
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing, pages 2412–2421,
Hong Kong, China, November 3–7, 2019. c©2019 Association for Computational Linguistics

2412

Ranking and Sampling in Open-Domain Question Answering

Yanfu Xu1,2, Zheng Lin1∗, Yuanxin Liu1,2, Rui Liu1,2, Weiping Wang1 and Dan Meng1

1Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
2School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

{xuyanfu,linzheng,liuyuanxin,liurui1995,wangweiping,mengdan}@iie.ac.cn

Abstract

Open-domain question answering (OpenQA)
aims to answer questions based on a num-
ber of unlabeled paragraphs. Existing ap-
proaches always follow the distantly super-
vised setup where some of the paragraphs
are wrong-labeled (noisy), and mainly utilize
the paragraph-question relevance to denoise.
However, the paragraph-paragraph relevance,
which may aggregate the evidence among rel-
evant paragraphs, can also be utilized to dis-
cover more useful paragraphs. Moreover, cur-
rent approaches mainly focus on the posi-
tive paragraphs which are known to contain
the answer during training. This will affect
the generalization ability of the model and
make it be disturbed by the similar but ir-
relevant (distracting) paragraphs during test-
ing. In this paper, we first introduce a ranking
model leveraging the paragraph-question and
the paragraph-paragraph relevance to compute
a confidence score for each paragraph. Fur-
thermore, based on the scores, we design a
modified weighted sampling strategy for train-
ing to mitigate the influence of the noisy and
distracting paragraphs. Experiments on three
public datasets (Quasar-T, SearchQA and Triv-
iaQA) show that our model advances the state
of the art.

1 Introduction

Different from the traditional reading comprehen-
sion (RC) task, which aims to answer a question
based on an off-the-peg paragraph, the reading
paragraphs on OpenQA datasets are always col-
lected via an information retrieval (IR) system.
For example, given a question as shown in Fig-
ure 1, an OpenQA system usually coarsely re-
trieves paragraphs that are similar to the question.
Therefore, the OpenQA model has to answer a
question based on numerous paragraphs. As can

∗Corresponding author

Question: Who is Donald Duck’s uncle ?
Answer: Scrooge
Paragraph1 (positive, relevant): Donald’s maternal un-
cle Scrooge McDuck made his first appearance ...
Paragraph2 (positive, relevant): This story was reis-
sued as a single record entitled “Donald Duck and Uncle
Scrooge’s Money Rocket” ...
Paragraph3 (positive, noisy): In Scrooge’s stories, Don-
ald Duck was cast as Scrooge’s assistant ...
Paragraph4 (negative, distracting): Donald Duck is
the uncle of Huey, Dewey, and Louie.

Figure 1: An example of OpenQA. The key infor-
mation, answers in correct-labeled and wrong-labeled
contexts are marked in blue, green and red respectively.

be seen in Figure 1, some of the negative para-
graphs are similar to the question whereas the an-
swer string is missed, e.g. Paragraph4. We con-
sider these paragraphs as distracting ones. Be-
sides, in the distantly supervised setup (Mintz
et al., 2009), it is postulated that the paragraphs
that contain the answer string are ground truths,
while even some of the positive paragraphs are
wrong-labeled as they do not concern the question,
e.g. Paragraph3. We consider these paragraphs as
noisy ones. As a result, only Paragraph1 and Para-
graph2 provide relevant answer to the question and
the distracting and noisy paragraphs will prevent
the model from identifying the correct answer.

Recent OpenQA approaches always follow the
retrieve-then-read pipeline and can be roughly di-
vided into two categories: single-paragraph ap-
proaches (Joshi et al., 2017; Wang et al., 2018a)
and multi-paragraph approaches (Chen et al.,
2017; Clark and Gardner, 2018; Pang et al., 2019).
Single-paragraph approaches mainly focus on the
most relevant paragraph during reading. Multi-
paragraph approaches apply a RC model to mul-
tiple paragraphs to extract the final answer. How-
ever, these approaches still face two major issues.

First, as described above, recent methods only
consider the paragraph-question relevance in se-
lecting paragraphs but neglect the paragraph-

2413

paragraph relevance, which can be exploited to as-
sociate relevant paragraphs that are useful to the
downstream RC task. Second, some previous ap-
proaches only take into account the positive para-
graphs, which are known to contain the answer
string, at the training stage. This will make the
model become too confident in heuristics or pat-
terns that are only effective in positive paragraphs.
As a result, the model will suffer from the problem
of impaired generalization ability and be easily be-
wildered by the distracting paragraphs during test-
ing. Such phenomenon has also been observed
by Clark and Gardner (2018). Therefore, a more
carefully-designed training strategy is needed.

To address the two issues, we first propose
an attention based ranking model which utilizes
both the question-paragraph and the paragraph-
paragraph relevance to compute a more accurate
confidence score for each paragraph. Through
the multi-level attention mechanism, the model
can utilize the word-level and sentence-level infor-
mation between the paragraph and the question.
Through the sentence-level self-attention mecha-
nism, the model can aggregate the effective ev-
idence among relevant paragraphs and thus in-
crease their confidence scores.

Second, based on the confidence scores, we
design a modified weighted sampling strategy to
select training paragraphs, which simultaneously
ameliorate the influence of the distracting and
noisy paragraphs. Through “sampling”, the model
can be prevented from being too confident in
heuristics that are only effective in positive para-
graphs. Through “weighted”, the model can be
less affected by the noisy paragraphs. After that,
we concatenate the selected paragraphs and feed
them to a RC model to predict the final answer.

We evaluate our work on three distantly su-
pervised OpenQA datasets including Quasar-
T (Dhingra et al., 2017b), SearchQA (Dunn et al.,
2017) and TriviaQA (Joshi et al., 2017). Empirical
results show that our model is effective in improv-
ing the performance of OpenQA and advances the
state of the art on all three datasets. We addi-
tionally perform an ablation study on our model
to give insights into the contribution of each sub-
module. We will release our code on GitHub for
further research explorations. 1

1https://github.com/xuyanfu/RASAOpenQA

2 Methodology

2.1 Task Definition
OpenQA aims to answer a question based on
a number of paragraphs retrieved by IR sys-
tems. Formally, given a question containing m
words Q = {q1, q2, ..., qm} and a set of retrieved
paragraphs D = {P1, P2, ..., Pn}, where Pi =

{p1i , p2i , ..., p
|pi|
i } is the i-th paragraph, |pi| is the

number of words in the i-th paragraph, our model
is supposed to extract the answer from the para-
graph collection D.

2.2 Two-stage Framework
Figure 2 gives an overview of our OpenQA model
which is composed of two modules including a
ranker and a reader. The ranker is responsible
to compute a confidence score for each paragraph.
Based on the confidence scores, we design five
strategies to select k paragraphs, which are then
concatenated and passed to the reader. Note that
k is a hyperparameter. Finally, a sub-phrase of the
concatenated paragraph is predicted as the answer
according to reader’s output, which is the proba-
bility distribution of the start and end positions.

2.3 Paragraph Ranker
We adopt a ranker to produce a confidence score
for each paragraph. The ranker is comprised of
an encoding layer, a word-level matching layer, a
sentence-level matching layer and a sentence-level
decoding layer.

Encoding Layer
Given a paragraph Pi = {p1i , p2i , ..., p

|pi|
i } and a

question Q = {q1, q2, ..., qm}, we map each word
into a vector by combining the following features:

Word Embeddings: We use pre-trained word
vectors, GloVe (Pennington et al., 2014), to obtain
the fixed embedding of each word.

Char Embeddings: We map the characters in a
word into 20-dimensional vectors which are then
passed to a convolutional layer and a max pooling
layer to obtain a fixed-size vector of the word.

Common word: The feature is set to 1 if the
word appears in both the question and the para-
graph, and otherwise it is set to 0. Then the feature
is mapped into a vector of fixed size.

By concatenating the above features, we obtain
the encoded sequence of the paragraph Pemb

i =

{pt
i}
|pi|
t=1 ∈ Rdemb×|pi| and the question Qemb =

{qt}mt=1 ∈ Rdemb×m , where |pi| is the number

2414

𝑃"#$%𝑃"

𝑄 𝑄#$%

Bi-
Attention
module

...

𝐻" 𝐶"

...

Co-
Attention
Pooling

𝑄)**+

...

𝐶)**+ 𝑍

...

𝑃𝑟.#$

𝑅𝑒𝑎𝑑𝑒𝑟

Self-
Attention
Pooling

Encoding Word-Level Matching Sen-Level Matching

Word-Level
Self-Attention

Sen-Level
Self-Attention

...

...

Ranking

Test

Random Sampling
→

Weighted Sampling

Train

𝑅𝑎𝑛𝑘𝑒𝑟

Figure 2: The framework of out model, which consists of a paragraph ranker (left) and a paragraph reader (right).
The ranker first computes a confidence score for each paragraph and k paragraphs are selected through the ranking
and sampling strategies. Then, the reader concatenates the selected paragraphs together and computes the start
score and the end score for each word in the concatenated paragraph.

of words in the i-th paragraph. After that, a bi-
directional LSTM is used to calculate a contextual
encoding for each word in the paragraph and the
question respectively:

Penc
i = BiLSTM(Pemb

i) ∈ Rdhid×|pi| (1)

Qenc = BiLSTM(Qemb) ∈ Rdhid×m (2)

Word-level Matching Layer
The word-level matching layer takes Penc

i and
Qenc as inputs and produces a new question-aware
representation Ci for each paragraph. Following
Clark and Gardner (2018), we first perform bi-
directional attention between the question Qenc

and the paragraph Penc
i , which gives rise to Hi for

Penc
i , where Hi ∈ Rdhid×|pi|. Next, we feed Hi to

the self-attention layer and obtain Ei ∈ Rdhid×|pi|.
We strictly implement the steps as suggested by
Clark and Gardner (2018). After that, we use a bi-
directional LSTM to obtain a question-aware para-
graph embedding for the paragraph Pi:

Ci = BiLSTM(Ei) ∈ Rdhid×|pi| (3)

Sentence-level Matching Layer
Given Dc = {C1,C2, ...,Cn} and Qenc,
the sentence-level matching layer produces a
sentence-level representation Zi for each para-
graph by effectively exploiting the paragraph-
question and the paragraph-paragraph relevance.
Firstly, we use self-attention pooling to obtain a
fixed-size vector for the encoded question repre-
sentation. Each position in the encoded question
representation is assigned with a score computed
using a two-layer multi-layer perception (MLP).
This score is normalized and used to compute a

weighted sum over the columns of the question
representation:

α = softmax(WT
2 tanh(W1Q

enc)) ∈ Rm (4)

Qpool =
∑
t

αtQ
enc
:t ∈ Rdhid (5)

Here, αt is the normalized score for the t-th
word in the question and W1 ∈ Rdhid×dhid ,W2 ∈
Rdhid are trainable parameters for the MLP. Next,
we utilize the co-attention pooling (CAP) to get
the fixed-length summary vector for each para-
graph. The score for each position in Ci is calcu-
lated by measuring the similarity between Ci and
Qpool, based on which we can compute a weighted
sum over the columns of the question-aware para-
graph embedding Ci:

α̂ = softmax(QT
poolCi) ∈ R|pi| (6)

Cpool
i =

∑
t

α̂tCi:t ∈ Rdhid (7)

Cpool = {Cpool
i }ni=1 ∈ Rdhid×n (8)

where α̂t is the normalized score for the t-th po-
sition in Ci. Let Cpool represent the sequence
of summary vectors for all paragraphs. After-
wards, in order to make full use of the paragraph-
paragraph relevance, we use the sentence-level
self-attention (SSA) and a bi-directional LSTM to
produce the sentence-level paragraph representa-
tion Z. The SSA is calculated as:

A = softmax(CpoolTCpool) ∈ Rn×n (9)

U = CpoolA ∈ Rdhid×n (10)

Here, A is the similarity matrix and Aij indi-
cates the similarity between Cpool

:i and Cpool
:j . U:i

2415

is the i-th column of U which is the representa-
tion of the i-th paragraph where information of all
the retrieved paragraphs is encompassed. U and
Cpool are concatenated together to yield G, which
is defined by

G:i = [Cpool
:i ;U:i;C

pool
:i ◦U:i;C

pool
:i −U:i] ∈ R4dhid

(11)
where ◦ is element-wise multiplication, − is
element-wise subtraction, and [;] is vector con-
catenation across rows. After that, a bi-directional
LSTM is used to obtain the final sentence-level
paragraph representation Z:

Z = BiLSTM(G) ∈ Rdhid×n (12)

Sentence-level Decoding Layer
The sentence-level decoding layer, which consists
of a linear layer and a sotfmax function, will pro-
duce a normalized score for each paragraph:

Prsen = softmax(W T
3 Z) ∈ Rn (13)

where W3 ∈ Rdhid is a trainable weight vector.
Prseni is the i-th element of Prsen which repre-
sents the probability that the i-th paragraph con-
tains the answer.

2.4 Ranking and Sampling Strategies
Based on the retrieved paragraphs and their con-
fidence scores, we design five strategies to select
paragraphs for the reader.

Ground Truth (GT) strategy simply chooses
all positive paragraphs which contain the answer
string as reading datasets and filters out the nega-
tive ones. Since we have to know which paragraph
contains the answer string, this strategy can only
be used while constructing the training set.

Random Sampling (RS) strategy samples k
different paragraphs from all the retrieved para-
graphs based on the uniform probability distribu-
tion. Different from the GT strategy, this strat-
egy will include paragraphs, which do not con-
tain an answer, in the training set. As a result, the
RC model is prevented from becoming too confi-
dent in heuristics or patterns that are only effective
when it is guaranteed that an answer string exists.

Ranking (RK) strategy selects k top-ranked
paragraphs based on the confidence scores pro-
duced by the ranker. In this strategy, the ranker is
expected to select more relevant paragraphs, pro-
viding a better start point for the reader to predict
the final answer.

Weighted Sampling (WS) strategy samples k
different paragraphs from all retrieved paragraphs
based on the probability distribution generated by
the ranker. This strategy is an improved version of
RK. It hopes to consider the effects of the distract-
ing paragraphs while filtering out the noisy ones.

RS→WS strategy is a combination of RS and
WS. In the training process, in order to make
full use of the dataset and mitigate the impact of
the distracting paragraphs, we generate the initial
training set for the reader via RS. After that, WS is
applied to select paragraphs with higher accuracy,
which reduces the influence of the distracting and
noisy paragraphs.

During training, we can utilize all the five strate-
gies to generate reading data, while in testing, con-
sidering that the paragraphs should be as clean as
possible, we only use RK for paragraph selection.
After that, we feed the selected paragraphs to the
reader to generate the final answer.

2.5 Paragraph Reader

The reader is a traditional RC model, where the
inputs are the k selected paragraphs Dtop =
{P1, P2, ..., Pk} and we regard k as a hyperparam-
eter. We concatenate these paragraphs together
to obtain P̂ = [P1;P2; ...;Pk] which aggregates
the information from the selected paragraphs in
word level. Given P̂ and Q, the output of the
reader, i.e, Prs,Pre ∈ R|P̂ | , are the probability
distributions of the start index and the end index
over the concatenated paragraph, where |P̂ | is the
number of words in the concatenated paragraph.
Our reader is the same as in Clark and Gardner
(2018) and we do not give the details here due
to the space limitation. After that, we split Prs

and Pre into k vectors according to the length
of each paragraph and obtain {Prs1,Prs2, ...,Prsk}
and {Pre1,Pre2, ...,Prek}, where Prsi / Prei rep-
resent the start/end probabilities of the i-th para-
graph.

2.6 Training and Testing

Our model is trained in two stages. We follow the
distantly supervised setup that all the paragraphs
that contain the answer span are ground truths.

For the ranker, each paragraph in {Pi}ni=1 is as-
sociated with a label yi ∈ {0, 1}, and yi equals to
1 if the paragraph contains the answer string. We
follow the S-Net (Tan et al., 2018) to design the
loss function of the ranker. Given the paragraph

2416

probabilities Prsen ∈ Rn, the ranker is trained by
minimizing the loss:

Ls = −
n∑

i=1

(yilog(Prseni)+(1−yi)log(1−Prseni))

(14)
For the reader, we first select k paragraphs

based on the RS→WS strategy and then ob-
tain the final scores Prsi and Prei for each
paragraph, where Prsi (t)/Prei (t) represent the
start/end scores of the t-th word in the i-th para-
graph. As described above, the answer string can
appear multiple times in a paragraph. Therefore,
The reader is trained using a summed objective
function that optimizes the negative log probabil-
ity of selecting any correct answer span:

Lr = −(log(

k∑
i=1

|ai|∑
t=1

(Prsi (xt
i))) + log(

k∑
i=1

|ai|∑
t=1

(Prei (zti))))

(15)

where {(xti, zti)}
|ai|
t=1 is the set of the start and end

positions of the answer strings that appear in the
paragraph Pi.

During testing, we first utilize the ranker to pre-
dict a confidence score for each retrieved para-
graph and utilize the RK strategy to select k para-
graphs. Next, the reader calculates the start and
the end score of each word for all the selected
paragraphs. Based on the reader-produced scores,
there are two answer choosing methods:

MAX method is usually adopted in the tradi-
tional RC task. It simply chooses an answer span
which has the maximum span score from all se-
lected paragraphs. This span score is the product
of the start score of the first word and the end score
of the last word of the answer span.

SUM method first extracts an answer candi-
date Ai that has the maximum span score from
each paragraph. Next, if the answer candidates
from different paragraphs refer to the same an-
swer, we will sum up the scores of these answer
candidates and choose the answer candidate with
the maximum score as the final prediction. The
similar method has also been adopted by recent
approaches (Wang et al., 2018b; Lin et al., 2018;
Pang et al., 2019).

3 Experiments

3.1 Datasets and Baselines

We evaluate our model on three OpenQA
datasets, namely Quasar-T (Dhingra et al., 2017b),

SearchQA (Dunn et al., 2017) and the unfiltered
version of TriviaQA (Joshi et al., 2017).

Quasar-T. It consists of 43K open-domain
trivia question-answer pairs, and about 100 para-
graphs are provided for each question-answer pair
by using the Solr search engine.

SearchQA. It has a total of more than 140k
question-answer pairs, and roughly 50 webpage
snippets are provided by the Google search engine
as background paragraphs for each question.

TriviaQA. It contains approximately 95K open-
domain question–answer pairs. The unfiltered ver-
sion of TriviaQA is used in our experiment.

To better demonstrate the effectiveness of our
model, we carefully select some recent approaches
as baselines, including traditional RC models, i.e.,
BIDAF (Seo et al., 2016) , DECAPROP (Tay et al.,
2018), single-paragraph models, i.e., R3 (Wang
et al., 2018a), confidence-based models, i.e.,
DrQA (Chen et al., 2017) , DS-QA (Lin et al.,
2018), S-Norm (Clark and Gardner, 2018), HAS-
QA (Pang et al., 2019), MSR (Das et al., 2019) and
answer re-ranking models, i.e., Re-Ranker (Wang
et al., 2018b), Joint (Wang et al., 2018c).

3.2 Implementation Details

In the experiments, we adopt the same data prepro-
cessing scheme as Clark and Gardner (2018). For
the ranker, we use the 300-dimensional word em-
beddings pre-trained by GloVe (Pennington et al.,
2014), which are fixed during training, and re-
gard the 20-dimensional character embeddings as
learnable parameters. The common word feature
is mapped into a 4-dimensional vector and it is up-
dated during training. We set the hidden size of
LSTM to 150 and the number of LSTM layers to 1.
We use Adam with learning rate 5e-4 to optimize
the model. The batch size is set to 8 and dropout
is applied to the outputs of all LSTM layers at a
rate of 0.2. As for RS→WS, we first train the
reader until convergence by RS. After that, we uti-
lize WS to select paragraphs for training in order
to further facilitate the performance of the reader.
Our reader adopts the same hyperparameters as S-
Norm (Clark and Gardner, 2018). While training
the reader, the parameters of the ranker are fixed.
The average length of paragraphs in TriviaQA is
greater than that of Quasar-T and SearchQA, so
we select 30, 30 and 15 paragraphs for Quasar-T,
SearchQA and TriviaQA respectively.

2417

Quasar-T SearchQA TriviaQA Average
Models EM F1 EM F1 EM F1 EM F1

BIDAF (Seo et al., 2016) 25.9 28.5 28.6 34.6 41.1 47.4 31.8 36.8
DECAPROP (Tay et al., 2018) 38.6 46.9 56.8 63.6 - - - -

R3 (Wang et al., 2018a) 35.3 41.7 49.0 55.3 47.3 53.7 43.8 50.2

Re-Ranker (Wang et al., 2018b) 42.3 49.6 57.0 63.2 50.6 53.7 49.9 55.5
Joint (Wang et al., 2018c) 45.9 53.9 58.3 64.2 - - - -

DrQA (Chen et al., 2017) 37.7 44.5 41.9 48.7 32.3 38.3 37.3 43.8
DS-QA (Lin et al., 2018) 42.2 49.3 58.8 64.5 48.7 56.3 49.9 56.7

S-Norm (Clark and Gardner, 2018) 38.6 45.4 59.8 67.1 61.3 67.2 53.2 59.9
HAS-QA (Pang et al., 2019) 43.2 48.9 62.7 68.7 63.6 68.9 56.5 62.1

MSR(BiDAF) (Das et al., 2019) 40.6 47.0 56.2 61.4 55.9 61.7 50.9 56.7

Our (RS, RK, MAX) 46.6 56.5 60.4 68.0 63.8 70.4 56.9 64.9
Our (RS→WS, RK, MAX) 48.2 57.5 61.1 68.8 64.6 71.0 57.9 65.7
Our (RS→WS, RK, SUM) 48.6 57.8 62.9 69.8 65.2 71.3 58.9 66.3

Table 1: Experimental results on three OpenQA datasets: Quasar-T, SearchQA and TriviaQA. The results of
‘BIDAF’, ‘DrQA’ and ‘S-Norm’ are replicated from Pang et al. (2019). The unfiltered version of TriviaQA does
not provide the answer of the test set. Therefore, we follow previous works to report the results on the development
set of TriviaQA. Average: The average score of the three datasets.

3.3 Overall Results

In this section, we focus on the performance of
the whole model. Table 1 presents the F1 and Ex-
act Match (EM) scores of our model and the base-
line models. These evaluation metrics are widely-
adopted for OpenQA. Our (RS, RK, MAX) model
utilizes RS and RK to select paragraphs for train-
ing and testing respectively and uses MAX to gen-
erate answer.

Our (RS, RK, MAX) model achieves better re-
sults on most of the datasets compared to the base-
lines. The main reason is that RS can select dis-
tracting paragraph to train the reader, thereby pre-
venting the reader from being too confident in
patterns that are only effective in positive para-
graphs. Besides, compared with the paragraph-
question relevance, the paragraph-paragraph rele-
vance can further enhance the evidence among the
relevant paragraphs. By jointly considering those
relevance, RK can select more relevant paragraphs
during testing to provide a better start point for the
reader.

Our (RS→WS, RK, MAX) model consistently
outperforms Our (RS, RK, MAX) model across
the three datasets. The improvement is attributed
to the adoption of the weighted sampling strategy.
In the first stage of training, RS prevents exces-
sive focus on the positive paragraphs. On this ba-
sis, WS further alleviates the influence of noisy

paragraphs in the second stage without hurting the
model’s generalization ability.

We can observe that the SUM method (Wang
et al., 2018b) helps our model better extract the
correct answer. As we discussed, different from
the traditional RC task, the answer string will
appear multiple times in different paragraphs in
OpenQA. By summing up the answer span scores
which refer to the same answer candidate, we can
extract a more accurate answer.

On SearchQA dataset, Our (RS→WS, RK,
MAX) model achieves a close performance com-
pared to HAS-QA model. 35% of the paragraphs
in the development set of SearchQA contain the
answer string, and for Quasar-T and TriviaQA the
percentage of such paragraphs in the development
set are 13% and 29% respectively. This indicates
that SearchQA contains more positive paragraphs
than other datasets. Since our model is better at fil-
tering out the irrelevant data, the improvement in
SearchQA is not as significant as in other datasets.
However, Our (RS→WS, RK, SUM) model still
achieves the SOTA result by adopting the SUM
method and HAS-QA, which is a strong baseline,
also adopts the similar method.

In the following sections, we give further analy-
ses about the ranker, the selection strategies, the
hyperparameter, the case study and the ablation
study of our model.

2418

0 20 40 60 80 100
Number of paragraphs

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

F1

RK(IR)
RK(Our)

(a) Quasar-T

0 10 20 30 40 50
Number of paragraphs

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

F1

RK(IR)
RK(Our)

(b) SearchQA

0 10 20 30 40 50
Number of paragraphs

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

F1

RK(IR)
RK(Our)

(c) TriviaQA

Figure 3: Impact of the number of the selected paragraphs during testing on Quasar-T, SearchQA and TriviaQA.
RK (IR), RK (Our): Utilizing a information retrieval model with BM25 or our ranker to select top k paragraphs.

Quasar-T SearchQA
Models Top1 Top3 Top5 Top1 Top3 Top5

IR 21.9 38.5 47.6 48.5 74.0 82.3
R3 40.3 51.3 54.5 - - -

DS-QA 27.7 36.8 42.6 59.2 70.0 75.7
FSE 42.8 55.2 58.9 67.9 81.1 86.0
MSR 42.9 55.5 59.3 - - -
Our 49.9 58.8 62.6 75.0 85.3 89.1

Table 2: The performance of the rankers on the Quasar-
T and SearchQA. We re-implement ‘IR’ and ‘FSE’.

3.4 Performance of the Ranker

We separately evaluate our ranker by comparing
it with a typical IR model 2 and SOTA mod-
els which also have a ranking submodule to se-
lect paragraphs, i.e. DS-QA (Lin et al., 2018),
R3 (Wang et al., 2018a), FSE (Zhang et al., 2018),
MSR (Das et al., 2019). This evaluation sim-
ply focuses on whether the ground-truth appears
in the Top 1, 3, 5 paragraphs. We follow the
previous works to report the results on Quasar-
T and SearchQA. As shown in Table 2, we can
observe that our ranker surpasses the IR model
with a large margin. The result implies that, the
question-paragraph relevance is effective in se-
lecting the relevant paragraphs. Compared with
R3, DS-QA, FSE and MSR, which also adopt a
neural network to select paragraphs, our model
still works better. It suggests that exploiting the
paragraph-question and paragraph-paragraph rele-
vance with multi-level attention and self-attention
mechanisms can further improve the performance
of the ranker.

3.5 Performance of Selection Strategies

In this section, we compare the performance of
different selection strategies for training. For fair

2The IR model ranks the paragraph with BM25

Quasar-T SearchQA TriviaQA
Train EM F1 EM F1 EM F1

GT 33.6 41.6 40.2 47.9 59.8 66.4
RK 46.1 55.2 59.7 67.3 61.9 68.5
RS 46.6 56.5 60.4 68.0 63.8 70.4
WS 47.2 55.9 60.9 68.6 64.3 70.6

RS→WS 48.2 57.5 61.1 68.8 64.6 71.0

Table 3: The performance of different training selec-
tion strategies on Quasar-T, SearchQA and TriviaQA.

comparison, a common scheme for testing is ap-
plied, where we use RK to select testing para-
graphs and MAX to extract the answer. As shown
in Table 3, the performance of RS is much better
than GT and RK. The reason is that both GT and
RK tend to train the reader on the positive para-
graphs which inevitably impairs the generalization
ability of the reader. It demonstrates that mainly
choosing the positive paragraphs for training will
hurt the performance of the model. Compared
with RS, WS leads to a slight improvement thanks
to the denoising effect. However, WS still reveals
a bias toward the positive paragraphs during train-
ing, which may explain for the reason why the
improvement is trivial. We can see that RS→WS
gains the best score on three datasets. The reason
is that the RS→WS strategy can not only amelio-
rates the influences of the distracting paragraphs
but also filter out the noisy paragraphs to further
strengthen our model.

3.6 Impact of the Number of Paragraphs

In order to further investigate the influences of
different rankers and the hyperparameter k dur-
ing testing, we compare the final performance
of RK (Our) with that of RK (IR). We utilize
RS→WS to select paragraphs for training and
and extract answers through the MAX method.

2419

Question: Who was born on Krypton ?
Answer: Superman
5 top-ranked paragraphs selected by our ranker:

P1 (positive, relevant) : With a premise that taps into adolescent fantasy, Superman is born Kal-El on the alien planet
Krypton, before being rocketed to Earth as an infant by his scientist father moments before the planet exploded.
P2 (positive, relevant) : The original story of Superman relates that he was born Kal-El on the planet Krypton, before
being rocketed to Earth as an infant by his scientist father Jor-El, moments before Krypton’s destruction.
P3 (positive, relevant) : Superman was born on the planet Krypton and was sent to Earth by his father moments before
his planet exploded.
P4 (positive, relevant) : As of the early 1960s, (this story has undergone many revisions) Superman was born as Kal-el
on the planet Krypton.
P5 (positive, relevant) : Superman was born Kal-El on the planet Krypton.

5 top-ranked paragraphs selected by RKN:
P1 (positive, noisy) : Television in the pilot episode of the 1950s television program Adventures of Superman Jor-El,
portrayed by Robert Rockwell, was Krypton ’s leading scientist, who tried to warn the ...
P2 (negative, distracting) : They did not tell anyone of his alien origins, letting family and friends believe he was born
on the farm as their biological son, whom they named Clark Joseph Kent.
P3 (positive, relevant) : “Superman will be the only Kryptonian who survived the destruction of Krypton”- John Byrne
on The Man of Steel.
P4 (positive, noisy) : In 1985, writer Alan Moore gave a somewhat darker glimpse into the world of Krypton in his
story “For the Man Who Has Everything” (in Superman Annual), the premise being an ...
P5 (positive, noisy) : George Reeves, star of the Adventures of Superman television series, born in 1914.

Table 4: An example from Quasar-T to illustrate the necessity of the paragraph-paragraph relevance. The key
information, answers in correct-labeled and wrong-labeled contexts are marked in blue, green and red respectively.
RKN: a naive version of our ranker which only utilizes the paragraph-question relevance.

RK (Our) and RK (IR) denote utilizing our ranker
and a typical IR model, respectively, to select the
k top-ranked paragraphs for testing. As shown in
Figure 3, it is obvious that the performance of the
two models first increases and then remains sta-
ble or reduces as k rises on three datasets. As the
number of paragraphs increases, the chances are
better that the answer is included in these para-
graphs. However, the difficulty and running time
for the reader also increase. As can be seen in Fig-
ure 3, the peak value of our ranker exceeds that
of the IR model on three datasets, suggesting that
our ranker can discover more useful and relevant
paragraphs during testing, providing a better start
point for the reader to predict the final answer.

3.7 Case Study

Table 4 shows an example from Quasar-T. The
second row contains 5 top-ranked paragraphs
which are produced by our ranker and the para-
graphs in the third row are selected by a naive
version of our ranker (RKN) which replaces the
co-attention pooling (CAP) with max pooling for
Ci and removes the sentence-level self-attention
(SSA). For the question “Who was born on Kryp-
ton?”, our ranker can select more related para-
graphs and all of them support “Superman” as
the answer. These paragraphs are inherently rel-
evant to each other and provide enhanced evi-
dence for the correct answer. However, most of

Models P@1 P@3 P@5 EM F1 ∆F1
Our 49.9 49.2 47.7 48.6 57.8 0

-SUM 49.9 49.2 47.7 48.2 57.5 -0.3
-RS→WS 49.9 49.2 47.7 46.8 55.7 -2.1

-CAP 47.8 46.9 45.8 47.6 57.0 -0.8
-SSA 42.3 39.5 38.4 47.2 56.7 -1.1

-ranker 21.9 20.1 19.1 44.2 52.6 -5.2

Table 5: Ablation results on Quasar-T.

the paragraphs in the third row are noisy and dis-
tracting, even though some of them are related
to the question to some extent. Compared with
RKN, which only uses the paragraph-question rel-
evance, our completed ranker can further utilize
the paragraph-paragraph relevance to aggregate
the evidence among relevant paragraphs, thereby
increasing their confidence scores. As a result, the
reader is provided with more useful paragraphs to
enhance the performance of our model.

3.8 Ablation Study

Finally, we conduct an ablation study to analyze
the effect of all proposed methods and report the
results on Quasar-T. As shown in Table 5, we
evaluate the performance of the ranker accord-
ing to the precision at 1, 3 and 5. In compar-
ison with the evaluation which assesses whether
the ground-truth appears in the top-ranked para-
graphs, this metric can better evaluate the perfor-
mance of the ranker, as we expect to find as many
relevant paragraphs in the k top-ranked paragraphs
as possible. We start with our completed model

2420

which utilizes RS→WS to select 30 paragraphs
for training and RK to select 30 top-ranked para-
graphs for testing. As shown in Table 5, the ‘-
SUM’ denotes using MAX to choose the answer
and the performance drop indicates that SUM can
further enhance our model. Replacing RS→WS
with RK for training accounts for a 2.1% perfor-
mance drop, which demonstrates the effectiveness
of our proposed selection strategy. The ‘-CAP’
means replacing the co-attention pooling with max
pooling for Ci and the ‘-SSA’ means removing
the sentence-level self-attention , and from the re-
sults, we can see that both paragraph-question and
paragraph-paragraph relevance are integral to our
model. The ‘-ranker’ denotes replacing our ranker
with the IR model in training and testing stages.
The replacement accounts for a performance drop
of 5.2%, which illustrates the indispensable role of
our ranker in the final architecture.

4 Related Work

Most recent OpenQA approaches extract answer
from distantly supervised paragraphs which are re-
trieved from the web (Chen et al., 2017; Dhingra
et al., 2017a; Buck et al., 2018).

The interest of research roughly falls into
two categories, namely the single-paragraph ap-
proaches and the multi-paragraph approaches,
both of which follow the retrieve-then-read
pipeline. Single-paragraph approaches (Joshi
et al., 2017; Wang et al., 2018a) select a most rel-
evant paragraph from all the retrieved paragraphs
and then feed it to a RC model to extract the an-
swer. The dependence on a single paragraph ren-
ders the RC model vulnerable to selection errors
and a large amount of information in the remain-
ing paragraphs is consequently being neglected.

Multi-paragraph approaches can be further di-
vided into answer-rerank methods and confidence-
based methods. For answer-rerank methods, Wang
et al. (2018b) adopted a single-paragraph approach
to extract an answer candidate from each retrieved
paragraph and then used an extra neural network to
rerank the candidates. Wang et al. (2018c) jointly
trained the candidates extraction and reranking
steps with reinforcement learning to further im-
prove the performance. But these methods still
rely heavily on the candidates extraction results.

Chen et al. (2017) proposed the first confidence
method which retrieved multiple paragraphs with
an IR system and applied a RC model to each para-

graph for extracting the answer with the highest
confidence. Das et al. (2019) introduced a new
framework to make use of the result of the reader
for improved paragraph retrieval. However, these
models suffer from the problem of impaired gen-
eralization ability as a result of too much focus
on the positive paragraphs in training. Clark and
Gardner (2018) presented a new method, S-Norm.
They used the sampling strategy and the shared-
norm objective function to teach the model to ig-
nore non-answer containing paragraphs. However,
the retrieved paragraphs are always noisy and this
will hurt the performance of the model.

Zhang et al. (2018) and Lee et al. (2018)
adopted a neural network to rank the retrieved
paragraphs. Lin et al. (2018) and Pang et al. (2019)
also ranked the paragraphs and took into account
both the ranking results and the scores produced
by the reader to predict the final answer. However,
they mainly utilize the paragraph-question rele-
vance to rank the paragraphs and train the reader
mainly on the positive paragraphs.

5 Conclusion

In this paper, we tackle the issues caused by
the noisy and distracting paragraphs on OpenQA
via ranking and sampling. By jointly consid-
ering the question-paragraph and the paragraph-
paragraph relevance, our ranking model can cal-
culate a more accurate confidence score for each
paragraph. Through the modified weighted sam-
pling strategy, our model can make full use of
the dataset and mitigate the influence of the dis-
tracting and noisy paragraphs. Experimental re-
sults on three challenging public OpenQA datasets
(Quasar-T, SearchQA and TriviaQA) show that
our model advances the state of the art.

6 Acknowledgement

We thank the anonymous reviewers for their valu-
able suggestions. This work was supported by Na-
tional Natural Science Foundation of China (No.
61976207, No. 61906187).

References
Christian Buck, Jannis Bulian, Massimiliano Cia-

ramita, Wojciech Gajewski, Andrea Gesmundo, Neil
Houlsby, and Wei Wang. 2018. Ask the right ques-
tions: Active question reformulation with reinforce-
ment learning. In Proceedings of International Con-
ference on Learning Representations.

2421

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading wikipedia to answer open-
domain questions. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1870–
1879. Association for Computational Linguistics.

Christopher Clark and Matt Gardner. 2018. Simple
and effective multi-paragraph reading comprehen-
sion. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 845–855. Association
for Computational Linguistics.

Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer,
and Andrew McCallum. 2019. Multi-step retriever-
reader interaction for scalable open-domain question
answering. In Proceedings of International Confer-
ence on Learning Representations.

Bhuwan Dhingra, Hanxiao Liu, Zhilin Yang,
William W. Cohen, and Ruslan Salakhutdinov.
2017a. Gated-attention readers for text comprehen-
sion. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1832–1846.
Association for Computational Linguistics.

Bhuwan Dhingra, Kathryn Mazaitis, and William W.
Cohen. 2017b. Quasar: Datasets for question an-
swering by search and reading. Computing Re-
search Repository, arXiv:1707.03904.

Matthew Dunn, Levent Sagun, Mike Higgins, V. Ugur
Güney, Volkan Cirik, and Kyunghyun Cho. 2017.
Searchqa: A new q&a dataset augmented with con-
text from a search engine. Computing Research
Repository, arXiv:1704.05179.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke
Zettlemoyer. 2017. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1601–1611. Associa-
tion for Computational Linguistics.

Jinhyuk Lee, Seongjun Yun, Hyunjae Kim, Miyoung
Ko, and Jaewoo Kang. 2018. Ranking paragraphs
for improving answer recall in open-domain ques-
tion answering. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 565–569. Association for Com-
putational Linguistics.

Yankai Lin, Haozhe Ji, Zhiyuan Liu, and Maosong Sun.
2018. Denoising distantly supervised open-domain
question answering. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1736–
1745. Association for Computational Linguistics.

Mike Mintz, Steven Bills, Rion Snow, and Daniel Ju-
rafsky. 2009. Distant supervision for relation ex-
traction without labeled data. In Proceedings of the

47th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1003–1011. Association for Computational Linguis-
tics.

Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Lixin
Su, and Xueqi Cheng. 2019. HAS-QA: hierarchi-
cal answer spans model for open-domain question
answering. In Proceedings of Association for the
Advancement of Artificial Intelligence.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1532–1543. Association
for Computational Linguistics.

Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2016. Bidirectional attention
flow for machine comprehension. In Proceedings of
International Conference on Learning Representa-
tions.

Chuanqi Tan, Furu Wei, Nan Yang, Bowen Du,
Weifeng Lv, and Ming Zhou. 2018. S-net: From
answer extraction to answer synthesis for machine
reading comprehension. In Proceedings of Associa-
tion for the Advancement of Artificial Intelligence.

Yi Tay, Anh Tuan Luu, Siu Cheung Hui, and Jian
Su. 2018. Densely connected attention propagation
for reading comprehension. In Advances in Neural
Information Processing Systems 31: Annual Con-
ference on Neural Information Processing Systems
2018, NeurIPS 2018, pages 4911–4922.

Shuohang Wang, Mo Yu, Xiaoxiao Guo, Zhiguo Wang,
Tim Klinger, Wei Zhang, Shiyu Chang, Gerry
Tesauro, Bowen Zhou, and Jing Jiang. 2018a. R 3:
Reinforced ranker-reader for open-domain question
answering. In Proceedings of Association for the
Advancement of Artificial Intelligence.

Shuohang Wang, Mo Yu, Jing Jiang, Wei Zhang,
Xiaoxiao Guo, Shiyu Chang, Zhiguo Wang, Tim
Klinger, Gerald Tesauro, and Murray Campbell.
2018b. Evidence aggregation for answer re-ranking
in open-domain question answering. In Proceedings
of International Conference on Learning Represen-
tations.

Zhen Wang, Jiachen Liu, Xinyan Xiao, Yajuan Lyu,
and Tian Wu. 2018c. Joint training of candidate
extraction and answer selection for reading compre-
hension. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1715–1724. Asso-
ciation for Computational Linguistics.

Chen Zhang, Xuanyu Zhang, and Hao Wang. 2018. A
machine reading comprehension-based approach for
featured snippet extraction. In Proceedings of IEEE
International Conference on Data Mining, pages
1416–1421.

