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Abstract
News streams contain rich up-to-date informa-
tion which can be used to update knowledge
graphs (KGs). Most current text-based KG up-
dating methods rely on elaborately designed
information extraction systems and carefully
crafted rules, which are often domain-specific
and hard to maintain or generalize. However,
such methods may not pay enough attention
to the implicit information that lies underneath
texts, thus often suffer from coverage issues.
In this paper, we propose a novel graph based
neural network method, GUpdater, to tackle
these problems1. GUpdater is built upon graph
neural networks (GNNs) with a text-based at-
tention mechanism to guide the updating mes-
sage passing through the KG structures. Ex-
periments on a real-world KG updating dataset
show that our model can effectively broadcast
the news information to the KG structures and
perform necessary link-adding or link-deleting
operations to ensure the KG up-to-date accord-
ing to news snippets.

1 Introduction

Knowledge graphs have been widely used in dif-
ferent areas, where keeping the knowledge triples
up-to-date is a crucial step to guarantee the KG
quality.

Existing works attempt to synchronize KGs
with encyclopedia sources (Morsey et al., 2012;
Liang et al., 2017), which basically leverage struc-
tured data, while directly updating KGs using
plain texts, such as news snippets, is not an easy
task and still remains untouched. For example,
given a KG recording the rosters of all NBA teams,
we need to update this KG according to a news
article which describes a trade between different
teams. Given the following news snippet that re-
ports a trade between Minnesota Timberwolves

1Code and data are available at: https://github.
com/esddse/GUpdater

and Philadelphia 76ers, one has to add and delete
many links in the KG, as illustrated in Figure 1.

The Minnesota Timberwolves has ac-
quired forward Robert Covington, for-
ward Dario Šarić, guard Jerryd Bay-
less and a 2022 second-round draft pick
from the Philadelphia 76ers in exchange
for forward Jimmy Butler and center
Justin Patton.

Current approaches either rely on manual up-
dating, or often solve it in a two-step manner: first,
using an off-the-shelf information extraction (IE)
tool to extract triples from the text, and then modi-
fying the KG according to certain rules predefined
by domain experts. However, we should notice
that besides what we can explicitly extract from
the text, the implicit information, i.e., information
that is not mentioned in the text but can be inferred
from the text, should also be taken into considera-
tion. This requires far more complicated updating
rules. In the above example, if Robert Coving-
ton (RC) is traded from Philadelphia 76ers to Min-
nesota Timberwolves, his teammates should all be
changed accordingly, which is not mentioned in
the news at all. This is what we referred as im-
plicit information in this scenario.

We should point out that both explicit and im-
plicit information are just different aspects of the
same event, which is different from another stream
of research that focuses on the evolution of graphs
(Pareja et al., 2019; Jin et al., 2019). For exam-
ple, changing the head coach may trigger a possi-
ble trade for his/her favorite players in the future,
but these are actually two events, thus beyond the
scope of our work.

Intuitively, the implicit information behind the
news is related to the KG structures. Many recent
works focus on embedding a KG into a continu-
ous vector space, which can be used to fill in miss-

https://github.com/esddse/GUpdater
https://github.com/esddse/GUpdater
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Figure 1: An example illustrating a trade in the KG of NBA teams. Note that all changes described by the news
happen in the text-subgraph, the implicit changes, e.g., the teammate changes of player Robert Covington (RC),
locate outside the text-subgraph but inside the 1hop-subgraph. The outside of the 1hop-subgraph, e.g, the Atlanta
Hawks part, will not be affected by this trade.

ing links in KGs (Bordes et al., 2013; Wang et al.,
2014; Lin et al., 2015; Yang et al., 2014; Trouillon
et al., 2016; Schlichtkrull et al., 2018). However,
most of them learn from static KGs, thus unable to
help with our task, since they can not dynamically
add new links or delete obsolete links according to
extra text information.

In this paper, we propose a novel neural model,
GUpdater, to tackle this problem, which features
a graph based encoder to learn latent KG repre-
sentations with the guidance from the news text,
and a decoder to score candidate triples with re-
constructing the KG as the objective. Our encoder
is built upon the combination of recently pro-
posed R-GCN (Schlichtkrull et al., 2018) and GAT
(Velickovic et al., 2017) with two new key factors
designed specifically for our task. The main idea is
to control the updating message from the text pass-
ing through the KG. First, we use the given text to
generate all the graph attention weights in order to
selectively control message passing. Second, we
link all entities mentioned in the news text together
as shortcuts in order to let the message pass to each
other even if they are topologically far from each
other in the KG. For the decoder, we simply use
DistMult (Yang et al., 2014) to score related triples
to be updated. To evaluate our method, we con-
struct a new real-world dataset, NBAtransactions,
for this task. Experimental results show that our
model can effectively use the news text to dynam-
ically add new links and remove obsolete links ac-
cordingly.

Our contributions are in two-fold:

1. we propose a new text-based KG updating
task and release a new real-world dataset to
the community for further research.

2. we design a novel neural methodl, GUpdater,
to read text snippets, which features an at-
tention mechanism to selectively control the
message passing over KG structures. This
novel architecture enables us to perform both
link-adding and link-deleting to ensure the
KG up-to-date.

2 Task Formulation

We first formally define the task. Given a knowl-
edge graph G = (E,R,T), where E, R and
T are the entity set, relation set and KG triple
set, respectively, and a news text snippet S =
{w1, w2, · · · , w|S|}, for which entity linking has
been performed to build the mentioned entity set
L ⊂ E, the text-based knowledge graph updating
task is to read the news snippet S and update T
accordingly to get the final triple set T′ and the
updated graph G′ = (E,R,T′). In this paper, we
focus on the scenarios where the entity set remains
unchanged.

As a single event can only affect the KG in a
limited range, for each event that is described by a
news snippet, we consider two kinds of subgraphs
that are defined by their entity sets, as illustrated
in Figure 1:
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Figure 2: Overview of our GUpdater. By adding shortcuts in the R-GAT encoder, we enable Jimmy Butler (JB)
to directly receive information from Philadelphia 76ers. Then with the guidance of text-based attention, Jimmy
Butler selectively gathers neighbors’ messages and moves closer to Philadelphia 76ers in the latent space. Dashed
lines with arrow in the intermediate state indicate the moving directions, and the width of the dash line illustrates
how possible Jimmy Butler will move to that direction. Finally, new links are generated by the DistMult decoder.

Text-Subgraph Subgraphs with entity set
Etext = L, i.e., all the entities are mentioned in
news snippet S. Explicit information in the texts
can lead to changes in these graphs only.

1Hop-Subgraph If we expand text-subgraphs
by one hop, we get 1hop-subgraphs. For each en-
tity in 1hop-subgraphs, either itself or one of its
neighbors is mentioned in the news. The one-hop
entity set is formally defined as E1hop = {e|e ∈
L ∨ (((e, r, t) ∈ T ∨ (t, r, e) ∈ T) ∧ t ∈ L)}.

We argue that updating in 1hop-subgraphs only
is a good balance of effectiveness and efficiency.
On the one hand, implicit changes always oc-
cur around explicit changes usually within a short
distance. In fact, most of the implicit changes
can be captured in the one-hop range. Here we
give an extreme example: given the news snip-
pet ”Barack Obama was elected president.”, the
explicit change is to add (Barack Obama, Posi-
tion, President) to the KG, while one of the im-
plicit changes is to add (Michelle Obama, Po-
sition, First Lady) to the KG. Note that in this
case, both ”Michelle Obama” and ”First Lady” are
not mentioned in the news, but, because they are
neighbors of ”Barack Obama” and ”President”, re-
spectively, this implicit change can be found in
the 1hop-subgraph. On the other hand, updating
in small subgraphs can avoid a huge amount of
meaningless computation, and meanwhile can re-
duce mis-prediction. For these two reasons, we se-

lect the one-hop range, i.e., the 1hop-subgraph as
the main testbed for this task. Also note that this
one-hop setting can be easily extended to two-hop
or larger scopes if necessary.

3 Our Method

The overview of our model is illustrated in Fig-
ure 2. As mentioned before, our GUpdater follows
an encoder-decoder framework with the objective
to reconstruct the modified KGs.

3.1 Relational Graph Attention Layer

In order to better capture the KG structures, we
propose a new graph encoding layer, the rela-
tional graph attention layer (R-GAT), as the ba-
sic building block of GUpdater’s encoder. R-
GAT can be regarded as a combination of R-GCN
(Schlichtkrull et al., 2018) and GAT (Velickovic
et al., 2017), which benefits from both the ability
of modeling relational data and the flexibility of
attention mechanism. Recall that the layer-wise
propagation rule of R-GCN can be written as fol-
lows:

Hl+1 = σ

(∑
r∈R

Âl
rH

lWl
r

)
, (1)

where Âl
r is the normalized adjacent matrix for

relation r, W l
r is a layer-specific trainable weight

matrix for relation r, and σ(·) denotes an activa-
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tion function, here we use ReLU. H l is the latent
entity representations in the lth layer.

Upon R-GCN, we can easily introduce attention
mechanisms by computing Âr using an attention
function:

alrij =


exp(attlr(hl

i,h
l
j))∑

k∈N r
i
exp(attlr(hl

i,h
l
k))

, j ∈ N r
i

0 , otherwise
(2)

where alrij is the ith row and jth column element of
Âl

r, andN r
i denotes the set of neighbor indices of

node i under relation r. attlr(·, ·) is the attention
function. hl

i and hl
j are the ith and the jth entity

representations of layer l, respectively.
A known issue for R-GCN (Eq.(1)) is that the

number of model parameters grows rapidly with
the increasing number of relation types. We
thus use basis-decomposition (Schlichtkrull et al.,
2018) for regularization. In a standard R-GCN
layer, if there are R relations involved, there will
be R weight matrices for each layer. Basis-
decomposition regularizes these matrices by defin-
ing each weight matrix as a linear combination of
B(B < R) basis matrices, which significantly de-
creases the parameter number.

3.2 Text-based Attention

The core idea of GNNs is to gather neighbors’ in-
formation. In our case, we propose a text-based
attention mechanism to utilize the news snippet to
guide the message passing along the KG structure
within the R-GAT layer.

We first use bi-GRU (Cho et al., 2014) to en-
code the given news text S into a sequence of rep-
resentations {u1,u2, · · · ,u|S|}, then we leverage
the sequence attention mechanism (Luong et al.,
2015) to compute the context vector:

clr =

|S|∑
t=1

blrt ut (3)

where blrt is the text attention weight, and is com-
puted as follow:

blrt =
exp(uT

t g
lr
text)∑|S|

k=1 exp(u
T
k g

lr
text)

(4)

where glr
text is a trainable guidance vector to guide

the extraction of relation-dependent context.

Recall that in GAT, the way to compute the at-
tention weights is similar to the formula below:

attlr(hl
i,h

l
j) = glr

graph
T
[hl

i||hl
j ] (5)

where || denotes concatenation operation, and
glr
graph is a relation-specific trainable vector that

serves as a graph guidance vector to decide which
edge to pay attention to.

Here, we generate the final guidance vector glr
fin

that combines textual information to the graph
guidance vector by simply using linear interpola-
tion, and we replace glr

graph in Eq.(5) by glr
fin to

get our final attention function:

glr
fin = αlrglr

graph + (1− αlr)Ulrclr, (6)

attlr(hl
i,h

l
j) = glr

fin
T
[hl

i||hl
j ] (7)

where Ulr is a trainable transformation matrix,
and αlr ∈ [0, 1] can either be trainable or fixed. If
we set αlr = 1, then Eq.(7) degenerates to Eq.(5)
and our encoder degenerates to R-GAT. It makes
it easy to pre-train the model to get good embed-
dings for all entities and relations when news snip-
pets are not provided.

3.3 Shortcuts

Shortcuts In practice, entities in L can be far
from each other in the KG, even unreachable
sometimes, while a single- or two-layer R-GAT
can only gather information from a near neighbor-
hood. In order to encourage more direct interac-
tions through the graph structure, before running
the model, we simply link all entities in L to each
other and assign these links with a new relation
label, SHORTCUT.

Shortcuts with labels Actually, relations be-
tween entities in L can be different. For exam-
ple, if a player is traded from one team to an-
other, the relations between this player and that
two teams must be opposite. Thus a unified short-
cut label may make it difficult to correctly pass op-
posite messages, even with the help of the atten-
tion mechanism. So we further extend the short-
cuts’ label to 3 types: ADD, DEL and OTHER.
ADD (DEL) denotes that these triples are explic-
itly mentioned in the text to be added to (deleted
from) the KG. The rest are labeled with OTHER.
Off-the-shelf IE tools can be used to generate these
labeled shortcuts.
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Data type distribution Edge number distribution (average number of edges in one instance)
Type Count Percentage Added Deleted Unchanged T-added T-deleted T-unchanged
Trade 1245 30.4% 37.48 37.19 330.51 2.08 2.09 0.50

Head coach 77 1.9% 1.0 1.0 217.0 1.0 1.0 0.14
Free agency 1078 26.3% 19.19 0.0 179.89 1.0 0.0 0.0

Draft 137 3.3% 18.84 0.0 173.42 1.0 0.0 0.0
Released 1382 33.7% 0.0 18.65 170.26 0.0 1.0 0.0
Overseas 85 2.1% 0.0 17.62 150.05 0.0 1.0 0.0

Retirement 57 1.4% 0.0 16.51 132.07 0.0 1.0 0.0
D-league 39 1.0% 0.0 19.13 178.0 0.0 1.0 0.0
Overall 4100 100% 17.07 18.37 221.56 0.95 1.03 0.15

Table 1: The Statistics of NBAtransactions. Added, Deleted and Unchanged represent the average number of
edges that should be added to, deleted from and remain unchanged in the KG, respectively. T-added represents the
average edge addition in the text-subgraphs, similar for T-deleted and T-unchanged.

Here, we easily build a simple extraction model
using our GUpdater encoder. We get the entity
representations from GUpdater’s encoder (with
unified shortcuts), then for each entity pair (ei, ej),
where ei, ej ∈ L, i 6= j, we use an MLP classifier
to get the probability of each label:

P (z) = softmax (MLP([hi||hj ])) (8)

where shortcut label z ∈ {ADD, DEL, OTHER},
hi and hj are entity representations for entity
ei, ej , respectively.

In our experiments, we train the shortcut-
labeling module separately, as we find that the re-
sults are good enough while saving training time.
One can surely perform the extraction step in a
joint training fashion.

3.4 Decoder
We use DistMult (Yang et al., 2014), which is
known to have good performance on standard
KG completion tasks, followed by sigmoid func-
tion, as the decoder, i.e., for each possible triple
(ei, rk, ej) where ei, ej ∈ E1hop, rk ∈ R, the
probability of this triple to appear in the final KG
is computed as follow:

P (y) = sigmoid
(
hT
i (rk ◦ hj)

)
(9)

where ◦ denotes element-wise multiplication.
Since we formulate KG updating as a binary

classification task, we use the cross-entropy loss
to train the model.

4 Experiments

4.1 Dataset
We construct a new dataset, NBAtransactions, to
evaluate our method. NBAtransactions contains
4,100 transaction-news pairs in NBA from 2010

to 2019, 3,261 for training, 417 for validation and
422 for testing. We consider 8 different kinds
of transactions, which can be divided into 3 cat-
egories according to the updating patterns: 1)
Adding edges only: free agency and draft. 2)
Deleting edges only: released, overseas, retire-
ment and d-league. 3) Both adding and deleting
edges: trade and head coach.

For each transaction, a news snippet S with
mentioned entity set L and two undirected KG
fragments, G1hop and G′1hop, representing the cor-
responding 1hop-subgraphes before and after the
transaction, respectively, are given. Averagely,
one subgraph contains 27.86 entities, 4 types of
relations, and 239.28 triples, and one news snip-
pet contains 29.10 words and 2.66 KG entities.
Each transaction averagely causes adding of 17.07
edges and deleting of 18.37 edges; among them,
only 0.95 (for adding) and 1.03 edges (for delet-
ing) are in the text-subgraph, i.e., only 5.6% of the
edge changes are explicitly mentioned in the news
texts. Detailed statistics are shown in Table 1.

Our dataset is collected from several NBA re-
lated webistes. The KGs we used in the dataset
are constructed using the roster of each NBA
team in each season collected from Basketball-
Reference2. For each NBA season, we build a
large KG that records all teams, players, head
coaches, general managers and their relations at
the beginning of that season. So there are 9
large KGs in total, one KG for one NBA sea-
son. Wikipedia3 records all NBA transactions
from 1946 to 2019 in a structured form and pro-
vides URLs of news sources for most of the trans-
actions after 2010. We crawled all the available

2https://www.basketball-reference.com
3https://en.wikipedia.org/wiki/

Category:NBA_transactions

https://www.basketball-reference.com
https://en.wikipedia.org/wiki/Category:NBA_transactions
https://en.wikipedia.org/wiki/Category:NBA_transactions
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news and corresponding transactions. For each
transaction, G1hop can be easily extracted from the
corresponding large KG. However, we cannot get
G′1hop directly, as our KGs only record the rosters
at the beginning of each season. To generate the
G′1hop, we manually create a large set of compli-
cated conversion rules for each transaction type
to modify G1hop and obtain the 1hop-subgraph af-
ter the transaction. We use string matching algo-
rithms to perform entity linking, and meanwhile
generate the mentioned entity set L.

4.2 Setup
The dimensions of all embeddings (words, enti-
ties, and relations) are all set to 128, and the hid-
den dimension is 256. We use a single layer en-
coder, as we find that more layers do not bring any
benefit. The basis number of basis-decomposition
is 2. We replace the word embeddings of entity
mentions in the text by the entity embeddings for
better alignment of word embedding space and en-
tity embedding space. The entity embeddings and
relation embeddings are pre-trained using R-GAT,
and the word embeddings are randomly initialized.
We set dropout (Srivastava et al., 2014) rate to 0.5.
The batch size in our experiments is 1. We use
Adam optimizer (Kingma and Ba, 2014) with a
learning rate of 0.001 for training.

We consider updating in two different scopes:
1) Text-Subgraphs: changes in these subgraphs
correspond to the explicit information mentioned
in the texts. 2) 1Hop-Subgraphs: all explicit and
implicit changes happen in these subgraphs, thus
this setting is treated as the overall/real-world up-
dating evaluation.

4.3 Metrics
As our model aims to reconstruct the KG using bi-
nary classification, i.e., deciding whether a possi-
ble triple should be in the modified KG, we use ac-
curacy, precision, recall and F1 score as the eval-
uation metrics. Further, to evaluate the ability
of link-adding, link-deleting and link-preserving,
respectively, we collect all added edges, deleted
edges, and unchanged edges and compute the pre-
diction accuracies separately, which we denote as
Added Acc, Deleted Acc and Unchanged Acc, re-
spectively.

4.4 Baseline Models
Because most current text-based KG updating
methods are in two steps: first extract information

from texts, then add and remove links in KGs, we
select non-rule-based models that perform well on
these two steps and also their combination as our
baseline models.

PCNN (Zeng et al., 2015) is a strong baseline
for relation extraction, which divides the sentence
into three pieces and applies max-pooling in a
piecewise manner after the convolution layer.

IE-gold is a simulation of an ideal IE model
that can perfectly extract explicit information from
given texts. This is an upper bound for the infor-
mation extraction step.

DistMult (Yang et al., 2014) is a widely-used
multiplication-based triple scoring function for
KG completion, which computes the three-way
inner-product of the triples. Its symmetric nature
is suitable for NBAtransactions as the KGs are
undirected.

R-GCN (Schlichtkrull et al., 2018) is one of the
strongest baselines for KG completion, which first
encodes entities by gathering neighbors’ informa-
tion, then decodes them by DistMult. Note that
compared to traditional KG completion tasks, here
the target KGs are the modified KGs and usually
different from the input KGs. Because of the lack
of network structure, single DistMult is unable to
train like this.

IE-gold + R-GCN is the combination of IE-
gold and R-GCN. We first use IE-gold to gen-
erate a perfectly updated text-subgraph, then use
R-GCN to predict other changes outside the text-
subgraph.

4.5 Main Results

We summarize the main results in Table 2. As we
can see, PCNN performs pretty well in extracting
explicit information from the news (over 0.96 in
Added Acc, Deleted Acc and Unchanged Acc in
Text-Subgraphs). However, the explicit changes
only take up 5.8% in the testing set, while the
majority of changes are implicit. Therefore, even
a perfect IE model, IE-gold, which never makes
any wrong predictions, can only correctly predict
about 6% of the changes in the 1hop-subgraphs.

The implicit changes are highly related to KG
structures. Compared to DistMult, which just pre-
serves the original structures and scores 0.0656 in
Added Acc, 0.1220 in Deleted Acc in the 1Hop-
Subgraphs, R-GCN can use the modified KGs
for training and learns to predict changes with-
out reading the news. R-GCN beats DistMult by
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Accuracy Precision Recall F1 Added Acc Deleted Acc Unchanged Acc
Text-Subgraphs

PCNN 0.9664 0.9573 0.9676 0.9624 0.9674 0.9638 0.9686
IE-gold 1.0 1.0 1.0 1.0 1.0 1.0 1.0

DistMult 0.8372 0.1640 0.1670 0.1655 0.0679 0.0652 0.7093
R-GCN 0.8601 0.3249 0.4147 0.3644 0.4055 0.2077 0.4651

IE-gold + R-GCN 1.0 1.0 1.0 1.0 1.0 1.0 1.0
GUpdater 0.9783 0.8871 0.8887 0.8879 0.8684 0.9185 0.9651

1Hop-Subgraphs
PCNN 0.9799 0.9245 0.9270 0.9257 0.0586 0.0541 0.9995
IE-gold 0.9805 0.9248 0.9274 0.9261 0.0606 0.0561 1.0

DistMult 0.9644 0.8277 0.9225 0.8725 0.0656 0.1220 0.9944
R-GCN 0.9837 0.9243 0.9547 0.9393 0.4348 0.2005 0.9984

IE-gold + R-GCN 0.9847 0.9285 0.9577 0.9429 0.4681 0.2448 0.9989
GUpdater 0.9964 0.9819 0.9913 0.9866 0.8926 0.8988 0.9991

Table 2: Model performance on NBAtransactions. Here, PCNN performs multi-class classification while others
are binary classification models.

0.37 in Added Acc and 0.08 in Deleted Acc in the
1Hop-Subgraphs. Such a huge improvement sug-
gests that the blind prediction is not completely ar-
bitrary, and R-GCN indeed learns certain updating
patterns through the KG structures. Besides, R-
GCN scores 0.9393 in F1 in the 1hop-subgraphs,
outperforms IE-gold by 1%, once again underlines
the importance of implicit changes.

IE-gold + R-GCN combines the advantages of
IE-gold and R-GCN, and performs best among the
baselines. However, in the 1hop-subgraphs, the
Added Acc and Deleted Acc are only 0.4681 and
0.2448, which are still quite low. Although IE-
gold + R-GCN can perfectly extract explicit in-
formation from the news, there is no mechanism
for the IE model to pass the extracted information
to the R-GCN module, thus this two-step method
still performs poorly in finding out the implicit
changes.

For overall performance, GUpdater signifi-
cantly outperforms all baseline models, which co-
incides to our intuition. Particularly, in the 1hop-
subgraphs, GUpdater beats IE-gold + R-GCN by
0.42 in Added Acc, 0.65 in Deleted Acc, indicat-
ing that GUpdater can well capture both explicit
and implicit information in the news snippets.

4.6 Ablation Analysis

We also perform ablation test to figure out the
effect of each component of GUpdater. As
shown in Table 3, compared to R-GAT, both
GUpdater-shortcut (GUpdater without shortcut)
and GUpdater-text (GUpdater without text-based
attention) improve the overall performance with
different levels, showing that both the text-based
attention and the shortcuts are helpful for this task.

Generally, we can see that adding shortcuts is
key to this task, as it brings a giant leap to nearly
all indicators. Actually, updating KGs using news
can be regarded as information injection from one
semantic space to another, the text mentioned en-
tities can be seen as junctions of these two spaces
and serve as entrances for information injection.
So, in the KG, the text mentioned entities are in-
formation sources, and send messages to the ex-
plicitly and implicitly related target entities. How-
ever, the targets may be very far and hard to reach,
it is the shortcuts that make the successful infor-
mation delivery possible.

However, if there are too many shortcuts, the
messages are easy to get to wrong targets. The
text-based attention mechanism can be regarded
as gates that selectively open several shortcuts that
are easy for message passing, and this helps the
model get 2%-3% steady improvements in both
Added Acc and Deleted Acc.

When adding explicit labels to shortcuts, we get
much better performance than the basic GUpdater
(7% improvement in Added Acc, 8% improve-
ment in Deleted Acc in 1hop-subgraphs), which
indicates that splitting the shortcuts into different
channels for different kinds of messages is crucial
for better information delivery, and that makes it
easier to dig out implicit information. The result
also indicates that our model is well extensible and
can easily incorporate off-the-shelf IE tools.

4.7 Visualization of Attention on Shortcuts

In order to explore how the information actually
passes along shortcuts, we select 5 different types
of trades, as shown in Table 4, and we get the cor-
responding attention weight on each shortcut in
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Accuracy Precision Recall F1 Added Acc Deleted Acc Unchanged Acc
Text-Subgraphs

GUpdater 0.9783 0.8871 0.8887 0.8879 0.8684 0.9185 0.9651
-shortcut-text (R-GAT) 0.8623 0.3343 0.4273 0.3751 0.4225 0.2179 0.4535

-shortcut 0.8656 0.3551 0.4776 0.4074 0.2059 0.5112 0.3372
-text 0.9705 0.8550 0.8366 0.8457 0.8323 0.8982 0.8605

GUpdater+label 0.9936 0.9779 0.9551 0.9664 0.9584 0.9603 0.9862
1Hop-Subgraphs

GUpdater 0.9964 0.9819 0.9913 0.9866 0.8926 0.8988 0.9991
-shortcut-text (R-GAT) 0.9833 0.9216 0.9547 0.9378 0.4290 0.2073 0.9990

-shortcut 0.9843 0.9267 0.9563 0.9413 0.4726 0.2044 0.9989
-text 0.9957 0.9793 0.9885 0.9839 0.8668 0.8619 0.9987

GUpdater+label 0.9981 0.9889 0.9969 0.9929 0.9668 0.9792 0.9991

Table 3: Results of the ablation test, where -text indicates removing the text-based attention mechanism from
GUpdater.

GUpdater. We find that most shortcuts are closed
by the attention mechanism, i.e., their correspond-
ing attention weights are very close to 0, and only
a small portion of shortcuts are open for message
passing.

For each trade type, the remaining shortcuts are
organized in a similar pattern: there is a central
team selected by the model that sends messages to
all other entities and receives the message from an-
other team. For symmetric trades, i.e., each team
plays the same role in the trade (T2, T3 in Table 4),
the selection of the central team seems to be arbi-
trary, while for asymmetric trades (T4, T5), the
central teams are the teams that involved in more
transactions.

It seems that GUpdater learns a 2-team trade
rule from that pattern: if two teams send messages
mutually through shortcuts, they will exchange all
their players in text-subgraphs. T1 and T2 are
most simple 2-team trades, thus our model updates
the graphs perfectly with this message passing pat-
tern. T4 and T5 look difficult and complicated, but
they are actually direct combinations of two sim-
ple 2-team trades, e.g., T4 can be decomposed into
two trades: the Grizzlies trades JS to the Celtics
for FM, and the Thunder trades RG to the Celtics.
So for these trades, GUpdater also performs quite
well, as only two not-that-important triples are
missing in T5. However, in T3, three teams ex-
change players in a rotation, and it cannot be de-
composed into several 2-team trades, thus leads
to a severe mis-prediction: (TS, player, Jazz), as
placing a player in a wrong team may cause more
teammate-errors in the 1hop-subgraph. The in-
ability of perfectly performing rotational three-
team trades may due to the lack of training in-
stance, as in the past 10 years, such kind of trade

happened nearly once a year.

5 Related Work

KG Representation Learning aims to embed a
KG into a continuous vector space, which pre-
serves the KG structures. There are mainly two
streams of researches. The first is addition-
based models (also called translation-based mod-
els), which based on the principle that for ev-
ery valid triple (h, r, t), their embeddings holds:
h + r ≈ t. TransE(Bordes et al., 2013) is
the first such model. TransH(Wang et al., 2014)
projects entity embeddings into relation-specific
hyperplanes. TransR(Lin et al., 2015) generalize
TransH by extending projection to linear transfor-
mation. TransD (Ji et al., 2015) simplifies TransR
by decomposing the transformation matrix into the
product of two vectors. Another is multiplication-
based models, which comes from the idea of ten-
sor decomposition. RESCAL(Nickel et al., 2011)
is one of the earlist studies, which using a bilin-
ear scoring function. DistMult(Yang et al., 2014)
simplifies RESCAL by using a diagonal matrix.
ComplEx(Trouillon et al., 2016) extend DistMult
into the complex space to handle asymmetric re-
lations. SimplE (Kazemi and Poole, 2018) learns
two embeddings for each entity dependently. A
direct application is KG completion.

Graph Neural Networks allow passing infor-
mation horizontally among nodes (Gilmer et al.,
2017). Recently, many tecniques has been in-
corporated to GNN model, and lots of attempt
has bean made to promote GNNs to more appli-
cation scenarios. GCN(Kipf and Welling, 2016)
leverages graph spectrums for semi-supervised
node classification. GAT(Velickovic et al., 2017)
extends GCN by bringing attention mechanism



2640

Gtext G′
text Selected Shortcuts Results in

Text-Subgraph

T1

T2

T3 wrong predictions:
(TS, player, Jazz)

(TS, teammate, Pacers)

T4

T5 missing triples:
(VK, teammate, BM)
(TE, teammate, BM)

Table 4: Examples of visualization for the attention on shortcuts. Each row shows an example of one type of trade.
Gtext and G′text represent the actual text-subgraphs before and after the trade, respectively. Selected Shortcuts
represents the shortcuts selected by the attention mechanism, and the arrows indicate the directions of message
passing. Results in Text-Subgraph lists the prediction errors of GUpdater.

into GNN. To better capture KG information, R-
GCN(Schlichtkrull et al., 2018) was proposed to
incorporates relation embeddings into GNN.

Relation Extraction task aims to extract rela-
tions from texts. Current relation extraction mod-
els are mainly under distant supervision (Mintz
et al., 2009), and are trained in bag level. PCNN
(Zeng et al., 2015) divides the sentence into three
pieces and applies max-pooling in a piecewise
manner after the convolution layer. APCNN (Ji
et al., 2017) uses sentence-level attention to select
multiple valid sentences with different weights in
a bag. (Luo et al., 2017) uses a transition matrix to
model the noise and use curriculum for training.

6 Conclusion

In this paper, we propose a new text-based KG up-
dating task and construct a dataset, NBAtransac-
tions, for evaluation. We design a novel GNN-
based model, GUpdater, which uses text informa-
tion to guide the message passing through the KG
structure. Experiments show that our model can
effectively handle both explicit and implicit in-
formation, and perform necessary link-adding and

link-deleting operations accordingly. In the future,
we will try to investigate how to update KGs when
entities are involved in several successive events.
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