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Abstract

In this work, we propose to use linguistic an-
notations as a basis for a Discourse-Aware Se-
mantic Self-Attention encoder that we employ
for reading comprehension on narrative texts.
We extract relations between discourse units,
events and their arguments as well as core-
ferring mentions, using available annotation
tools. Our empirical evaluation shows that
the investigated structures improve the overall
performance (up to +3.4 Rouge-L), especially
intra-sentential and cross-sentential discourse
relations, sentence-internal semantic role re-
lations, and long-distance coreference rela-
tions. We show that dedicating self-attention
heads to intra-sentential relations and relations
connecting neighboring sentences is benefi-
cial for finding answers to questions in longer
contexts. Our findings encourage the use of
discourse-semantic annotations to enhance the
generalization capacity of self-attention mod-
els for reading comprehension.

1 Introduction

Transformer-based self-attention models (Vaswani
et al., 2017) have been shown to work well on
many natural language tasks that require large-
scale training data, such as Machine Translation
(Vaswani et al., 2017; Dai et al., 2019), Language
Modeling (Radford et al., 2018a; Devlin et al.,
2019; Dai et al., 2019; Radford et al., 2019) or
Reading Comprehension (Yu et al., 2018), and can
even be trained to perform surprisingly well in sev-
eral multi-modal tasks (Kaiser et al., 2017b).

Recent work (Strubell et al., 2018) has shown
that for downstream semantic tasks with much
smaller datasets, such as Semantic Role Labeling
(SRL) (Palmer et al., 2005), self-attention models
greatly benefit from the use of linguistic informa-
tion such as dependency parsing annotations. Mo-
tivated by this work, we examine to what extent

[Captain Picard went on a mission.] S1
[Cardassians took him as a prisoner.] S2
[Starfleet assigned Jellico as Picard‘s
replacement.] S3

Q1: When was Picard taken prisoner?

DiscRel: S1, S2 => Temp.Succession 
Coref: Picard, him

Q2: Who replaced Picard as a captain?

Context:

A: when he was on a mission

A: Jellico
SRL: [Starfleet]A0 [assigned]V
[Jellico]A1 [as Picard‘s replacement]A2. 

Figure 1: Motivational example: context and questions
with required discourse and semantic annotations.

we can use discourse and semantic information
to extend self-attention-based neural models for a
higher-level task such as Reading Comprehension.

Reading Comprehension is a task that requires
a model to answer natural language questions,
given a text as context: a paragraph or even full
documents. Many datasets have been proposed
for the task, starting with a small multi-choice
dataset (Richardson et al., 2013), large-scale au-
tomatically created cloze-style datasets (Hermann
et al., 2015; Hill et al., 2016) and big manually
annotated datasets such as Onishi et al. (2016);
Rajpurkar et al. (2016); Joshi et al. (2017); Ko-
cisky et al. (2018). Previous research has shown
that some datasets are not challenging enough,
as simple heuristics work well with them (Chen
et al., 2016; Weissenborn et al., 2017b; Chen et al.,
2017). In this work we focus on the recent Narra-
tiveQA (Kocisky et al., 2018) dataset that was de-
signed not to be easy to answer and that requires
a model to read narrative stories and answer ques-
tions about them.

In terms of model architecture, previous work
in reading comprehension and question answer-
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Figure 2: Example on different discourse-semantic annotations: DiscRel (Dicourse Relations) (NE - Non-Explicit),
SRL (Semantic Role Labeling), Coref (Co-reference resolution). The distinct horizontal lines show the interaction
between the tokens: Coref - full context, SRL - single sentence, Non-Explicit DR - two neighbouring sentences.

ing has focused on integrating external knowledge
(linguistic and/or knowledge-based) into recurrent
neural network models using Graph Neural Net-
works (Song et al., 2018), Graph Convolutional
Networks (Sun et al., 2018; De Cao et al., 2019),
attention (Das et al., 2017; Mihaylov and Frank,
2018; Bauer et al., 2018) or pointers to coreferent
mentions (Dhingra et al., 2017).

In contrast, in this work we examine the im-
pact of discourse-semantic annotations (Figure 1)
in a self-attention architecture. We build on the
QANet (Yu et al., 2018) model by modifying the
encoder of its self-attention modeling layer. In
particular, we specialize self-attention heads to
focus on specific discourse-semantic annotations,
such as, e.g., an ARG1 relation in SRL, a CAUSA-
TION relation holding between clauses in shallow
discourse parsing, or coreference relations holding
between entity mentions.

Our contributions are the following:

• To our knowledge we are the first to explicitly
introduce discourse information into a neural
model for reading comprehension.

• We design a Discourse-Aware Semantic Self-
Attention mechanism, an extension to the
standard self-attention models – without sig-
nificant increase of computation complexity.

• We analyze the impact of different discourse
and semantic annotations for narrative read-
ing comprehension and report improvements
of up to 3.4 Rouge-L over the base model.

• We perform empirical fine-grained evalua-
tion of the discourse-semantic annotations on
specific question types and context size.

Code and data will be available at
https://github.com/Heidelberg-NLP/discourse-
aware-semantic-self-attention.

2 Discourse-aware Semantic Annotations

Understanding narrative stories requires the abil-
ity to identify events and their participants and
to identify how these events are related in dis-
course (e.g., by causation, contrast, or tempo-
ral sequence) (Mani, 2012). Our aim is to ex-
tract structured knowledge about these phenomena
from long texts and to integrate this information in
a neural self-attention model, in order to examine
to what extent such knowledge can enhance the ef-
ficiency of a strong reading comprehension model
applied to NarrativeQA.

Specifically, we enhance self-attention with
knowledge about entity coreference (Coref), their
participation in events (SRL) and the relation be-
tween events in narrative discourse (Shallow Dis-
course Parsing (Xue et al., 2016), DR).

All these linguistic information types are rela-
tional in nature. For integrating relational knowl-
edge into the self-attention mechanism, we follow
a two-step approach: i) we extract such relations
from a multi-sentence paragraph and project them
down to the token level, specifically to the tokens
of the text fragments that they involve; ii) we de-
sign a neural self-attention model that uses the in-
teraction information between these tokens in a
multi-head self-attention module.

To be able to map the extracted linguistic
knowledge to paragraph tokens, we need annota-
tions that are easy to map to token level (see Figure
2). This can be achieved with tools for annotation
of span-based Semantic Role Labeling, Corefer-
ence Resolution, and Shallow Discourse Parsing.

Events and Their Participants Relations be-
tween characters in a story are expressed in text
through their participation in states or actions in
which they fill a particular event argument with a
specific semantic role (see Figure 2). For anno-
tation of events and their participants we use the
state-of-the-art SRL system of He et al. (2017) as
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Figure 3: A) Base Multi-Head Self-Attention Encoder Block, B) Discourse-Aware Semantic Self-Attention
(DASSA) Encoder Block , C) Single Attention Head with disource/semantic Information, D) Example of attention
scope masks for different attention heads and different information.

implemented in AllenNLP (Gardner et al., 2018).
The system splits paragraphs into sentences and
tokens, performs POS (part of speech tagging) and
for each verb token V it predicts semantic tags
such as ARG0, ARG1 (Argument Role 0, 1 of verb
V), etc. When several argument-taking predicates
are realized in a sentence, we obtain more than sin-
gle semantic argument structure, and each token
in the sentence can be involved in the argument
structure of more than one verb. We refer to these
annotations as different semantic views (Khashabi
et al., 2018a), e.g., ‘semantic view for verb 1‘. Dif-
ferent self-attention heads will be able to attend to
individual semantic views.

Coreference Resolution Narrative texts abound
of entity mentions that refer to the same entity
in the discourse. We hypothesize that by direct-
ing the self-attention to this specific coreference
information, we can encourage the model to fo-
cus on tokens that refer to the same entity men-
tion. Although token-based self-attention mod-
els are able to attend over wide-ranged context
spans, we hypothesize that it will be beneficial to
allow the model to focus directly on the parts of
the text that refer to the same entity. For coref-
erence annotation we use the medium size model
from the neuralcoref spaCy extension available at
https://github.com/huggingface/neuralcoref. For
each token we give as information the label of the
corresponding coreference cluster (see Figure 2)
that it belongs to. Therefore, tokens from the same
coreference cluster get the same label as input.

Discourse Relations In narrative texts, events
are connected by discourse relations such as cau-
sation, temporal succession, etc. (Mani, 2012).
In this work we adopt the 15 fine-grained dis-
course relation sense types from the annotation
scheme of the Penn Discourse Tree Bank (PDTB)
(Prasad et al., 2008). For producing discourse re-
lation annotations we use the discourse relation
sense disambiguation system from Mihaylov and
Frank (2016) which is trained on the data pro-
vided by the CoNLL Shared Task on Shallow Dis-
course Parsing (Xue et al., 2016). In this an-
notation scheme discourse relations are divided
into two main types: Explicit and Non-Explicit.
Explicit relations are usually connected with an
explicit discourse connective, such as because,
but, if. Non-Explicit1 relations are not explic-
itly marked with a discourse connective and the
arguments are usually contained in two consec-
utive sentences (see Figure 2). To extract ex-
plicit discourse relations we take into account
only arguments that are in the same sentence.
We consider as separate arguments (ARG1 and
ARG2) text sequences that are on the left and
right of an explicit discourse connective (CONN):
ex. ’[Jeff went home]ARG1 CCR [because]CONN

[he was hungry.]ARG2 CCR, where CCR is Con-
tingency.Cause.Reason’. To provide Non-Explicit
discourse relation sense annotations, we annotate
every consecutive pair of sentences with a pre-
dicted discourse relation sense type.

1Non-Explicit relations include Implicit, AltLex and En-
tRel relation from PDTB. See Xue et al. (2016) for details.
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3 A Discourse-Aware Semantic
Self-Attention Neural Model

3.1 QANet
As a base reading comprehension model we use
QANet (Yu et al., 2018). QANet is a standard
token-based self-attention model with the follow-
ing components, which are common across many
recent models: 1. Input Embedding Layer uses
pre-trained word embeddings and convolutional
character embeddings; 2. Encoder Layer con-
sists of stacked Encoder Blocks (see Figure 3,
A) based on Multi-Head Self-Attention (Vaswani
et al., 2017) and depth-wise separable convolution
(Chollet, 2016; Kaiser et al., 2017a); 3. Context-
to-Query Attention Layer is a standard layer, that
builds a token-wise attention-weighted question-
aware context representation; 4. Modeling Layer
has the same structure as 2. above but uses as
input the output of layer 3.; 5. Output layer is
used for prediction of start and end answer point-
ers. For detailed information about these layers,
please refer to Yu et al. (2018). In this work we re-
place the standard Multi-Head Self-Attention with
Discourse-Aware Semantic Self-Attention, using
several different semantic and discourse annota-
tion types. We describe this below and explain the
differences to the standard Encoder Block.

3.2 Discourse-Aware Semantic Self-Attention
In Figure 3 we show the difference between
the Base Multi-Head Self-Attention Encoder
Block A) and the Discourse-Aware Semantic
Self-Attention Encoder Block B). Both consist of
positional-encoding+ convolutional-layer⇥K+
multi-head-self-attention+ feed-forward layer.
The difference is that B is provided additional
inputs that are used by multi-head self-attention.
The multi-head self-attention is a concatenation of
outputs from multiple single self-attention heads
hi followed by a linear layer. A single head of
the extended multi-head self-attention is shown in
Figure 3C and is formally defined as

ahi = mask softmax

 
QhiK
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Vhi (1)
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K
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V
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rl�1 2 Rn⇥dh (4)

, where Qhi , Khi , Vhi are components of the
query-key-value attention and

p
dh is used for

weight scaling as originally proposed in Vaswani
et al. (2017). WQ

hi
, WK

hi
, W V

hi
are weights, specific

for head hi, i 2 1..H 2, rl�1 is the input from the
previous encoder block, st is an embedding vector
for the linguistic annotation type t (‘SRL Arg1‘,
‘DiscRel Cause.Reason Arg2‘, etc.), ahi is the
output of head hi. Mt is a sentence-wise atten-
tion mask as shown in Figure 3D. st and Mt are
the main difference compared to the standard self-
attention (Figure 3C).

In principle, representing edges of a graph (e.g.,
the V-ARG1 role from SRL) requires memory
of n

2
dhH , where n is the length of the context,

which would be a bottleneck for computation on
a GPU with limited memory (8-16GB). Instead,
we adopt a strategy where the relation is repre-
sented as a source and target node and an atten-
tion scope (one sentence for SRL; two sentences
for DR (Non-Exp); full context for Coref). The
latter is controlled using the attention mask. The
combination of flat token labels and mask reduces
the maximum memory required for representing
the information in the knowledge-enhanced head
to 2ndhH . The attention masks, which we use
for reducing the attention scope of the different
semantic and discourse annotations, are shown in
Figure 3D. These masks ensure that the corre-
sponding attention heads will only attend to to-
kens from the corresponding scope (SRL: single
sentence; DR (NonE): two sentences, etc.). The
attention masks are symmetric to the matrix diag-
onal. Therefore, they can easily be computed ‘on-
the-fly‘ given only the sentence boundaries (corre-
sponding to the horizontal lines in Figure 2).

To reduce the model memory further and still
benefit from the full-context self-attention, we use
the Discourse-Aware Semantic Self-Attention en-
coder (Figure 3B) only for blocks [1,3,5] of the
Modeling Layer that consists of 7 stacked encoder
blocks (indexed 0 to 6). Blocks [0,2,6] are set as
the base encoders that look at the entire context
(Figure 3A).

4 Data and Task Description

NarrativeQA We perform experiments with the
NarrativeQA (Kocisky et al., 2018) reading com-
prehension dataset. This dataset requires under-
standing of narrative stories (English) in order to
provide answers for a given question. It offers two

2Number of heads H=8 as in original QANet specification
if not specified otherwise.
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sub-tasks: (i) answering questions about a long
narrative summary (up to 1150 tokens) of a book
or movie, or (ii) answering questions about entire
books or movie scripts of lengths up to 110k to-
kens. We are focusing on the summary setting
(i) and refer to the summary as document or con-
text. The dataset contains 1572 documents in to-
tal, devided into Train (1102 docs, 32.7k ques-
tions), Dev (115 documents, 3.5k questions) and
Test (355 documents, 10.5k questions) sets.

Generative QA as Span Prediction An inter-
esting aspect of the NarrativeQA dataset is that in
contrast to most other RC datasets, the two an-
swers provided for each question are written by
human annotators. Therefore, answers typically
differ in form from the context passages that li-
cense them. To map the human-generated an-
swers to answer candidate spans from the context,
we use Rouge-L (Lin, 2004) to calculate a simi-
larity score between token n-grams from the pro-
vided answer and token n-grams from candidate
answers selected from the context (we select can-
didate spans of the same length as the given an-
swer). If two answer candidates have the same
Rouge-L score, we calculate the score between the
candidates’ surrounding tokens (window size: 15
tokens to the left and right) and the question to-
kens, and choose the candidate with the higher
score. We retrieve the best candidate answer span
for each answer and use the candidate with the
higher Rouge-L score as supervision for training.
We refer to this method for answer retrieval as Or-
acle (Ours).

5 Related Work

Reading Comprehension with Knowledge Re-
cent work has proposed different approaches for
integrating external knowledge into neural models
for the high-level downstream tasks reading com-
prehension (RC) and question answering (QA).
One line of work leverages external knowledge
from knowledge bases for RC (Xu et al., 2016;
Weissenborn et al., 2017a; Ostermann et al., 2018;
Mihaylov and Frank, 2018; Bauer et al., 2018;
Wang et al., 2018b) and QA (Das et al., 2017;
Sun et al., 2018; Tandon et al., 2018). These ap-
proaches make use of implicit (Weissenborn et al.,
2017a) or explicit (Mihaylov and Frank, 2018; Sun
et al., 2018; Bauer et al., 2018) attention-based
knowledge aggregation or leverage features from
knowledge base relations (Wang et al., 2018b).

Another line of work builds on linguistic knowl-
edge from downstream tasks, such as coreference
resolution (Dhingra et al., 2017) or notions of
co-occurring candidate mentions (De Cao et al.,
2019) and OpenIE triples (Khot et al., 2017)
into RNN-based encoders. Recently, several pre-
trained language models (Peters et al., 2018; Rad-
ford et al., 2018b; Devlin et al., 2019) have been
shown to incrementally boost the performance of
well-performing models for several short para-
graph reading comprehension tasks (Peters et al.,
2018; Devlin et al., 2019) and question answer-
ing (Sun et al., 2019), as well as many tasks from
the GLUE benchmark (Wang et al., 2018a). Ap-
proaches based on BERT (Devlin et al., 2019) usu-
ally perform best when the weights are fine-tuned
for the specific training task. Earlier, many papers
that do not use self-attention models or even neu-
ral methods have also tried to use semantic parse
labels (Yih et al., 2016), or annotations from up-
stream tasks (Khashabi et al., 2018b).

Self-Attention Models in NLP Vanilla self-
attention models (Vaswani et al., 2017) use po-
sitional encoding, sometimes combined with lo-
cal convolutions (Yu et al., 2018) to model the to-
ken order in text. Although they are scalable due
to their recurrence-free nature, most self-attention
models do not well work when trained with fixed-
length context, due to the fact that they often learn
global token positions observed during training,
rather than relative. To address this issue, Shaw
et al. (2018) proposes relative position encoding to
model the distance between tokens in the context.
Dai et al. (2019) address the problem of moving
beyond fixed-length context by adding recurrence
to the self-attention model. Dai et al. (2019) ar-
gue that the fixed-length segments used for lan-
guage modeling hurt the performance due to the
fact that they do not respect sentence or any other
semantic boundaries. In this work we also sup-
port the claim that the lack of semantic, and also
discourse boundaries is an issue, and therefore we
aim to introduce structured linguistic information
into the self-attention model. We hypothesize that
the lack of local discourse context is a problem for
answering narrative questions, where the answer is
contained inside the same sentence, or neighbour-
ing sentences and therefore, by offering discourse-
level semantic structure to the attention heads, of-
fer ways to restrict, or focus the model to wider or
narrower structures, depending on what is needed
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Model B-1 R-L
(Kocisky et al., 2018)

Human 44.43 57.02
Oracle (original) 54.14 59.92
Seq2seq (no context) † 15.89 13.15
ASR † 23.30 22.26
BiDAF 33.72 36.30

Previous work
BiAtt + MRU (Tay et al., 2018a) 36.55 41.44
DecaProp (Tay et al., 2018b) 44.35 44.69
MHPGM + NOIC (Bauer et al., 2018) † 43.63 44.16
RMR (Hu et al., 2018b) 48.40 51.50
RMR (Ens) (Hu et al., 2018b) 50.10 53.90
RMR + A2D (Hu et al., 2018b) 50.40 53.30

This work
Oracle (ours) 70.71 70.82
BiDAF 47.19 49.63
QANet 46.37 48.66
+ DR (Exp) 50.12 52.14
+ DR (Exp) EMA 51.16 53.26

Table 1: Results on the NarrativeQA Test set. Models
with † are generative, while the rest use span prediction.

for specific questions.
Self-attention architectures can be seen as graph

architectures (imagine the token (node) interac-
tions as adjacency matrix) and are applied to graph
problems (Veličković et al., 2018; Li et al., 2019).
Therefore, in very recent work Koncel-Kedziorski
et al. (2019) have used a self-attention encoder as
a graph encoder for text generation, in a dual en-
coder model. A dual-encoder model similar to
Koncel-Kedziorski et al. (2019) is suitable for a
setting where the input is knowledge from a graph
knowledge-base. For a text-based setting like ours,
where word order is important and the tokens are
part of semantic arguments, an approach that tries
to encode linguistic information in the same ar-
chitecture (Strubell et al., 2018) is more appropri-
ate. Therefore our method is most related to LISA
(Strubell et al., 2018), which uses joint multi-task
learning of POS and Dependency Parsing to inject
syntactic information for Semantic Role Labeling.
In contrast, we do not use multi-task learning, but
directly encode semantic information extracted by
pre-processing with existing tools.

NarrativeQA The summary setting of the Nar-
rativeQA dataset (Kocisky et al., 2018) has in
the past been addressed with attention mecha-
nisms by the following models: BiAtt + MRU
(Tay et al., 2018a) is similar to BiDAF (Seo et al.,
2017). It is bi-attentive (attends form context-to-
query and vice versa) but enhanced with a MRU
(Multi-Range Reasoning Units). MRU is a com-
positional encoder that splits the context tokens

Config

D
R

-E

D
R

-N
E

SR
L

C
or

ef

N
o

QANet (baseline) - - - - 8
DR (All) 2 2 - - 4
DR (Exp) 2 - - - 6
DR (NonE) - 2 - - 6
Coref - - - 3 5
SRL - - 3 - 5
SRL+ DR (Exp) 2 - 3 - 3
SRL + DR (NonE) - 2 3 - 3
SRL + DR (All) 2 2 3 - 1
SRL + DR (Exp) + Coref 2 - 3 1 2
SRL + DR (All) + Coref 2 2 3 1 4

Table 2: The number of attention heads by discourse-
semantic type. ‘No’ means that no linguistic annotation
types are provided (attends to all tokens).

into ranges (n-grams) of different sizes and com-
bines them in summed n-gram representations and
fully-connected layers. DecaProp (Tay et al.,
2018b) is a neural architecture for reading com-
prehension, that densely connects all pairwise lay-
ers, modeling relationships between passage and
query across all hierarchical levels. Bauer et al.
(2018) observed that some of the questions require
external commonsense knowledge and developed
MHPGM-NOIC - a seq2seq generative model with
a copy mechanism that also uses commonsense
knowledge and ELMo (Peters et al., 2018) con-
textual representations. Hu et al. (2018b) used an
implementation of Reinforced Mnemonic Reader
(RMR) (Hu et al., 2018a). They also proposed
RMR + A2D, a novel teacher-student attention dis-
tillation method to train a model to mirror the be-
havior of the ensemble model RMR (Ens).

6 Experiments and Results

In this section we describe the experiments and re-
sults of our proposed model in different configura-
tions. We compare the results of different models
using overall results (Table 1) on the dataset, but
also the performance for different question types
(Figure 4) and context sizes (Figure 5).

6.1 Overall Results

Table 1 compares our baselines and proposed
model to prior work. We report results for Bleu-
1, and Rouge-L scores. The first section lists re-
sults on the NarrativeQA dataset as reported in
Kocisky et al. (2018). Oracle (original) uses
the gold answers as queries to match a token se-
quence (with the answer length) in the context that
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Figure 4: Rouge-L performance per Question Type on the NarrativeQA Test set. The first two columns represent
Absolute values. The rest are improvements over the QANet baseline model (i) by BiDAF and (ii) configurations
of QANet with linguistic information. Question types with * have less than 100 instances in the Test set.

has the highest Rouge-L. In contrast, using Or-
acle (Ours), described in Section 4, we report a
+11 Rouge-L score improvement (Table 1: This
work). The Oracle performance in this setting is
important since the produced annotations are used
for training of the span-prediction systems, and is
considered upper-bound.3 Seq2Seq (no context) is
an encoder-decoder RNN model trained only on
the question. ASR is a version of the Attention
Sum Reader (Kadlec et al., 2016) implemented
as a pointer-generator that reads the question and
points to words in the context that are contained
in the answer. BiDAF is Bi-Directional Attention
Flow (Seo et al., 2017) trained either with the Or-
acle (original) or Oracle (ours). The models from
Previous Work are described in Section 5. In
the last section of Table 1 we present the results
of our experiments (This work). Here, BiDAF
and QANet are implementations available in the
AllenNLP framework (Gardner et al., 2018). In
the last two rows we give the results of QANet
extended with the proposed Discourse-Aware Se-

3The previous work that uses span-prediction models do
not report their Oracle model used for training supervision.

mantic Self-Attention, using intra-sentential, Ex-
plicit discourse relations (DR (Exp), EMA is Ex-
ponential Moving Average).

6.2 Fine-grained Evaluation

We further analyze the performance of different
configurations of our model by conducting fine-
grained evaluation in view of question types (Fig-
ure 4) and context length (Figure 5).

We define a range of system configurations us-
ing attention heads enhanced with different com-
binations of linguistic annotation types, includ-
ing Explicit (referred to as Exp or E) and Non-
Explicit (NonE, NE), Discourse Relations (Dis-
cRel, DR), Semantic Role Labeling (SRL), and
Coreference (Coref), and configurations without
any such additional information (No). We also
experiment with a setting where instead of us-
ing specific discourse relation types (such as Dis-
cRel Exp Cause Arg1), we only identify that a
token is part of any (NoSense) discourse rela-
tion (e.g., DiscRel Exp Arg1) or simply a multi-
sentence attention span Sent span 3 with labels
Sent1, Sent2, Sent3 for each sentence. This is
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Figure 5: Rouge-L performance by context length on the NarrativeQA Test set. The first two columns represent
Absolute values. The rest are improvements over the QANet baseline model (i) by BiDAF and (ii) different
configurations of QANet with linguistic information. Rows with * have less than 100 instances in the Test set.

to examine whether the type of discourse relation
is important or rather the attention scope (intra-
sentential, cross-sentence - 2, 3 neighbouring sen-
tences, full context).

Question Type Different question types might
profit from different linguistic annotation types.
We thus examine the performance of different
question types, and analyze how it correlates with
the presence of specific Semantic Self-Attention
signals. We classify the questions into question
types using a simple heuristic based on the ques-
tion words as an indicator of their type (How /
Where / Why / Who / What ...), and calculate the
average Rouge-L for each such questions type.
The resulting scores are displayed in Figure 4.
In the first two columns of the figure, we report
the Oracle score and the baseline (QANet) score.
In the remaining columns we report (i) the im-
provement over the QANet baseline of BiDAF,
and (ii) of our models with different combinations
of discourse-aware semantic self-attention. In the
first row we report the score for each of the models
on all questions. We observe that best perform-
ing models on all questions are the ones that in-
clude Explicit DR, and/or SRL. In terms of hard-
ness, how and why questions usually have the low-
est score. This not surprising since Oracle perfor-
mance is also low. For these type of questions, the
RNN-based encoder (BiDAF) and self-attention
with DR (Exp) or DR (NonE) perform best. Al-
most all models with additional linguistic informa-
tion improve over the baseline on when questions,
lead by the SRL+DR (Exp) and SRL + DR (All)
+ Coref. What questions are improved most by
DR (Exp) and SRL alone or when combined. Who
questions gain most from discourse relations and
all models that contain SRL.

Context Length In Figure 5 we present the
performance on documents of different lengths,
in number of tokens. All presented models are
trained on the examples from the Train set with
context up to 800 tokens. Again, the models DR
(Exp) and SRL+DR (Exp) show clear improve-
ment across all context lengths. It is clear that all
models show improvement over length 800-1000.
This supports our hypothesis that discourse infor-
mation is required for generalizing to longer con-
texts. One reason is that some of the questions can
be answered with a local context (one-two sen-
tences) which are better represented given short
discourse scope (one-three sentences) or long de-
pendencies given coreference.

In the evaluation of multiple model configu-
rations we notice that in some cases a single
discourse/semantic type (e.g. DR (Exp)) per-
forms better than in combination with others (e.g.
SRL+DR (Exp)). We hypothesize that the reason
is that the linguistic annotations work well in com-
bination with free No attention heads (see Table
2). Currently, we place multiple annotations on the
same Encoder Block which reduces the number of
free attention heads. For instance, for SRL+DR
(Exp), each knowledge-enhanced encoder block
has 3 SRL + 2 DR (Exp) + 3 No heads. In future
work we plan to use different annotation heads per
Encoder Block (EB): e.g., EB0 has 3 SRL + 5 No;
EB1 has 2 DR (Exp) + 6 No; etc.

Success and Failure Examples In Figures 6, 7,
8 we show examples of context4 and questions, to-
gether with the answers from human annotators
and some of the examined models.5 We provide

4The part that contains the correct answer.
5For easier reading, we color the gold, correct, and wrong

answers and underline the mentions of different characters.
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Context Although he terrifies the fairies when he first arrives , Peter quickly gains favour with them . He amuses them
with his human ways and agrees to play the panpipes at the fairy dances . Eventually , Queen Mab grants him
the wish of his heart , and he decides to return home to his mother .

Question After scaring the fairies, how does Peter win them over ?
Human 1: he agrees to play the panpipes at all of the fairy dances.; Human 2: He amuses them with his human ways
and plays the pipes at their dances.; Oracle: human ways and agrees to play the panpipes at the fairy dances ; QANet:
gains favour ; DR (Exp), DR (NE): quickly gains favour with them; Coref, SRL, SRL+DR(Exp): He amuses them
with his human ways and agrees to play the panpipes; SRL+DR(NE): He amuses them with his human ways and agrees
to play the panpipes at the fairy dances
Rationale: To find the correct answer we need to know that (i) ‘gains favor’ is a synonym to ‘win’ in this context
(commonsense); (ii) the following (2nd) sentence is the reason for the previous (1st) (DR - the model fails in this case)
(iii) ‘them’ are ‘the fairies’, ‘he’ is Peter (Coref)

Figure 6: Example of positive impact of SRL and Coref and negative impact from discourse relations (DR).

Context Jacob frequently visits Jeff and Kenny , who are serving time in a juvenile hall . Jacob initially threatens them
, until eventually Jeff commits suicide . Jacob befriends Kenny , soon learning he has an early release and is
illegally moving to New Mexico .

Question Why does Jeff committ suicide ?
Human 1: Jacob threatened them; Human 2: He is threatened by Jacob.; Oracle: site which he says is ; QANet: Jeff
and Kenny , who are serving time in a juvenile hall; DR (Exp), DR (NE), SRL, SRL+DR(Exp), SRL+DR(NE): Jacob
initially threatens them ,; Coref: Jacob initially threatens them , until eventually Jeff commits suicide . Jacob befriends
Kenny , soon learning he has an early release and is illegally moving to New Mexico
Rationale: To find the correct answer we need to understand that ‘until eventually’ suggests that the suicide of Jeff is
caused by Jacob threatening ‘them’ (DR) and that Jeff is part of ‘them’ (Coref).

Figure 7: Example of positive impact of SRL and Coref, and discourse relations (DR).

Context The four orphan children of the house , Edward , Humphrey , Alice and Edith , are believed to have died in the
flames . However , they are saved by Jacob Armitage , a local verderer , who hides them in his isolated cottage
and disguises them as his grandchildren . Under Armitage ’s guidance , the children from an aristocratic
lifestyle to that of simple foresters .

Question Who rescues the children from fire at Arnwood ?
Human 1, Human 2: Jacob Armitage; Oracle: Jacob Armitage; DR (Exp), DR (NE), Coref: Jacob Armitage; QANet,
SRL, SRL+DR(Exp): Pablo; SRL+DR(NE): Patience
Rationale: To find the correct answer we need to understand at least that ‘they’ are ‘the children’ (Coref) and ‘who did
what to whom’ in the context (SRL).

Figure 8: Example of positive impact of Coref and DR and negative impact from SRL.

a hypothetical rationale of what we would need to
answer the question. 6

7 Conclusion and Future Work

In this work we use linguistic annotations as a ba-
sis for a Discourse-Aware Semantic Self-Attention
encoder that we employ for reading comprehen-
sion on narrative texts.

The provided annotations of discourse relations,
events and their arguments as well as coreferring
mentions, are using available annotation tools.
Our empirical evaluation shows that discourse-
semantic annotations combined with self-attention
yields significant (+3.43 Rouge-L) improvement
over QANet’s token-based self-attention when ap-
plied to NarrativeQA reading comprehension. We
analyzed the impact of different semantic annota-

6 The examples are selected from NarrativeQA Test, in
such a way, that they depict the strength and weaknesses of
the different models, corresponding to the empirical evalua-
tion on Figure 4 and they fit in the space limit.

tion types on specific question types and context
regions. We find, for instance, that SRL greatly
improves who and when questions, and that dis-
course relations improve also the performance on
why and where questions. While all examined an-
notation types contribute, particularly strong and
constant gains are seen with intra-sentential DR
(all context ranges), followed by SRL (short to
mid-sized contexts). Coreference shows positive,
but weaker impact, mostly in mid-sized contexts.
A promising future direction would be to include
additional external knowledge such as common-
sense and world knowledge, and learn all annota-
tions jointly with the downstream task.
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Kleindienst. 2016. Text understanding with the at-
tention sum reader network. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
908–918. Association for Computational Linguis-
tics.

Lukasz Kaiser, Aidan N. Gomez, and François Chollet.
2017a. Depthwise separable convolutions for neural
machine translation. CoRR, abs/1706.03059.

Lukasz Kaiser, Aidan N. Gomez, Noam Shazeer,
Ashish Vaswani, Niki Parmar, Llion Jones, and
Jakob Uszkoreit. 2017b. One model to learn them
all. CoRR, abs/1706.05137.

https://doi.org/10.18653/v1/D18-1454
https://doi.org/10.18653/v1/D18-1454
http://www.aclweb.org/anthology/P16-1223
http://www.aclweb.org/anthology/P16-1223
https://doi.org/10.18653/v1/P17-1171
https://doi.org/10.18653/v1/P17-1171
http://arxiv.org/abs/1610.02357
http://arxiv.org/abs/1610.02357
https://www.aclweb.org/anthology/P19-1285
https://www.aclweb.org/anthology/P19-1285
https://doi.org/10.18653/v1/P17-2057
https://doi.org/10.18653/v1/P17-2057
https://doi.org/10.18653/v1/P17-2057
https://doi.org/10.18653/v1/N19-1240
https://doi.org/10.18653/v1/N19-1240
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/W18-2501
https://doi.org/10.18653/v1/W18-2501
https://doi.org/10.18653/v1/P17-1044
https://doi.org/10.18653/v1/P17-1044
https://doi.org/10.24963/ijcai.2018/570
https://doi.org/10.24963/ijcai.2018/570
https://doi.org/10.24963/ijcai.2018/570
https://www.aclweb.org/anthology/D18-1232
https://www.aclweb.org/anthology/D18-1232
http://aclweb.org/anthology/P17-1147
http://aclweb.org/anthology/P17-1147
http://aclweb.org/anthology/P17-1147
http://www.aclweb.org/anthology/P16-1086
http://www.aclweb.org/anthology/P16-1086
http://arxiv.org/abs/1706.03059
http://arxiv.org/abs/1706.03059
http://arxiv.org/abs/1706.05137
http://arxiv.org/abs/1706.05137


2551

Daniel Khashabi, Tushar Khot, Ashish Sabharwal, and
Dan Roth. 2018a. Question Answering as Global
Reasoning over Semantic Abstractions. In AAAI.

Daniel Khashabi, Tushar Khot, Ashutosh Sabharwal,
and Dan Roth. 2018b. Question answering as global
reasoning over semantic abstractions. In AAAI.

Tushar Khot, Ashish Sabharwal, and Peter Clark. 2017.
Answering complex questions using open informa-
tion extraction. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 311–316.

Diederik P. Kingma and Jimmy Lei Ba. 2015. Adam:
a Method for Stochastic Optimization. Inter-
national Conference on Learning Representations
2015, pages 1–15.

Tomas Kocisky, Jonathan Schwarz, Phil Blunsom,
Chris Dyer, Karl Moritz Hermann, Gabor Melis, and
Edward Grefenstette. 2018. The narrativeqa reading
comprehension challenge. Transactions of the Asso-
ciation for Computational Linguistics, 6:317–328.

Rik Koncel-Kedziorski, Dhanush Bekal, Yi Luan,
Mirella Lapata, and Hannaneh Hajishirzi. 2019.
Text Generation from Knowledge Graphs with
Graph Transformers. pages 2284–2293.

Yuan Li, Xiaodan Liang, Zhiting Hu, Yinbo Chen, and
Eric P. Xing. 2019. Graph transformer.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summa-
rization Branches Out: Proceedings of the ACL-04
Workshop, pages 74–81, Barcelona, Spain.

Inderjeet Mani. 2012. Computational Modeling of
Narrative, volume 5.

Todor Mihaylov and Anette Frank. 2016. Discourse re-
lation sense classification using cross-argument se-
mantic similarity based on word embeddings. In
Proceedings of the Twentieth Conference on Compu-
tational Natural Language Learning - Shared Task.

Todor Mihaylov and Anette Frank. 2018. Knowledge-
able reader: Enhancing cloze-style reading compre-
hension with external commonsense knowledge. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics, pages 821–
832, Melbourne, Australia.

Takeshi Onishi, Hai Wang, Mohit Bansal, Kevin Gim-
pel, and David McAllester. 2016. Who did what:
A large-scale person-centered cloze dataset. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2230–
2235, Austin, Texas. Association for Computational
Linguistics.

Simon Ostermann, Ashutosh Modi, Michael Roth, Ste-
fan Thater, and Manfred Pinkal. 2018. Mcscript:
A novel dataset for assessing machine comprehen-
sion using script knowledge. In Proceedings of

the Eleventh International Conference on Language
Resources and Evaluation (LREC-2018). European
Language Resource Association.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The proposition bank: An annotated cor-
pus of semantic roles. Computational Linguistics,
31(1):71–106.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana.

Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Milt-
sakaki, Livio Robaldo, Aravind Joshi, and Bonnie
Webber. 2008. The Penn Discourse treebank 2.0.
In Proceedings of the Sixth International Conference
on Language Resources and Evaluation (LREC-08),
Marrakech, Morocco.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018a. GPT: Improving Language
Understanding by Generative Pre-Training. arXiv,
pages 1–12.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018b. Improving Language Under-
standing by Generative Pre-Training.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Matthew Richardson, Christopher J.C. Burges, and
Erin Renshaw. 2013. MCTest: A challenge dataset
for the open-domain machine comprehension of
text. In Proceedings of the 2013 Conference on Em-
pirical Methods in Natural Language Processing,
pages 193–203, Seattle, Washington, USA. Associ-
ation for Computational Linguistics.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hananneh Hajishirzi. 2017. Bi-Directional Atten-
tion Flow for Machine Comprehension. In Proceed-
ings of International Conference of Learning Repre-
sentations 2017, pages 1–12.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani.
2018. Self-attention with relative position represen-
tations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 464–468,
New Orleans, Louisiana.

https://doi.org/10.18653/v1/P17-2049
https://doi.org/10.18653/v1/P17-2049
http://aclweb.org/anthology/Q18-1023
http://aclweb.org/anthology/Q18-1023
https://doi.org/10.18653/v1/N19-1238
https://doi.org/10.18653/v1/N19-1238
https://openreview.net/forum?id=HJei-2RcK7
https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013
https://doi.org/10.2200/S00459ED1V01Y201212HLT018
https://doi.org/10.2200/S00459ED1V01Y201212HLT018
https://doi.org/10.18653/v1/P18-1076
https://doi.org/10.18653/v1/P18-1076
https://doi.org/10.18653/v1/P18-1076
https://aclweb.org/anthology/D16-1241
https://aclweb.org/anthology/D16-1241
http://aclweb.org/anthology/L18-1564
http://aclweb.org/anthology/L18-1564
http://aclweb.org/anthology/L18-1564
https://doi.org/10.1162/0891201053630264
https://doi.org/10.1162/0891201053630264
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.1093/aob/mcp031
https://doi.org/10.1093/aob/mcp031
https://aclweb.org/anthology/D16-1264
https://aclweb.org/anthology/D16-1264
http://www.aclweb.org/anthology/D13-1020
http://www.aclweb.org/anthology/D13-1020
http://www.aclweb.org/anthology/D13-1020
https://doi.org/10.18653/v1/N18-2074
https://doi.org/10.18653/v1/N18-2074


2552

Linfeng Song, Zhiguo Wang, Mo Yu, Yue Zhang,
Radu Florian, and Daniel Gildea. 2018. Exploring
Graph-structured Passage Representation for Multi-
hop Reading Comprehension with Graph Neural
Networks.

Emma Strubell, Patrick Verga, Daniel Andor,
David Weiss, and Andrew McCallum. 2018.
Linguistically-informed self-attention for semantic
role labeling. In Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 5027–5038.

Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn
Mazaitis, Ruslan Salakhutdinov, and William Co-
hen. 2018. Open domain question answering using
early fusion of knowledge bases and text. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 4231–
4242.

Kai Sun, Dian Yu, Dong Yu, and Claire Cardie. 2019.
Improving machine reading comprehension with
general reading strategies. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), pages 2633–2643, Minneapolis, Min-
nesota.

Niket Tandon, Bhavana Dalvi, Joel Grus, Wen-tau Yih,
Antoine Bosselut, and Peter Clark. 2018. Reasoning
about actions and state changes by injecting com-
monsense knowledge. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 57–66.

Yi Tay, Anh Tuan Luu, and Siu Cheung Hui. 2018a.
Multi-granular sequence encoding via dilated com-
positional units for reading comprehension. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2141–
2151, Brussels, Belgium. Association for Computa-
tional Linguistics.

Yi Tay, Luu Anh Tuan, Siu Cheung Hui, and Jian
Su. 2018b. Densely connected attention propaga-
tion for reading comprehension. In Proceedings of
the 32Nd International Conference on Neural Infor-
mation Processing Systems, NIPS’18, pages 4911–
4922.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. In Nips.
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