For

example, if the can of soda is in a fridge which is

in the kitchen, the answer would be “fridge”.

Existence: (“Is there a raw egg in the world?”)

Given the name of an object, the agent must learn

to answer whether the object exists in the game

environment e.

Attribute: (“Is ghargh edible?”) Given an ob-

ject name and an attribute, the agent must answer

with the value of the given attribute for the given

object. Note that all attributes in our dataset are

binary-valued. To discourage an agent from sim-

ply memorizing attribute values given an object

name (Anand et al., 2018) (e.g., apples are always

edible so agents can answer without interaction),

we replace object names with unique, randomly

drawn made-up words for this question type.

2.3.2 Difficulty Levels

To better analyze the limitations of learning al-

gorithms and to facilitate curriculum learning ap-

proaches, we define two difficulty levels based on

the environment layout.

Fixed Map: The map (location names and lay-

out) is fixed across games. Random objects are

distributed across the map in each game. Statistics

for this game configuration are shown in Table 3.

Random Map: Both map layouts and objects

are randomly sampled in each game.

2.4 Action Space

We describe the action space of QAit by splitting

it into two subsets: information-gathering actions

and question-answering actions.
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Fixed Map Random Map

# Locations, Nr 6 Nr ∼ Uniform[2, 12]

# Entities, Ne Ne ∼ Uniform[3 ·Nr, 6 ·Nr]

Actions / Game 17 17
Modifiers / Game 18.5 17.7

Objects / Game 26.7 27.5

# Obs. Tokens 93.1 89.7

Table 3: Statistics of the QAit dataset. Numbers are

averaged over 10,000 randomly sampled games.

Information Gathering The player generates

text commands word by word to navigate through

and interact with the environment. On encounter-

ing an object, the player must interact with it to

discover its attributes. To succeed, an agent must

map the feedback received from the environment,

in text, to a useful state representation. This is a

form of reading comprehension.

To make the QAit task more tractable, all text

commands are triplets of the form {action, mod-

ifier, object} (e.g., open wooden door). When

there is no ambiguity, the environment under-

stands commands without modifiers (e.g., eat

apple will result in eating the “red apple” pro-

vided it is the only apple in the player’s inventory).

We list all supported commands in Appendix C.

Each game provides a set of three lexicons that

divide the full vocabulary into actions, modifiers,

and objects. Statistics are shown in Table 3. A

model can generate a command at each game step

by, e.g., sampling from a probability distribution

induced over each lexicon. This reduces the size

of the action space compared to a sequential, free-

form setting where a model can pick any vocabu-

lary word at any generation step.

An agent decides when to stop interacting with

the environment to answer the question by gen-

erating a special wait command 2. However, the

number of interaction steps is limited: we use 80

steps in all experiments. When an agent has ex-

hausted its available steps, the game terminates

and the agent is forced to answer the question.

Question Answering Currently, all QAit an-

swers are one word. For existence and attribute

questions, the answer is either yes or no; for loca-

2We call it “wait” because when playing multiple games
in a batch, batched environment will terminate only when all
agents have issued the terminating command. Before that,
some agent will wait. This is analogous to paddings in natural
language processing tasks.

tion questions, the answer can be any word in an

observation string.

2.5 Evaluation Settings and Metrics

We evaluate an agent’s performance on QAit by

its accuracy in answering questions. We propose

three distinct settings for the evaluation.

Solving Training Games: We use QA accuracy

during training, averaged over a window of train-

ing time, to evaluate an agent’s training perfor-

mance. We provide 5 training sets for this pur-

pose with [1, 2, 10, 100, 500] games, respectively.

Each game in these sets is associated with multiple

questions.

Unlimited Games: We implement a setup

where games are randomly generated on the fly

during training, rather than selected from a finite

set as above. The distribution we draw from is

controlled by a few parameters: number of loca-

tions, number of objects, type of map, and a ran-

dom seed. From the fixed map game distribu-

tion described in Table 3, more than 1040 different

games can be drawn. This means that a game is

unlikely to be seen more than once during training.

We expect that only a model with strong general-

ization capabilities will perform well in this set-

ting.

Zero-shot Evaluation: For each game setting

and question type, we provide 500 held out games

that are never seen during training, each with one

question. These are used to benchmark general-

ization in models in a reproducible manner, no

matter the training setting. This set is analogous

to the test set used in traditional supervised learn-

ing tasks, and can be used in conjunction with any

training setting.

3 Baseline Models

3.1 Random Baseline

Our simplest baseline does not interact with the

environment to answer questions; it samples an

answer word uniformly from the QA action space

(yes and no for attribute and existence questions;

all possible object names in the game for location

questions).

3.2 Human Baseline

We conducted a study with 21 participants to ex-

plore how humans perform on QAit in terms of
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Figure 1: Overall architecture of our baseline agent.

QA accuracy. Participants played games they had

not seen previously from a set generated by sam-

pling 4 game-question pairs for each question type

and difficulty level. The human results presented

below always represent an average over 3 partici-

pants.

3.3 QA-DQN

We propose a neural baseline agent, QA-

DQN, which takes inspiration from the work of

Narasimhan et al. (2015) and Yu et al. (2018). The

agent consists of three main components: an en-

coder, a command generator, and a question an-

swerer. More precisely, at game step t, the en-

coder takes observation ot and question q as input

to generate hidden representations.3 In the infor-

mation gathering phase, the command generator

generates Q-values for all action, modifier, and ob-

ject words, with rankings of these Q-values used to

generate text commands ct. At any game step, the

agent may decide to terminate information gather-

ing and answer the question (or it is forced to do so

if it has used up all of its moves). The question an-

swerer uses the hidden representations at the final

information-gathering step to generate a probabil-

ity distribution over possible answers.

An overview of this architecture is shown in

Figure 1 and full details are given in Appendix A.

3.3.1 Reward Shaping

We design the following two rewards to help QA-

DQN learn more efficiently; both used for train-

ing the command generator. Note that these re-

wards are part of the design of QA-DQN, but are

not used to evaluate its performance. Question an-

swering accuracy is the only evaluation metric for

QAit tasks.

Sufficient Information Bonus: To tackle QAit

tasks, an intelligent agent should know when to

3We concatenate ot with the command generated at pre-
vious game step and the text feedback returned by the game,
as described in Section 2.2.

stop interacting – it should stop as soon as it has

gathered enough information to answer the ques-

tion correctly. For guiding the agent to learn this

behavior, we give an additional reward when the

agent stops with sufficient information. Specifi-

cally, assuming the agent decides to stop at game

step k:

• Location: reward is 1 if the entity mentioned

in the question is a sub-string of ok, other-

wise it is 0. This means whenever an agent

observes the entity, it has sufficient informa-

tion to infer the entity’s location.

• Existence: when the correct answer is yes, a

reward of 1 is assigned only if the entity is a

sub-string of ok. When the correct answer is

no, a reward between 0 and 1 is given. The

reward value corresponds to the exploration

coverage of the environment, i.e., how many

locations the agent has visited, and how many

containers have been opened.

• Attribute: we heuristically define a set of con-

ditions to verify each attribute, and reward

the agent based on its fulfilment of these con-

ditions. For instance, determining if an ob-

ject X is sharp corresponds to checking the

outcome of a cut command (slice, chop, or

dice) while holding the object X and a cut-

table food item. If the outcome is success-

ful then the object X is sharp otherwise it is

not. Alternatively, if trying to take the object

X results in a failure, then we can deduces it

is not sharp as all sharp objects are portable.

The list of conditions for each attribute used

in our experiments is shown in Appendix D.

Episodic Discovery Bonus: Following Yuan

et al. (2018), we use an episodic counting reward

to encourage the agent to discover unseen game

states. The agent is assigned a positive reward

whenever it encounters a new state (in text-based

games, states are simply represented as strings):

r(ot) =

{

1.0 if n(ot) = 1,

0.0 otherwise,

where n(·) is reset to zero after each episode.

3.3.2 Training Strategy

We apply different training strategies for the com-

mand generator and the question answerer.

Command Generation: Text-based games

are sequential decision-making problems that can
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be described naturally by partially observable

Markov decision processes (POMDPs) (Kaelbling

et al., 1998). We use the Q-Learning (Watkins and

Dayan, 1992) paradigm to train our agent. Specif-

ically, following Mnih et al. (2015), our Q-value

function is approximated with a deep neural net-

work. Beyond vanilla DQN, we also apply several

extensions, such as Rainbow (Hessel et al., 2017),

to our training process. Details are provided in

Section 4.

Question Answering: During training, we

push all question answering transitions (obser-

vation strings when interaction stops, question

strings, ground-truth answers) into a replay buffer.

After every 20 game steps, we randomly sample

a mini-batch of such transitions from the replay

buffer and train the question answerer with super-

vised learning (e.g., using negative log-likelihood

(NLL) loss).

4 Experimental Results

In this section, we report experimental results by

difficulty levels. All random baseline performance

values are averaged over 100 different runs. In the

following subsections, we use “DQN”, “DDQN”

and “Rainbow” to indicate QA-DQN trained with

vanilla DQN, Double DQN with prioritized expe-

rience replay, and Rainbow, respectively. Train-

ing curves shown in the following figures repre-

sent a sliding-window average with a window size

of 500. Moreover, each curve is the average of

3 random seeds. For evaluation, we selected the

model with the random seed yielding the highest

training accuracy to compute its accuracy on the

test games. Due to space limitations, we only re-

port some key results here. See Appendix E for

the full experimental results.

4.1 Fixed Map

Figure 2 shows the training curves for the neural

baseline agents when trained using 10 games, 500

games and the “unlimited” games settings. Table 4

reports their zero-shot test performance.

From Figure 2, we observe that when training

data size is small (e.g., 10 games), our baseline

agent trained with all the three RL methods suc-

cessfully master the training games. Vanilla DQN

and DDQN are particularly strong at memoriz-

ing the training games. When training on more

games (e.g., 500 games and unlimited games), in

which case memorization is more difficult, Rain-

Figure 2: Training accuracy over episodes on fixed

map setup. Upper row: 10 games; middle row: 500

games; lower row: unlimited games.

Fixed Map Random Map

Model Loc. Exi. Att. Loc. Exi. Att.

Human 1.000 1.000 1.000 1.000 1.000 0.750

Random 0.027 0.497 0.496 0.034 0.500 0.499

10 games

DQN 0.180 0.568 0.518 0.156 0.566 0.518

DDQN 0.188 0.566 0.516 0.142 0.606 0.500

Rainbow 0.156 0.590 0.520 0.144 0.586 0.530

500 games

DQN 0.224 0.674 0.534 0.204 0.678 0.530
DDQN 0.218 0.626 0.508 0.222 0.656 0.486

Rainbow 0.190 0.656 0.496 0.172 0.678 0.494

unlimited games

DQN 0.216 0.662 0.514 0.188 0.668 0.506

DDQN 0.258 0.628 0.480 0.206 0.694 0.482

Rainbow 0.280 0.692 0.514 0.258 0.686 0.470

Table 4: Agent performance on zero-shot test games

when trained on 10 games, 500 games and “unlimited”

games settings. Note Att. and Exi. are binary questions

with expected accuracy of 0.5.

bow agents start to show its superiority — it has

similar accuracy as the other two methods, and

even outperforms them in existence question type.

From Table 4 we see similar observation, when

trained on 10 games and 500 games, DQN and

DDQN performs better on test games but on the

unlimited games setting, rainbow agent performs

as good as them, and sometimes even better. We

can also observe that our agents fail to generalize

on attribute questions. In unlimited games setting

as shown in Figure 2, all three agents produce an

accuracy of 0.5; in zero-shot test as shown in Ta-

ble 4, no agent performs significantly better than

random. This suggests the agents memorize game-

question-answer triples when data size is small,

and fail to do so in unlimited games setting. This
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Figure 3: Training accuracy on the random map setup.

Upper row: 10 games; middle row: 500 games; lower

row: unlimited games.

can also be observed in Appendix E, where in at-

tribute question experiments, the training accuracy

is high, and sufficient information bonus is low

(even close to 0).

4.2 Random Map

Figure 3 shows the training curves for the neural

baseline agents when trained using 10 games, 500

games and “unlimited” games settings. The trends

of our agents’ performance on random map games

are consistent with on fixed map games. How-

ever, because there exist easier games (as listed in

Table 3, number of rooms is sampled between 2

and 12), agents show better training performance

in such setting than fixed map setting in general.

Interestingly, we observe one of the DQN agent

starts to learn in the unlimited games, attribute

question setting. This may be because in games

with smaller map size and less objects, there is a

higher chance to accomplish some sub-tasks (e.g.,

it is easier to find an object when there are less

rooms), and the agent learn such skills and apply

them to similar tasks. Unfortunately, as shown in

Table 4 that agent does not perform significantly

better than random on test set. We expect with

more training episodes, the agent can have a better

generalization performance.

4.3 Question Answering Given Sufficient

Information

The challenge in QAit is learning the interactive

procedure for arriving at a state with the informa-

tion needed to answer the question. We conduct

the following experiments on location questions

to investigate this challenge.

Model Fixed Map Random Map

Random 14.7 16.5

10 games

DQN 95.7 97.5

DDQN 90.4 92.2

Rainbow 91.8 84.7

500 games

DQN 91.8 94.4

DDQN 95.6 90.2

Rainbow 96.9 96.6

unlimited games

DQN 100.0 100.0

DDQN 100.0 100.0

Rainbow 100.0 100.0

Table 5: Test performance given sufficient information.

Based on the results in Table 4, we compute an

agent’s test accuracy only if it has obtained suffi-

cient information – i.e., when the sufficient infor-

mation bonus is 1. Results shown in Table 5 sup-

port our assumption that the QA module can learn

(and generalize) effectively to answer given suf-

ficient information. Similarly, experiments show

that when objects being asked about are in the

current observation, the random baseline’s perfor-

mance goes up significantly as well. We report our

baseline agents’ question answering accuracy and

sufficient information bonuses on all experiment

settings in Appendix E.

4.4 Full Information Setup

To reframe the QAit games as a standard MRC

task, we also designed an experimental setting that

eliminates the need to gather information inter-

actively. From a heuristic trajectory through the

game environment that is guaranteed to observe

sufficient information for q, we concatenate all

observations into a static “document” d to build

a {d, q, a} triplet. A model then uses this fully

observed document as input to answer the ques-

tion. We split this data into training, validation,

and test sets and follow the evaluation protocol for

standard supervised MRC tasks. We take an off-

the-shelf MRC model, Match-LSTM (Wang and

Jiang, 2016), trained with negative log-likelihood

loss as a baseline.

Unsurprisingly, Match-LSTM does fairly well

on all 3 question types (86.4, 89.9 and 93.2 test ac-

curacy on location, existence, and attribute ques-

tions, respectively). This implies that without the

need to interact with the environment for informa-

tion gathering, the task is simple enough that a

word-matching model can answer questions with
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high accuracy.

5 Related Work

5.1 MRC Datasets

Many large-scale machine reading comprehension

and question answering datasets have been pro-

posed recently. The datasets of Rajpurkar et al.

(2016); Trischler et al. (2016) contain crowd-

sourced questions based on single documents from

Wikipedia and CNN news, respectively. Nguyen

et al. (2016); Joshi et al. (2017); Dunn et al.

(2017); Clark et al. (2018); Kwiatkowski et al.

(2019) present question-answering corpora har-

vested from information retrieval systems, of-

ten containing multiple supporting documents for

each question. This means a model must sift

through a larger quantity of information and possi-

bly reconcile competing viewpoints. Berant et al.

(2013); Welbl et al. (2017); Talmor and Berant

(2018) propose to leverage knowledge bases to

generate question-answer pairs. Yang et al. (2018)

focuses on questions that require multi-hop rea-

soning to answer, by building questions composi-

tionally. Reddy et al. (2018); Choi et al. (2018) ex-

plore conversational question answering, in which

a full understanding of the question depends on the

conversation’s history.

Most of these datasets focus on declarative

knowledge and are static, with all information

fully observable to a model. We contend that this

setup, unlike QAit, encourages word matching.

Supporting this contention, several studies high-

light empirically that existing MRC tasks require

little comprehension or reasoning. In Rychalska

et al. (2018), it was shown that a question’s main

verb exerts almost no influence on the answer pre-

diction: in over 90% of examined cases, swapping

verbs for their antonyms does not change a sys-

tem’s decision. Jia and Liang (2017) show the ac-

curacy of neural models drops from an average of

75% F1 score to 36% F1 when they manually in-

sert adversarial sentences into SQuAD.

5.2 Interactive Environments

Several embodied or visual question answering

datasets have been presented recently to address

some of the problems of interest in our work, such

as those of Brodeur et al. (2017); Das et al. (2017);

Gordon et al. (2017). In contrast with these, our

purely text-based environment circumvents chal-

lenges inherent to modelling interactions between

separate data modalities. Furthermore, most vi-

sual question answering environments only sup-

port navigating and moving the camera as inter-

actions. In text-based environments, however, it

is relatively cheap to build worlds with complex

interactions. This is because text enables us to

model interactions abstractly without the need for,

e.g., a costly physics engine.

Closely related to QAit is BabyAI (Chevalier-

Boisvert et al., 2018). BabyAI is a gridworld en-

vironment that also features constrained language

for generating simple home-based scenarios (i.e.,

instructions). However, observations and actions

in BabyAI are not text-based. World of Bits (Shi

et al., 2017) is a platform for training agents to

interact with the internet to accomplish tasks like

flight booking. Agents generally do not need to

gather information in World of Bits, and the focus

is on accomplishing tasks rather than answering

questions.

5.3 Information Seeking

Information seeking behavior is an important ca-

pacity of intelligent systems that has been dis-

cussed for many years. Kuhlthau (2004) propose a

holistic view of information search as a six-stage

process. Schmidhuber (2010) discusses the con-

nection between information seeking and formal

notions of fun, creativity, and intrinsic motiva-

tion. Das et al. (2018) propose a model that con-

tinuously determines all entities’ locations during

reading and dynamically updates the associated

representations in a knowledge graph. Bachman

et al. (2016) propose a collection of tasks and neu-

ral methods for learning to gathering information

efficiently in an environment.

To our knowledge, we are the first to consider

interactive information-seeking tasks for ques-

tion answering in worlds with complex dynam-

ics. The QAit task was designed such that sim-

ple word matching methods do not apply, while

more human-like information seeking models are

encouraged.

6 Discussion and Future Work

Monitoring Information Seeking: In QAit, the

only evaluation metric is question answering ac-

curacy. However, the sufficient information bonus

described in Section 3.3.1 is helpful for moni-

toring agents’ ability to gather relevant informa-

tion. We report its value for all experiments in
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Appendix E. We observe that while the baseline

agents can reach a training accuracy of 100% for

answering attribute questions when trained on a

few games, the sufficient information bonus is

close to 0. This is a clear indication that the

agent overfits to the question-answer mapping of

the games rather than learning how to gather use-

ful information. This aligns with our observation

that the agent does not perform better than random

on the unlimited games setting, because it fails to

gather the needed information.

Challenges in QAit: QAit focuses on learning

procedural knowledge from interactive environ-

ments, so it is natural to use deep RL methods to

tackle it. Experiments suggest the dataset presents

a major challenge for existing systems, including

Rainbow, which set the state of the art on Atari

games. As a simplified and controllable text-based

environment, QAit can drive research in both the

RL and language communities, especially where

they intersect. Until recently, the RL community

focused mainly on solving single environments

(i.e., training and testing on the same game). Now,

we see a shift towards solving multiple games

and testing for generalization (Cobbe et al., 2018;

Justesen et al., 2018). We believe QAit serves this

purpose.

Templated Language: As QAit is based on

TextWorld, it has the obvious limitation of us-

ing templated English. However, TextWorld pro-

vides approximately 500 human-written templates

for describing rooms and objects, so some tex-

tual diversity exists, and since game narratives are

generated compositionally, this diversity increases

along with the complexity of a game. We believe

simplified and controlled text environments offer

a bridge to full natural language, on which we can

isolate the learning of useful behaviors like infor-

mation seeking and command generation. Never-

theless, it would be interesting to further diversify

the language in QAit, for instance by having hu-

man writers paraphrase questions.

Future Work: Based on our present efforts to

tackle QAit, we propose the following directions

for future work.

A structured memory (e.g., a dynamic knowl-

edge graph as proposed in Das et al. (2018); Am-

manabrolu and Riedl (2019a)) could be helpful for

explicitly memorizing the places and objects that

an agent has observed. This is especially useful

when an agent must revisit a location or object or

should avoid doing so.

Likewise, a variety of external knowledge

could be leveraged by agents. For instance, incor-

porating a pretrained language model could im-

prove command generation by imparting knowl-

edge of word and object affordances. In recent

work, Hausknecht et al. (2019) show that pre-

trained modules together with handcrafted sub-

policies help in solving text-based games, while

Yin and May (2019) use BERT (Devlin et al.,

2018) to inject ‘weak common sense’ into agents

for text-based games. Ammanabrolu and Riedl

(2019b) show that knowledge graphs and their

associated neural encodings can be used as a

medium for domain transfer across text-based

games.

In finite game settings we observed significant

overfitting, especially for attribute questions – as

shown in Appendix E, our agent achieves high

QA accuracy but low sufficient information bonus

on the single-game setting. Sometimes attributes

require long procedures to verify, and thus, we

believe that denser rewards would help with this

problem. One possible solution is to provide in-

termediate rewards whenever the agent achieves

a sub-task.
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A Details of QA-DQN

Notations

In this section, we use game step t to denote one

round of interaction between an agent with the

QAit environment. We use ot to denote text ob-

servation at game step t, and q to denote question

text. We use L to refer to a linear transformation.

Brackets [·; ·] denote vector concatenation.

A.1 Encoder

We use a transformer-based text encoder, which

consists of an embedding layer, two stacks

of transformer blocks (denoted as encoder

transformer blocks and aggregation transformer

blocks), and an attention layer.

In the embedding layer, we aggregate both

word- and character-level information to pro-

duce a vector for each token in text. Specif-

ically, word embeddings are initialized by the

300-dimensional fastText (Mikolov et al., 2018)

word vectors trained on Common Crawl (600B

tokens), they are fixed during training. Charac-

ter level embedding vectors are initialized with

32-dimensional random vectors. A convolutional

layer with 64 kernels of size 5 is then used to ag-

gregate the sequence of characters. We use a max

pooling layer on the character dimension, then a

multi-layer perceptron (MLP) of output size 64 is

used to aggregate the concatenation of word- and

character-level representations. Highway network

(Srivastava et al., 2015) is applied on top of this

MLP. The resulting vectors are used as input to

the encoding transformer blocks.

Each encoding transformer block consists of

a stack of convolutional layers, a self-attention

layer, and an MLP. In which, each convolutional

layer has 64 filters, each kernel’s size is 7, there

are 2 such convolutional layers that share weights.

In the self-attention layer, we use a block hidden

size of 64, as well as a single head attention mech-

anism. Layernorm and dropout are applied after

each component inside the block. We add posi-

tional encoding into each block’s input. We use

one layer of such an encoding block.

At a game step t, the encoder processes text ob-

servation ot and question q, context aware encod-

ing hot ∈ R
Lot×H1 and hq ∈ R

Lq×H1 are gen-

erated, where Lot and Lq denote number of to-

kens in ot and q respectively, H1 is 64. Following

(Yu et al., 2018), we use an context-query atten-

tion layer to aggregate the two representations hot

and hq.

Specifically, the attention layer first uses two

MLPs to convert both hot and hq into the same

space, the resulting tensors are denoted as h′ot ∈
R
Lot×H2 and h′q ∈ R

Lq×H2 , in which H2 is 64.

Then, a tri-linear similarity function is used to

compute the similarities between each pair of h′ot
and h′q items:

S = W [h′ot ;h
′
q;h

′
ot
⊙ h′q], (1)

where ⊙ indicates element-wise multiplication,

W is trainable parameters of size 64.

Softmax of the resulting similarity matrix S

along both dimensions are computed, this pro-

duces SA and SB . Information in the two repre-

sentations are then aggregated by:

hoq = [h′ot ;P ;h′ot ⊙ P ;h′ot ⊙Q],

P = Sqh
′⊤
q ,

Q = SqS
⊤
ot
h′⊤ot ,

(2)

where hoq is aggregated observation representa-

tion.

On top of the attention layer, a stack of aggre-

gation transformer blocks is used to further map

the observation representations to action represen-

tations and answer representations. The structure

of aggregation transformer blocks are the same as

the encoder transformer blocks, except the kernel

size of convolutional layer is 5, and the number of

blocks is 3.

Let Mt ∈ R
Lot×H3 denote the output of the

stack of aggregation transformer blocks, where H3

is 64.

A.2 Command Generator

The command generator takes the hidden repre-

sentations Mt as input, it estimates Q-values for all

action, modifier, and object words, respectively. It

consists of a shared Multi-layer Perceptron (MLP)

and three MLPs for each of the components:

Rt = ReLU(Lshared(mean(Mt)),

Qt,action =Laction(Rt),

Qt,modifier =Lmodifier(Rt),

Qt,object =Lobject(Rt).

(3)

In which, the output size of Lshared is 64; the di-

mensionalities of the other 3 MLPs are depending

on the number of the amount of action, modifier
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and object words available, respectively. The over-

all Q-value is the sum of the three components:

Qt = Qt,action +Qt,modifier +Qt,object. (4)

A.3 Question Answerer

Similar to (Yu et al., 2018), we append an extra

stacks of aggregation transformer blocks on top of

the aggregation transformer blocks to compute an-

swer positions:

U = ReLU(L0[Mt;M
′
t ]).

β = softmax(L1(U)).
(5)

In which M ′
t ∈ R

Lot×H3 is output of the extra

transformer stack, L0, L1 are trainable parameters

with output size 64 and 1, respectively.

For location questions, the agent outputs β as

the probability distribution of each word in obser-

vation ot being the answer of the question.

For binary classification questions, we apply an

MLP, which takes weighted sum of matching rep-

resentations as input, to compute a probability dis-

tribution p(y) over both possible answers:

D =
∑

i

(βi ·M ′
t),

p(y) = softmax(L4(tanh(L3(D))).

(6)

Output size of L3 and L4 are 64 and 2, respec-

tively.

A.4 Deep Q-Learning

In a text-based game, an agent takes an action a4 in

state s by consulting a state-action value function

Q(s, a), this value function is as a measure of the

action’s expected long-term reward. Q-Learning

helps the agent to learn an optimal Q(s, a) value

function. The agent starts from a random Q-

function, it gradually updates its Q-values by inter-

acting with environment, and obtaining rewards.

Following Mnih et al. (2015), the Q-value func-

tion is approximated with a deep neural network.

We make use of a replay buffer. During playing

the game, we cache all transitions into the replay

buffer without updating the parameters. We peri-

odically sample a random batch of transitions from

the replay buffer. In each transition, we update the

parameters θ to reduce the discrepancy between

the predicted value of current state Q(st, at) and

4In our case, a is a triplet contains {action, modifier, ob-
ject} as described in Section 2.4.

the expected Q-value given the reward rt and the

value of next state maxaQ(st+1, a).
We minimize the temporal difference (TD) er-

ror, δ:

δ = Q(st, at)− (rt + γmax
a

Q(st+1, a)), (7)

in which, γ indicates the discount factor. Follow-

ing the common practice, we use the Huber loss to

minimize the TD error. For a randomly sampled

batch with batch size B, we minimize:

L =
1

|B|

∑

L(δ),

where L(δ) =

{

1

2
δ2 for |δ| ≤ 1,

|δ| − 1

2
otherwise.

(8)

As described in Section 3.3.1, we design the

sufficient information bonus to teach an agent to

stop as soon as it has gathered enough information

to answer the question. Therefore we assign this

reward at the game step where the agent generates

wait command (or it is forced to stop).

It is worth mentioning that for attribute type

questions (considerably the most difficult question

type in QAit, where the training signal is very

sparse), we provide extra rewards to help QA-

DQN to learn.

Specifically, we take a reward similar to as used

in location questions: 1.0 if the agent has observed

the object mentioned in the question. we also use

a reward similar to as used in existence questions:

the agent is rewarded by the coverage of its ex-

ploration. The two extra rewards are finally added

onto the sufficient information bonus for attribute

question, both with coefficient of 0.1.

B Implementation Details

During training with vanilla DQN, we use a re-

play memory of size 500,000. We use ǫ-greedy,

where the value of ǫ anneals from 1.0 to 0.1 within

100,000 episodes. We start updating parameters

after 1,000 episodes of playing. We update our

network after every 20 game steps. During updat-

ing, we use a mini-batch of size 64. We use Adam

(Kingma and Ba, 2014) as the step rule for opti-

mization, The learning rate is set to 0.00025.

When our agent is trained with Rainbow al-

gorithm, we follow Hessel et al. (2017) on most

of the hyper-parameter settings. The four MLPs

Lshared, Laction, Lmodifier and Lobject as described



2809

in Eqn. 3 are Noisy Nets layers (Fortunato et al.,

2017) when the agent is trained in Rainbow set-

ting. Detailed hyper-parameter setting of our

Rainbow agent are shown in Table 6.

Parameter Value

Exploration ǫ 0
Noisy Nets σ0 0.5

Target Network Period 1000 episodes
Multi-step returns n n ∼ Uniform[1, 3]
Distributional atoms 51

Distributional min/max values [-10, 10]

Table 6: Hyper-parameter setup for rainbow agent.

The model is implemented using PyTorch

(Paszke et al., 2017).

C Supported Text Commands

All supported text commands are listed in Table 7.

D Heuristic Conditions for Attribute

Questions

Here, we derived some heuristic conditions to de-

termine when an agent has gathered enough infor-

mation to answer a given attribute question. Those

conditions are used as part of the reward shaping

for our proposed agent (Section 3.3.1). In Table 8,

for each attribute we list all the commands for

which their outcome (pass or fail) gives enough in-

formation to answer the question correctly. Also,

in order for a command’s outcome to be informa-

tive, each command needs to be executed while

some state conditions hold. For example, to de-

termine if an object is indeed a heat source, the

agent needs to try to cook something that is cook-

able and uncooked while standing next to the given

object.

E Full results

We provide full results of our agents on fixed

map games in Table 9, and provide full results of

our agents on random map games in Table 10.

To help investigating the generalizability of the

sufficient information bonus we used in our pro-

posed agent, we also report the rewards during

both training and test phases. Note during test

phase, we do not update parameters with the re-

wards.
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Command Description

look describe the current location
inventory display the player’s inventory
go 〈dir〉 move the player to north, east, south, or west
examine ... examine something more closely
open ... open a door or a container
close ... close a door or a container
eat ... eat edible object
drink ... drink drinkable object
drop ... drop an object on the floor
take ... take an object from the floor, a container, or a supporter
put ... put an object onto a supporter (supporter must be present at the location)
insert ... insert an object into a container (container must be present at the location)
cook ... cook an object (heat source must be present at the location)
slice ... slice cuttable object (a sharp object must be in the player’s inventory)
chop ... chop cuttable object (a sharp object must be in the player’s inventory
dice ... dice cuttable object (a sharp object must be in the player’s inventory)
wait stop interaction

Table 7: Supported command list.

Attribute Command State Pass Fail Explanation

sharp
cut cuttable

holding (cuttable)
1 1

Trying to cut something cuttable
& uncut (cuttable) that hasn’t been cut yet
& holding (object) while holding the object.

take object reachable(object) 0 1 Sharp objects should be portable.

cuttable
cut object

holding (object)
1 1

Trying to cut the object while holding
& holding (sharp) something sharp.

take object reachable (object) 0 1 Cuttable object should be portable.

edible
eat object holding (object) 1 1 Trying to eat the object.

take object reachable (object) 0 1 Edible objects should be portable.

drinkable
drink object holding (object) 1 1 Trying to drink the object.

take object reachable (object) 0 1 Drinkable objects should be portable.

holder
–

on (portable, object) 1 0 Observing object(s) on a supporter.

in (portable, object) 1 0 Observing object(s) inside a container.

take object reachable (object) 1 0 Holder objects should not be portable.

portable
– holding (object) 1 0 Holding the object means it is portable.

take object reachable (object) 1 1 Portable objects can be taken.

heat source
cook cookable

holding (cookable)
1 1

Trying to cook something cookable
& uncooked (cookable) that hasn’t been cooked yet
& reachable (object) while being next to the object.

take object reachable (object) 1 0 Heat source objects should not be portable.

cookable
cook object

holding (object)
1 1

Trying to cook the object
& reachable (heat source) while being next to a heat source.

take object reachable(object) 0 1 Cookable objects should be portable.

openable
open object

reachable (object)
1 1 Trying to open the closed object.

& closed (object)

close object
reachable (object)

1 1 Trying to close the open object.
& open (object)

Table 8: Heuristic conditions for determining whether the agent has enough information to answer a given attribute

question. We use “object” to refer to the object mentioned in the question. Words in italics represents placeholder

that can be replaced by any object from the environment that has the appropriate attribute (e.g. carrot could be

used as a cuttable). The columns Pass and Fail represent how much reward the agent will receive given the

corresponding command’s outcome (resp. success or failure). NB: cut can mean any of the following commands:

slice, dice, or chop
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Location Existence Attribute
Model Train Test Train Test Train Test

Human – 1.000 – 1.000 – 1.000
Random – 0.027 – 0.497 – 0.496

1 game

DQN 0.972(0.972) 0.122(0.160) 1.000(0.881) 0.628(0.124) 1.000(0.049) 0.500(0.035)
DDQN 0.960(0.960) 0.156(0.178) 1.000(0.647) 0.624(0.148) 1.000(0.023) 0.498(0.033)

Rainbow 0.562(0.562) 0.164(0.178) 1.000(0.187) 0.616(0.083) 1.000(0.049) 0.516(0.039)

2 games

DQN 0.698(0.698) 0.168(0.182) 0.948(0.700) 0.574(0.136) 1.000(0.011) 0.510(0.028)
DDQN 0.702(0.702) 0.172(0.178) 0.882(0.571) 0.550(0.109) 1.000(0.098) 0.508(0.036)

Rainbow 0.734(0.734) 0.160(0.168) 0.878(0.287) 0.616(0.085) 1.000(0.030) 0.524(0.022)

10 games

DQN 0.654(0.654) 0.180(0.188) 0.822(0.390) 0.568(0.156) 1.000(0.055) 0.518(0.030)
DDQN 0.608(0.608) 0.188(0.208) 0.842(0.479) 0.566(0.128) 1.000(0.064) 0.516(0.036)

Rainbow 0.616(0.616) 0.156(0.170) 0.768(0.266) 0.590(0.131) 0.998(0.059) 0.520(0.023)

100 games

DQN 0.498(0.498) 0.194(0.206) 0.756(0.139) 0.614(0.160) 0.838(0.019) 0.498(0.014)
DDQN 0.456(0.458) 0.168(0.196) 0.768(0.134) 0.650(0.216) 0.878(0.020) 0.528(0.017)

Rainbow 0.340(0.340) 0.156(0.160) 0.762(0.129) 0.602(0.207) 0.924(0.044) 0.524(0.022)

500 games

DQN 0.430(0.430) 0.224(0.244) 0.742(0.136) 0.674(0.279) 0.700(0.015) 0.534(0.014)
DDQN 0.406(0.406) 0.218(0.228) 0.734(0.173) 0.626(0.213) 0.714(0.021) 0.508(0.026)

Rainbow 0.358(0.358) 0.190(0.196) 0.768(0.187) 0.656(0.207) 0.736(0.032) 0.496(0.029)

unlimited games

DQN 0.300(0.300) 0.216(0.216) 0.752(0.119) 0.662(0.246) 0.562(0.034) 0.514(0.016)
DDQN 0.318(0.318) 0.258(0.258) 0.744(0.168) 0.628(0.134) 0.572(0.027) 0.480(0.024)

Rainbow 0.316(0.330) 0.280(0.280) 0.734(0.157) 0.692(0.157) 0.566(0.017) 0.514(0.014)

Table 9: Agent performance on fixed map games. Accuracies in percentage are shown in black. We also investigate

the sufficient information bonus used in our agent proposed in Section 3.3.1, which are shown in blue.
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Location Existence Attribute
Model Train Test Train Test Train Test

Human – 1.000 – 1.000 – 0.750
Random – 0.034 – 0.500 – 0.499

2 games

DQN 0.990(0.990) 0.148(0.162) 1.000(0.779) 0.638(0.157) 1.000(0.039) 0.534(0.033)
DDQN 0.978(0.978) 0.146(0.152) 1.000(0.727) 0.602(0.158) 1.000(0.043) 0.544(0.032)

Rainbow 0.916(0.916) 0.178(0.178) 0.972(0.314) 0.602(0.136) 1.000(0.025) 0.512(0.021)

10 games

DQN 0.818(0.818) 0.156(0.160) 0.898(0.607) 0.566(0.142) 1.000(0.056) 0.518(0.036)
DDQN 0.794(0.794) 0.142(0.154) 0.868(0.575) 0.606(0.153) 1.000(0.037) 0.500(0.033)

Rainbow 0.670(0.670) 0.144(0.170) 0.828(0.468) 0.586(0.128) 1.000(0.071) 0.530(0.018)

100 games

DQN 0.550(0.550) 0.184(0.204) 0.758(0.230) 0.668(0.181) 0.878(0.021) 0.524(0.017)
DDQN 0.524(0.524) 0.188(0.204) 0.754(0.365) 0.662(0.205) 0.890(0.025) 0.544(0.019)

Rainbow 0.442(0.442) 0.174(0.184) 0.754(0.285) 0.654(0.190) 0.878(0.044) 0.504(0.032)

500 games

DQN 0.430(0.430) 0.204(0.216) 0.752(0.162) 0.678(0.214) 0.678(0.019) 0.530(0.017)
DDQN 0.458(0.458) 0.222(0.246) 0.754(0.158) 0.656(0.188) 0.716(0.024) 0.486(0.023)

Rainbow 0.370(0.370) 0.172(0.178) 0.748(0.275) 0.678(0.191) 0.636(0.020) 0.494(0.017)

unlimited games

DQN 0.316(0.316) 0.188(0.188) 0.728(0.213) 0.668(0.218) 0.812(0.055) 0.506(0.018)
DDQN 0.326(0.326) 0.206(0.206) 0.740(0.246) 0.694(0.196) 0.580(0.023) 0.482(0.017)

Rainbow 0.340(0.340) 0.258(0.258) 0.728(0.210) 0.686(0.193) 0.564(0.018) 0.470(0.017)

Table 10: Agent performance on random map games. Accuracies in percentage are shown in black. We also

investigate the sufficient information bonus used in our agent proposed in Section 3.3.1, which are shown in blue.
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Figure 4: Training accuracy over episodes on location questions. Upper row: fixed map, 1/2/10/100/500/unlimited

games; Lower row: random map, 2/10/100/500/unlimited games.

Figure 5: Training accuracy over episodes on existence questions. Upper row: fixed map, 1/2/10/100/500/unlim-

ited games; Lower row: random map, 2/10/100/500/unlimited games.

Figure 6: Training accuracy over episodes on attribute questions. Upper row: fixed map, 1/2/10/100/500/unlim-

ited games; Lower row: random map, 2/10/100/500/unlimited games.


