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Abstract
We tackle the task of question generation over
knowledge bases. Conventional methods for
this task neglect two crucial research issues:
1) the given predicate needs to be expressed;
2) the answer to the generated question needs
to be definitive. In this paper, we strive toward
the above two issues via incorporating diversi-
fied contexts and answer-aware loss. Specif-
ically, we propose a neural encoder-decoder
model with multi-level copy mechanisms to
generate such questions. Furthermore, the an-
swer aware loss is introduced to make generat-
ed questions corresponding to more definitive
answers. Experiments demonstrate that our
model achieves state-of-the-art performance.
Meanwhile, such generated question can ex-
press the given predicate and correspond to a
definitive answer.

1 Introduction

Question Generation over Knowledge Bases (K-
BQG) aims at generating natural language ques-
tions for the corresponding facts on KBs, and it
can benefit some real applications. Firstly, K-
BQG can automatically annotate question answer-
ing (QA) datasets. Secondly, the generated ques-
tions and answers will be able to augment the
training data for QA systems. More important-
ly, KBQG can improve the ability of machines
to actively ask questions on human-machine con-
versations (Duan et al., 2017; Sun et al., 2018).
Therefore, this task has attracted more attention in
recent years (Serban et al., 2016; Elsahar et al.,
2018).

Specifically, KBQG is the task of generating
natural language questions according to the in-
put facts from a knowledge base with triplet form,
like <subject, predicate, object>. For example,
as illustrated in Figure 1, KBQG aims at gener-
ating a question “Which city is Statue of Liber-
ty located in?” (Q3) for the input factual triplet

Input <Statue of Liberty, location/containedby, New York City>

Output Matching
Predicate

Definite 
Answer

Question

Q1 - Who created the Statue of Liberty?

Q2 Where is Statue of Liberty in?

Q3 Which city is Statue of Liberty located in?

Figure 1: Examples of KBQG. We aims at generating
questions like Q3 which expresses (matches) the given
predicate and refers to a definitive answer.

“<Statue of Liberty, location/containedby1, New
York City>”. Here, the generated question is
associated to the subject “Statue of Liberty” and
the predicate fb:location/containedby)
of the input fact, and the answer corresponds to
the object “New York City”.

As depicted by Serban et al. (2016), KBQG is
required to transduce the triplet fact into a ques-
tion about the subject and predicate, where the ob-
ject is the correct answer. Therefore, it is a key is-
sue for KBQG to correctly understand the knowl-
edge symbols (subject, predicate and object in the
triplet fact) and then generate corresponding text
descriptions. More recently, some researches have
striven toward this task, where the behind intuition
is to construct implicit associations between facts
and texts. Specifically, Serban et al. (2016) de-
signed an encoder-decoder architecture to gener-
ate questions from structured triplet facts. In or-
der to improve the generalization for KBQG, El-
sahar et al. (2018) utilized extra contexts as input
via distant supervisions (Mintz et al., 2009), then
a decoder is equipped with attention and part-of-
speech (POS) copy mechanism to generate ques-
tions. Finally, this model obtained significant im-
provements. Nevertheless, we observe that there
are still two important research issues (RIs) which
are not processed well or even neglected.

1We omit the domain of the predicate for sake of brevity.
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RI-1: The generated question is required to ex-
press the given predicate in the fact. For example
in Figure 1, Q1 does not express (match) the pred-
icate (fb:location/containedby) while it
is expressed in Q2 and Q3. Previous work (Elsa-
har et al., 2018) usually obtained predicate textu-
al contexts through distant supervision. However,
the distant supervision is noisy or even wrong (e.g.
“X is the husband of Y” is the relational pattern
for the predicate fb:marriage/spouse, so it
is wrong when “X” is a woman). Furthermore,
many predicates in the KB have no predicate con-
texts. We make statistic in the resources released
by Elsahar et al. (2018), and find that only 44%
predicates have predicate textual context2. There-
fore, it is prone to generate error questions from
such without-context predicates.

RI-2: The generated question is required to
contain a definitive answer. A definitive answer
means that one question only associates with a de-
terminate answer rather than alternative answers.
As an example in Figure 1, Q2 may contain am-
biguous answers since it does not express the re-
fined answer type. As a result, different answer-
s including “United State”, “New York City”, etc.
may be correct. In contrast, Q3 refers to a defini-
tive answer (the object “New York City” in the
given fact) by restraining the answer type to a c-
ity. We believe that Q3, which expresses the given
predicate and refers to a definitive answer, is a bet-
ter question than Q1 and Q2. In previous work, El-
sahar et al. (2018) only regarded a most frequently
mentioned entity type as the textual context for the
subject or object in the triplet. In fact, most answer
entities have multiple types, where the most fre-
quently mentioned type tends to be universal (e.g.
a broad type “administrative region” rather than a
refined type “US state” for the entity “New York”).
Therefore, generated questions from Elsahar et al.
(2018) may be difficult to contain definitive an-
swers.

To address the aforementioned two issues, we
exploit more diversified contexts for the given
facts as textual contexts in an encoder-decoder
model. Specifically, besides using predicate con-
texts from the distant supervision utilized by El-
sahar et al. (2018), we further leverage the do-
main, range and even topic for the given predi-
cate as contexts, which are off-the-shelf in KB-

2We map the “prop text evidence.csv” file to the “proper-
ty.vocab” file in Elsahar et al. (2018)

s (e.g. the range and the topic for the predi-
cate fb:location/containedby are “loca-
tion” and “containedby”, respectively1). There-
fore, 100% predicates (rather than 44%2 of those
in Elsahar et al.) have contexts. Furthermore, in
addition to the most frequently mentioned enti-
ty type as contexts used by Elsahar et al. (2018),
we leverage the type that best describes the en-
tity as contexts (e.g. a refined entity type3 “US
state” combines a broad type “administrative re-
gion” for the entity “New York”), which is help-
ful to refine the entity information. Finally, in or-
der to make full use of these contexts, we propose
context-augmented fact encoder and multi-level
copy mechanism (KB copy and context copy) to
integrate diversified contexts, where the multi-
level copy mechanism can copy from KB and tex-
tual contexts simultaneously. For the purpose of
further making generated questions correspond to
definitive answers, we propose the answer-aware
loss by optimizing the cross-entropy between the
generated question and answer type words, which
is beneficial to generate precise questions.

We conduct experiments on an open public
dataset. Experimental results demonstrate that the
proposed model using diversified textual contexts
outperforms strong baselines (+4.5 BLEU4 score).
Besides, it can further increase the BLEU score
(+5.16 BLEU4 score) and produce questions as-
sociated with more definitive answers by incor-
porating answer-aware loss. Human evaluations
complement that our model can express the given
predicate more precisely.

In brief, our main contributions are as follows:
(1) We leverage diversified contexts and multi-

level copy mechanism to alleviate the issue of in-
correct predicate expression in traditional method-
s.

(2) We propose an answer-aware loss to tackle
the issue that conventional methods can not gener-
ate questions with definitive answers.

(3) Experiments demonstrate that our mod-
el achieves state-of-the-art performance. Mean-
while, such generated question can express the
given predicate and refer to a definitive answer.

2 Task Description

We leverage textual contexts concerned with the
triplet fact to generate questions over KBs. The

3We obtain such representative entity types through the
predicate fb:topic/notable types in freebase.
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Figure 2: Overall structure of the proposed model for KBQG. A context encoder is firstly employed to encode
each textual context (Sec. 3.1), where “Diversified Types” represents the subject (object) context, and “DS pattern”
denotes the relational pattern from distant supervisions. At the same time, a fact encoder transforms the fact into
low-dimensional representations (Sec. 3.2). The above two encoders are aggregated by the context-augmented
fact encoder (Sec. 3.3). Finally, the aggregated representations are fed to the decoder (Sec. 3.4), where the
decoder leverages multi-level copy mechanism (KB copy and context copy) to generate target question words.

task of KBQG can be formalized as follows:

P (Y |F ) =
∏|Y |

t=1
P (yt|y<t, F, C) (1)

where F = (s, p, o) represents the subject (s),
predicate (p) and object (o) of the input triplet,
C = {xs, xp, xo} denotes a set of additional textu-
al contexts, Y = (y1, y2, ..., y|Y |) is the generated
question, y<t represents all previously generated
question words before time step t.

3 Methodology

Our model extends the encoder-decoder architec-
ture (Cho et al., 2014b) with three encoding mod-
ules and two copy mechanisms in the decoder. The
model overview is shown in Figure 2 along with
its caption. It should be emphasized that we addi-
tionally design an answer-aware loss to make the
generated question associated with a definitive an-
swer (Sec. 3.5.2).

3.1 Context Encoder

Inspired by the great success of transformer
(Vaswani et al., 2017) in sequence modeling (Shen
et al., 2018), we adopt a transformer encoder
to encode each textual context separately. Take
the subject context xs as an example, xs =
(xs1, x

s
2, ..., x

s
|s|) is concatenated from diversified

types for the subject, and xsi is the i-th token in

the subject context, |s| stands for the length of the
subject context. Firstly, xs is mapped into a query
matrix Q, where Q is constructed by summing
the corresponding token embeddings and segmen-
t embeddings. Similar to BERT (Devlin et al.,
2019), segment embeddings are the same for to-
kens of xs but different for that of xp (predicate
context) or xo (object context). Based on the query
matrix, transformer encoder works as follows:

Qj = QWQ
j ,Kj = KWK

j ,Vj = VWV
j (2)

headj = softmax(QjKT
j /

√
d/h)Vj (3)

Hs = Concat(head1, head2, ..., headh)W0 (4)

Ns = LayerNorm(Q + Hs) (5)

Cs = max(0,NsW1 + b1)W2 + b2 (6)

where K and V are the key matrix and value ma-
trix, respectively. It is called self-attention because
K and V are equal to the query matrix Q ∈ R|s|,d
in the encoding stage, where d represents the num-
ber of hidden units. And h denotes the number
of the heads in multi-head attention mechanism
of the transformer encoder. It first projects the
input matrixes (Q, K, V) into subspaces h times
mapped by different linear projections WQ

j , WK
j ,

WV
j ∈ R|s|,d/h (j = 1, 2, ..., h) in Equation 2.

And then h projections perform the scaled dot-
product attention to obtain the representation of
each head in parallel (Equation 3). Representa-
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tions for all parallel heads are concatenated togeth-
er in Equation 4. After residual connection, layer
normalization (Equation 5) and feed forward oper-
ation (Equation 6), we can obtain the subject con-
text matrix Cs = {cs1, cs2, ..., cs|s|} ∈ R|s|,d.

Similarly, Cp and Co are obtained from the
same transformer encoder for the predicate and
object, respectively.

3.2 Fact Encoder
In contrast to general Sequence-to-Sequence (Se-
q2Seq) model (Sutskever et al., 2014), the input
fact is not a word sequence but instead a structured
triplet F = (s, p, o). We employ a fact encoder to
transform each atom in the fact into a fixed em-
bedding, and the embedding is obtained from a
KB embedding matrix. For example, the subject
embedding es ∈ Rd is looked up from the KB em-
bedding matrix Ef ∈ Rk,d, where k represents the
size of KB vocabulary, and the size of KB embed-
ding is equal to the number of hidden units (d) in
Equation 3. Similarly, the predicate embedding ep
and the object embedding eo are mapped from the
KB embedding matrix Ef , where Ef is pre-trained
using TransE (Bordes et al., 2013) to capture much
more fact information in previous work (Elsahar
et al., 2018). In our model, Ef can be pre-trained
or randomly initiated (Details in Sec. 4.7.1).

3.3 Context-Augmented Fact Encoder
In order to combine both the context encoder in-
formation and the fact encoder information, we
propose a context-augmented fact encoder which
applies the gated fusion unit (Gong and Bowman,
2018) to integrate the context matrix and the fact
embedding. For example, the subject context ma-
trix Cs = {cs1, cs2, ..., cs|s|} and the subject embed-
ding vector es are integrated by the following gat-
ed fusion:

f = tanh(Wf [cs, es]) (7)

g = sigmoid(Wg[cs, es]) (8)

hs = g � f + (1− g) � es (9)

where cs is an attentive vector from es to Cs,
which is similar to Zhao et al. (2018). The at-
tentive vector cs is combined with original subject
embedding es as a new enhanced representation f
(Equation 7). And then a learnable gate vector, g
(Equation 8), controls the information from cs and
es to the final augmented subject vector hs ∈ Rd
(Equation 9), where � denotes the element-wise

multiplication. Similarly, the augmented predicate
vector hp and the augmented object vector ho are
calculated in the same way. Finally, the context-
augmented fact representation Hf ∈ R3,d is the
concatenation of augmented vectors as follows:

Hf = [hs;hp;ho] (10)

3.4 Decoder

The decoder aims at generating a question word
sequence. As shown in Figure 2, we also exploit
the transformer as the basic block in our decoder.
Then we use a multi-level copy mechanism (K-
B copy and context copy), which allows copying
from KBs and textual contexts.

Specifically, we first map the input of the de-
coder into an embedding representation by look-
ing up word embedding matrix, then we use posi-
tion embedding (Vaswani et al., 2017) to enhance
sequential information. Compared with the trans-
former encoder in Sec. 3.1, transformer decoder
has an extra sub-layer: a fact multi-head atten-
tion layer, which is similar to Equation 2-6, where
the query matrix is initiated with previous decoder
sub-layer while both the key matrix and the value
matrix are the augmented fact representation Hf .
After feedforward and multiple transformer layer-
s, we obtain the decoder state st at time step t, and
then st could be leveraged to generate the target
question sequence word by word.

As depicted in Figure 2, we propose multi-level
copy mechanism to generate question words. At
each time step t, given decoder state st together
with input fact F , textual contexts C and vocab-
ulary V , the probabilistic function for generating
any target question word yt is calculated as:

P (yt|st,yt−1,F,C)=pgenvPgenv(yt|st,V )+

pcpkbPcpkb(yt|st,F )+pcpctxPcpctx(yt|st,C)
(11)

pgenv, pcpkb, pcpctx=softmax([st, yt−1]) (12)

where genv, cpkb and cpctx denote the vocab
generation mode, the KB copy mode and the con-
text copy mode, respectively. In order to control
the balance among different modes, we employ a
3-dimensional switch probability in Equation 12,
where yt−1 is the embedding of previous gener-
ated word, P·(·|·) indicates the probabilistic score
function for generated target word of each mode.
In the three probability score functions, Pvocab is
typically performed by a softmax classifier over
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a fixed vocabulary V based on the word embed-
ding similarity, and the details of Pcpkb and Pcpctx
are in the following.

3.4.1 KB Copy

Previous study found that most questions contain
the subject name or its aligns in SimpleQuestion
(Petrochuk and Zettlemoyer, 2018). However, the
predicate name and object name hardly appear in
the question. Therefore, we only copy the subjec-
t name in the KB copy, where Pcpkb(yt|st, f), the
probability of copying the subject name, is calcu-
lated by a neural network function with a multi-
layer perceptron (MLP) projected from st.

3.4.2 Context Copy

Elsahar et al. (2018) demonstrated the effective-
ness of POS copy for the context. However, such
a copy mechanism heavily relies on POS tagging.
Inspired by the CopyNet (Gu et al., 2016), we di-
rectly copy words in the textual contexts C, and
it does not rely on any POS tagging. Specifically,
the input sequence χ for the context copy is the
concatenation of all words in the textual contexts
C. Unfortunately, χ is prone to contain repeated
words because it consists of rich contexts for sub-
ject, predicate and object. The repeated words in
the input sequence tend to cause repetition prob-
lems in output sequences (Tu et al., 2016). We
adopt the maxout pointer (Zhao et al., 2018) to
address the repetition problem. Instead of sum-
ming all the probabilistic scores for repeated input
words, we limit the probabilistic score of repeated
words to their maximum score as Equation 13:

Pcpctx(yt|.)=

{
max

m,where χm=yt
sct,m yt∈χ

0 otherwise
(13)

where χm represents the m-th token in the input
context sequence χ, sct,m is the probabilistic s-
core of generating the token χm at time step t, and
sct,m is calculated by a softmax function over χ.

3.5 Learning

3.5.1 Question-Aware Loss

It is totally differential for our model to obtain
question words, and it can be optimized in an end-
to-end manner by back-propagation. Given the in-
put fact F , additional textual context C and target
question word sequence Y , the object function is

to optimize the following negative log-likelihood:

Lques loss=
−1
|Y |

|Y |∑
t=1

log[P (yt|st,yt−1,F,C)] (14)

The question-aware loss Lques loss does not re-
quire any additional labels to optimize because the
three modes share a same softmax classifier to
keep a balance (Equation 12), and they can learn
to coordinate each other by minimizing Lques loss.

3.5.2 Answer-Aware loss
It is able to generate questions similar to the la-
beled questions by optimizing the question-aware
loss Lques loss. However, there is an ambigu-
ous problem in the annotated questions where the
questions have alternative answers rather than de-
terminate answers (Petrochuk and Zettlemoyer,
2018). In order to make generated questions cor-
respond to definitive answers, we propose a novel
answer-aware loss. By answer-aware loss, we aim
at generating an answer type word in the question,
which contributes to generating a question word
matching the answer type. Formally, the answer-
aware loss is in the following:

Lans loss = min
an,an∈A

min
yt,yt∈Y

Han,yt (15)

where A = {an}|A|n=1 is a set of answer type
words. We treat object type words as the an-
swer type words because the object is the answer.
Han,yt denotes the cross entropy between the an-
swer type word an and the generated question
word yt. Finally, the minimum cross entropy is
regarded as the answer-aware loss Lans loss. Op-
timizing Lans loss means that the model aims at
generating an answer type word in the generated
question sequence. For example, the model tend-
s to generate Q3 rather than Q2 in Figure 1, be-
cause Q3 contains an answer type word—“city”.
Similarly, Lans loss could be optimized in an end-
to-end manner, and it can integrate Lques loss by a
weight coefficient λ to the total loss as follows:

Ltotal loss = Lques loss + λLans loss (16)

4 Experiment

4.1 Experimental Settings
4.1.1 Experimental Data Details
We conduct experiments on the SimpleQues-
tion dataset (Bordes et al., 2015), and there
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are 75910/10845/21687 question answering pairs
(QA-pairs) for training/validation/test. In order to
obtain diversified contexts, we additionally em-
ploy domain, range and topic of the predicate to
improve the coverage of predicate contexts. In this
way, 100% predicates (rather than 44%2 of those
in Elsahar et al.) have contexts. For the subject
and object context, we combine the most frequent-
ly mentioned entity type (Elsahar et al., 2018) with
the type that best describe the entity3. The KB
copy needs subject names as the copy source, and
we map entities with their names similar to those
in Mohammed et al. (2018). The data details are in
Appendix A and submitted Supplementary Data.

4.1.2 Evaluation Metrics
Following (Serban et al., 2016; Elsahar et al.,
2018), we adopt some word-overlap based met-
rics (WBMs) for natural language generation in-
cluding BLEU-4 (Papineni et al., 2002), ROUGEL

(Lin, 2004) and METEOR (Denkowski and Lavie,
2014). However, such metrics still suffer from
some limitations (Novikova et al., 2017). Cru-
cially, it might be difficult for them to measure
whether generated questions that express the given
predicate and refer to definitive answers. To better
evaluate generated questions, we run two further
evaluations as follows.

(1) Predicate identification: Following Mo-
hammed et al. (2018), we employ annotators to
judge whether the generated question expresses
the given predicate in the fact or not. The score for
predicate identification is the percentage of gener-
ated questions that express the given predicate.

(2) Answer coverage: We define a novel met-
ric called answer coverage to identify whether the
generated question refers to a definitive answer.
Specifically, answer coverage is obtained by auto-
matically calculating the percentage of questions
that contain answer type words, and answer type
words are object contexts (entity types for the ob-
ject are regarded as answer type words).

Furthermore, it is hard to automatically evaluate
the naturalness of generated questions. Following
Mohammed et al. (2018), we adopt human evalu-
ation to measure the naturalness by a score of 0-5.

4.1.3 Comparison with State-of-the-arts
We compare our model with following methods.

(1) Template: A baseline in Serban et al. (2016),
it randomly chooses a candidate fact Fc in the
training data to generate the question, where Fc

shares the same predicate with the input fact.
(2) Serban et al. (2016): We compare our meth-

ods with the single placeholder model, which per-
forms best in Serban et al. (2016).

(3) Elsahar et al. (2018): We compare our
methods with the model utilizing copy actions, the
best performing model in Elsahar et al. (2018).
Although this model is designed to a zero-shot
setting (for unseen predicates and entity type), it
has good abilities to generate better questions (on
known or unknown predicates and entity type-
s) represented in the additional context input and
SPO copy mechanism.

4.1.4 Implementation Details
To make our model comparable to the compari-
son methods, we keep most parameter values the
same as Elsahar et al. (2018). We utilize RMSProp
algorithm with a decreasing learning rate (0.001),
batch size (200) to optimize the model. The size
of KB embeddings is 200, and KB embeddings are
pre-trained by TransE (Bordes et al., 2013). The
word embeddings are initialized by the pre-trained
Glove word vectors4 with 200 dimensions. In the
transformer, we set the hidden units d to 200, and
we employ 4 paralleled attention head and a stack
of 5 identical layers. We set the weight (λ) of the
answer-aware loss to 0.2.

4.2 Overall Comparisons

Model BLEU4 ROUGEL METEOR
Template 31.36 * 33.12

Serban et al. (2016) 33.32 * 35.38
Elsahar et al. (2018) 36.56 58.09 34.41

Our Model 41.09 68.68 47.75
Our Modelans loss 41.72 69.31 48.13

Table 1: Overall comparisons on the test data, where
“ans loss” represents answer-aware loss.

In Table 1, we compare our model with the typ-
ical baselines on word-overlap based metrics. It is
evident that our model is remarkably better than
baselines on all metrics, where the BLEU4 score
increases 4.53 compared with the strongest base-
line (Elsahar et al., 2018). Especially, incorporat-
ing answer-aware loss (the last line in Table 1) fur-
ther improves the performance (+5.16 BLEU4).

4.3 Performances on Predicate Identification
To evaluate the ability of our model on predicate
identification, we sample 100 generated question-

4http://nlp.stanford.edu/data/glove.6B.zip
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Model Pred. Identification
Serban et al. (2016) 53.5
Elsahar et al. (2018) 71.5
Our Modelans loss 75.5

Table 2: Performances on predicate identification.

s from each model, and then two annotators are
employed to judge whether the generated ques-
tion expresses the given predicate. The Kappa for
inter-annotator statistics is 0.611, and p-value for
all scores is less than 0.005. As shown in Table
2, we can see that our model has a significant im-
provement in the predicate identification.

4.4 Performances on Answer Coverage —
The Effectiveness of Answer-Aware Loss

Model λ BLEU4 Anscov
Elsahar et al. (2018) 0 36.56 59.49

Our Model 0 41.09 61.65
Our Modelans loss 0.05 41.55 62.27
Our Modelans loss 0.2 41.72 64.23
Our Modelans loss 0.5 41.57 65.50
Our Modelans loss 1.0 41.34 65.25

Table 3: Performances on answer coverage, where
“Anscov” denotes the metric of answer coverage. “λ”
is the weight of the answer-aware loss in Equation 16.

Table 3 reports performances on BLUE4 and
answer coverage (Anscov). We can obtain that:

(1) When answer-aware loss is not leveraged
(λ = 0), advantages of performance are obvious in
our model. Note that the answer coverage is 55.23
on the human-labeled questions. Although our
model does not explicitly capture answer informa-
tion, it still obtains a high answer coverage, which
may be because our diversified contexts contain
rich answer type words.

(2) To demonstrate the effectiveness of answer-
aware loss, we set the weight of answer-aware loss
(λ) to 0.05/0.2/0.5/1.0 (the last four lines in Table
3). It can be seen that our model, incorporating
answer-aware loss, has a significant improvement
on answer coverage while there is no performance
degradation on BLEU4 compared with λ = 0,
which indicates that answer-aware loss contributes
to generating better questions. Especially, the gen-
erated questions are more precise because they re-
fer to more definitive answers with high Anscov.

(3) It tends to correspond to alternative answers
(object in the triplet fact) for some predicates such
as fb:location/containedby, while other

predicates (e.g. fb:person/gender) may re-
fer to a definitive answer. To investigate our mod-
el, by incorporating answer-aware loss, does not
generate an answer type word in a mandatory way,
we found 20.5% predicate corresponds to the gen-
erated questions without answer type words when
our model obtains the highest Anscov (λ=0.5), and
it is very close to 21.7% for the one in human-
annotated questions. This demonstrates that the
answer-aware loss does not force all predicates to
generate questions with answer type words.

4.5 Ablation Study

Model BLEU4 ROUGEL METEOR
Our Modelans loss 41.72 69.31 48.13
w/o context copy 41.27 68.36 47.54

w/o KB copy 41.04 68.66 47.72
w/o answer-aware loss 41.09 68.68 47.75
w/o diversified contexts 40.53 68.52 47.66

Table 4: Ablation study by removing the main com-
ponents, where “w/o” means without, and “w/o diver-
sified contexts” represents that diversified contexts are
replaced by contexts used in Elsahar et al. (2018).

In order to validate the effectiveness of model
components, we remove some important compo-
nents in our model, including context copy, KB
copy, answer-aware loss and diversified contexts.
The results are shown in Table 4. We can see that
removing any component brings performance de-
cline on all metrics. It demonstrates that all these
components are useful. Specifically, the last line
in Table 4, replacing diversified contexts with con-
texts used in Elsahar et al. (2018), has more obvi-
ous performance degradation.

4.6 Performances on Naturalness

Model Naturalness
Serban et al. (2016) 2.96
Elsahar et al. (2018) 2.23
Our Modelans loss 3.56

Table 5: Performances on naturalness.

Human evaluation is important for generated
questions. Following Elsahar et al. (2018), we
sample 100 questions from each system, and then
two annotators measure the naturalness by a score
of 0-5. The Kappa coefficient for inter-annotator is
0.629, and p-value for all scores is less than 0.005.
As shown in Table 5, Elsahar et al. (2018) perform
poorly on naturalness, while our model obtains the
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highest score on naturalness, which demonstrates
our model can deliver more natural questions than
baselines.

4.7 Discussion

4.7.1 Without Pre-trained KB Embeddings

Model TransE BLEU4 ROUGEL METEOR
Elsahar et al. (2018) True 36.56 58.09 34.41
Elsahar et al. (2018) False 33.67 55.57 33.20
Our Modelans loss True 41.72 69.31 48.13
Our Modelans loss False 41.55 68.59 47.52

Table 6: Performances of whether using the pre-trained
KB embedding by transE.

Pre-trained KB embeddings may provide rich
structured relational information among entities.
However, it heavily relies on large-scale triplets,
which is time and resource-intensive. To inves-
tigate the effectiveness of pre-trained KB embed-
ding for KBQG, we report the performance of K-
BQG whether using pre-trained KB embeddings
by simply applying TransE. Table 6 shows that
the performance of KBQG is degraded without
TransE embeddings. In comparison, Elsahar et al.
(2018) obtain obvious degradation on all metrics
while there is only a slight decline in our mod-
el. We believe that it may owe to the context-
augmented fact encoder since our model drop-
s to 40.87 on the BLEU4 score without context-
augmented fact encoder and transE embeddings.

4.7.2 The Effectiveness of Generated
Questions for Enhancing Question
Answering over Knowledge Bases

Data Type Accuracy
human-labeled data 68.97

+ gen data (Serban et al., 2016) 68.53
+ gen data (Elsahar et al., 2018) 69.13
+ gen data (Our Modelans loss) 69.57

Table 7: Performances of generated questions for QA.

Previous experiments demonstrate that our
model can deliver more precise questions. To fur-
ther prove the effectiveness of our model, we will
see how useful the generated questions are for
training a question answering system over knowl-
edge bases. Specifically, we combine human-
labeled data with the same amount of model-
generated data to a typical QA system (Mo-
hammed et al., 2018). The accuracy of QA is

shown in Table 7. We can observe that adding gen-
erative questions may weaken the performance of
QA (drop from 68.97 to 68.53 in Table 7). Our
generated questions achieve the best performance
on the QA system. It indicates that our model gen-
erates more precise question and has improved QA
performances greatly.

4.7.3 Speed

0 2 4 6 8 10
Epoch

0

10

20

30

40

50

60

70

Pe
rf

or
m

an
ce

BLEU4(ours)
ROUGEL(ours)
METEOR(ours)

BLEU4(base)
ROUGEL(base)
METEOR(base)

Figure 3: Performance on valid data through epochs,
where “base” is the method in Elsahar et al. (2018).

In order to further explore the convergence
speed, we plot the performances on valid data
through epochs in Figure 3. Our model has much
more information to learn, and it may have a
bad impact on the convergence speed. Neverthe-
less, our model can copy KB elements and textual
context simultaneously, which may accelerate the
convergence speed. As demonstrated in Figure 3,
our model achieves the best performances on al-
most epochs. After about 6 epochs, performances
on our model become stable and convergent.

4.7.4 Case Study
Figure 4 lists referenced question and generated
questions by different models. It can be seen that
our generated questions can better express the tar-
get predicate such as ID 1 (marked as underline).
In ID 2, although all questions express the target
predicate correctly, only our question refers to a
definitive answer since it contains an answer type
word “city” (marked as bold). It should be empha-
sized that the questions, generated by our method
with answer-aware loss, do not always contain an-
swer type words (ID 1 and 3).

5 Related Work

Our work is inspired by a large number of suc-
cessful applications using neural encoder-decoder
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ID Model Question

1

Reference what is the origin of Kate Bush ?

Serban et al. where is catherine bush buried ?

Elsahar et al. what is the artist of catherine bush ?

Ours
what is the origin of the artist Kate 
Bush ?

2

Reference what area contains River Yare ?

Serban et al. where is the River Yare ?

Elsahar et al. where is the River Yare located ?

Ours what city is River Yare in ?

3

Reference who composed Bien O Mal ?

Serban et al. who is the composer of Bien O Mal ?

Elsahar et al.
who is the composer of the song 
Bien O Mal ?

Ours who composed Bien O Mal ?

Figure 4: Examples of questions by different models.

frameworks on NLP tasks such as machine trans-
lation (Cho et al., 2014a) and dialog generation
(Vinyals and Le, 2015). Our work is also inspired
by the recent work for KBQG based on encoder-
decoder frameworks. Serban et al. (2016) first pro-
posed a neural network for mapping KB facts into
natural language questions. To improve the gen-
eralization, Elsahar et al. (2018) introduced extra
contexts for the input fact, which achieved signif-
icant performances. However, these contexts may
make it difficult to generate questions that express
the given predicate and associate with a definitive
answer. Therefore, we focus on the two research
issues: expressing the given predicate and refer-
ring to a definitive answer for generated questions.

Moreover, our work also borrows the idea from
copy mechanisms. Point network (Vinyals et al.,
2015) predicted the output sequence directly from
the input, and it can not generate new words while
CopyNet (Gu et al., 2016) combined copying and
generating. Bao et al. (2018) proposed to copy
elements in the table (KB). Elsahar et al. (2018)
exploited POS copy action to better capture textu-
al contexts. To incorporate advantages from above
copy mechanisms, we introduce KB copy and con-
text copy which can copy KB element and textual
context, and they do not rely on POS tagging.

6 Conclusion and Future Work

In this paper, we focus on two crucial research
issues for the task of question generation over
knowledge bases: generating questions that ex-
press the given predicate and refer to definitive an-
swers rather than alternative answers. For this pur-
pose, we present a neural encoder-decoder mod-

el which integrates diversified off-the-shelf con-
texts and multi-level copy mechanisms. Moreover,
we design an answer-aware loss to generate ques-
tions that refer to definitive answers. Experiments
show that our model achieves state-of-the-art per-
formance on automatic and manual evaluations.

For future work, we investigate error cases by
analyzing the error distributions of 100 examples.
We find that most generated questions (51%) are
judged by the human to correctly express the input
facts, but they unfortunately obtain low scores on
the widely used metrics. It implies that it is stil-
l intractable to evaluate generated questions. Al-
though we additionally evaluate on predicate iden-
tification and answer coverage, these metrics may
be coarse and deserve further study.
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