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Abstract

Automatically solving math word problems
is an interesting research topic that needs to
bridge natural language descriptions and for-
mal math equations. Previous studies intro-
duced end-to-end neural network methods, but
these approaches did not efficiently consider
an important characteristic of the equation,
i.e., an abstract syntax tree. To address this
problem, we propose a tree-structured decod-
ing method that generates the abstract syntax
tree of the equation in a top-down manner. In
addition, our approach can automatically stop
during decoding without a redundant stop to-
ken. The experimental results show that our
method achieves single model state-of-the-art
performance on Math23K, which is the largest
dataset on this task.

1 Introduction

Math word problem (MWP) solving is the task of
obtaining a solution from math problems that are
described in natural language. One example of
MWP is illustrated in Figure 1. Early approaches
rely on either predefined rules or statistical ma-
chine learning-based methods to map the prob-
lems into several predefined templates in classifi-
cation style or retrieval style. The major drawback
of these approaches is that they are inflexible for
new templates and require extra effort to design
rules, features and templates.

Modeling the tree structure of math equations
has been considered as an important factor when
building models for MWP. As shown in Figure 1,
each equation could be transformed into an ab-
stract syntax tree (AST). Roy and Roth (2017)
built an expression tree and combined two classi-
fiers for quantity relevance prediction and operator
classification. Koncel-Kedziorski et al. (2015) de-
signed a template ranking function based on the

∗ This denotes equal contribution.

Problem The distance between the two places
A and B is 660 km, the car start-
ing from A drives 32 km/h, and the
car starting from B drives 34 km/h.
The two cars are starting from the two
places at the same time in inverse di-
rection. How many hours later would
the two cars meet?

Equation x = 660 / ( 32 + 34 )
Prefix x = / 660 + 32 34
Answer 10

AST

/

660 +

3432

Figure 1: One example of MWP. Problem refers to the
natural language descriptions. Equation refers to the
formal math equation. Prefix refers to the prefix nota-
tion of the equation. Answer refers to the final quantity
solution. AST refers to the AST of the equation.

AST of the equations. However, these approaches
are based on traditional methods and require fea-
ture engineering.

Recently, the appearance of large-scale datasets
and the development of neural generative models
have opened a new research line for MWP. Wang
et al. (2017) cast this task as a sequence gener-
ation problem and used a sequence-to-sequence
(seq2seq) model to learn the mapping from nat-
ural language text to a math equation. Recent
approaches use the Reverse Polish notation, also
called suffix notation of equations in which op-
erators follow their operands to implicitly model
the tree structure (Wang et al., 2018a; Chiang and
Chen, 2018). However, these studies lost sight of
important information of the math equation ASTs
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(e.g., parent and siblings of each node), despite of
their promising results. Thus, their model has to
use extra effort to memorize various pieces of aux-
iliary information such as the sibling node of the
current step and learn the implicit tree structure in
the sequence.

Meanwhile, in similar tasks such as semantic
parsing and code generation, which also try to
convert natural language into a well-formed ex-
ecutable tree structured output, they first decode
the function or operator at the root node before
decoding the variables. Such top-down decoding
matches with the Polish notation, also called the
prefix order of the AST of math equations, shown
in Figure 1. Human also does reasoning and refer-
ence in a similar order, usually first determines the
function before filling in the variables, but not the
inverse. Thus we present a top-down hierarchical
sequence-to-tree (seq2tree) model which explic-
itly models the tree structure. This decoder con-
siders the prefix order of the equation and feeds the
information of the parent and sibling nodes during
decoding.

Another advantage of this system is that it can
use a stack to monitor the decoding process and
automatically end. By pushing in new generated
nodes to the stack and popping out the completed
subtrees, the decoding process can naturally end
when the tree is completed and the stack is empty.
There is no need for a special redundant end-of-
sequence (EOS) token which is used in ordinary
text sequence generation. Without the EOS token,
the model has a higher possibility to generate valid
equation answers.

In summary, the contributions of this work are
as follows:

1. We design a hierarchical seq2tree model that
can better capture information of the AST of the
equation.

2. We are the first to use prefix order decoding
for MWP.

3. We abandon the EOS token for end-to-end
equation generation.

4. Our model outperforms previous systems for
solving math word problems. On the large-scale
dataset Math23K, we achieve state-of-the-art sin-
gle model performance.

2 Related Work

Our work synthesizes two strands of research,
which are math word problems and seq2tree

encoder-decoder architectures.

2.1 Math Word Problems

Early approaches hand engineered rule-based sys-
tems to solve MWPs (Mukherjee and Garain,
2008). The rules could only cover a limited do-
main of problems, while math word problems are
flexible in real-world settings.

There are currently three major research lines
in solving MWPs. The first research line maps
a problem text into logical forms, and then uses
the logical forms to obtain the equation (Shi et al.,
2015; Roy and Roth, 2015; Huang et al., 2017;
Roy and Roth, 2018). Shi et al. (2015) defined a
Dolphin language to connect math word problems
and logical forms. The major drawback is that
it requires extra human annotation for the logic
forms.

Another research line uses either a retrieval or
classification model to maintain a template, and
then fills in the slots with quantities. Kushman
et al. (2014) first introduced the idea of ‘equation
template’. For example, x = 6*7 and x = 10*5
belong to the same template x = n1*n2. They col-
lected the first dataset of this task, ALG514, which
contained 514 samples. They brought out a two-
step pipeline model, which first used a classifier
to select a template and then mapped the numbers
into the slots. One major drawback is that it cannot
solve problems beyond the templates in the train-
ing data. This two-step pipeline model was further
extended with tree-based features, ranking style
retrieval models and so on (Upadhyay and Chang,
2017; Roy and Roth, 2017). Huang et al. (2016)
released the first large-scale dataset Dophin18K
and trained a similar system on it.

The third research line directly generates the
equation. Hosseini et al. (2014) cast the prob-
lem into a State Transition Diagram of verbs and
trained a binary classifier that could solve prob-
lems with only add and minus operators. Wang
et al. (2017) first used a seq2seq model to directly
generate the equation template and released a Chi-
nese high-quality large-scale dataset, Math23K.
Reinforcement learning was used to further im-
prove the seq2seq framework. Wang et al. (2018b)
first extended the seq2seq model by decoding the
suffix order sequence of the equations. Wang
et al. (2018a) introduced equation normalization
techniques that leverage the duplicated template
problem. Chiang and Chen (2018) used the copy
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mechanism to improve the semantic representa-
tion of quantities. However, in these work the
model needs extra effort to learn the implicit tree
structure and memorize tree information in the
sequence. Wang et al. (2019) proposed a two-
step pipeline method that first generates a template
with unknown operators, and then uses a recursive
neural network to combine tree structure informa-
tion and predict the operators. However, the topol-
ogy of the AST is determined in the first step with-
out tree structure information. To our best knowl-
edge, we are the first to explicitly give the model
guidance of parent and sibling nodes.

2.2 Seq2Tree Architectures

Seq2Tree-style encoder-decoder is mainly used in
two fields both of which try to bridge natural lan-
guage and a tree structured output.

Semantic parsing is the task that translates natu-
ral language text to formal meaning logical forms
or structured queries. Code generation maps a
piece of program description to programming lan-
guage source code. Dong and Lapata (2016)
first used recurrent neural networks (RNNs) based
seq2tree for semantic parsing and out performed
the seq2seq model. One drawback is that their
generation is at token level so it cannot guaran-
tee the result is syntactically correct. Grammar
rules were used to solve this problem. Another
drawback is that they needed special tokens for
predicting branches, which are not necessary for
MWPs because all operators are binary opera-
tors. The similar framework is also used in code
generation (Zhang et al., 2016; Yin and Neubig,
2017). Alvarez-Melis and Jaakkola (2017) pre-
sented doubly recurrent neural networks to predict
tree topology explicitly. Rabinovich et al. (2017)
presented a abstract syntax network that combines
edge information for code generation. Convolu-
tion neural networks (CNNs) were used for code
generation decoding because the output program
is much longer than semantic parsing and MWPs,
and RNNs suffer from the long dependency prob-
lem (Sun et al., 2018).

3 Model

Our model consists of two stages as shown in Fig-
ure 2: the encoder stage that encodes the input
natural language into a sequence of representation
vectors and the decoder stage that receives these
vectors and decodes the AST of the equation with

Equation x = 130 * ( 1 - 0.8 )
Quantities n1: 130, n2: 0.8
Template n1 * ( 1 - n2 )
Prefix template * n1 - 1 n2

Table 1: One example of prefix template

the help of an auxiliary stack.

3.1 Preprocessing

Significant Number Identification A Signifi-
cant Number Identification (SNI) unit is used for
reducing the noise in the input numbers. Signif-
icance refers to whether the number appears in
the equation. In MWPs, it is very common that
the input text contains irrelevant numbers, such as
date or descriptive text such as ‘third grade stu-
dent’. We follow Wang et al. (2017) and simply
use whether the numbers appear in the equation as
gold labels and build an LSTM-based binary clas-
sification model to determine the significance of
the input numbers. The accuracy of this unit is
99% and thus it can efficiently reduce the noise.

Prefix Order Equation Template For the out-
put equations, we first turn them into prefix order
equation templates before using them to train the
model. In Table 1 we show one example of prefix
templates. Given a problem-equation pair, we first
build the mapping between numbers in the prob-
lem and equation, ni denotes the ith number in the
problem after SNI. We use this mapping to convert
the equation into a template by replacing the num-
bers with ni tokens, and at last convert the tem-
plate into prefix order.

To be noticed, equations can be mapped to more
than one AST. For example, n1 + n2 + n3 could
be mapped to an AST with either the first + or
the second + as the root node, and in that case
the prefix order notation would also be different.
We assume the first operator is the root node of
the AST here. Further details are shown in the
appendix.

Equation Normalization One math word prob-
lem can be solved by different but equivalent equa-
tions, which bring noise during training. For ex-
ample, 10 - (8 + 5) and 10 - 8 - 5 are equivalent, but
the templates n1− (n2+n3) and n1−n2−n3 are
different. This problem is called the equation du-
plication problem. We follow Wang et al. (2018a)
and use several rules for equation normalization
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Figure 2: Framework of our seq2tree model. The blue blocks refer to the encoder. The yellow blocks refer to the
decoder. The green blocks refer to the auxiliary stack.

to alleviate the equation duplication problem. The
rules are listed below.

• If one long equation template could be con-
verted into a shorter one, then it should be
shortened. For example, n1+n2+n3+n3−
n3 and n1 + n2 + n3 are equivalent. In this
case the former one should be normalized as
the latter one.

• The order of number tokens in the template
should follow their occurrence order in the
problem text as much as possible. For ex-
ample, n1+n3+n2 should be normalized as
n1 + n2 + n3.

3.2 Encoder
Bi-directional Long Short Term Memory Network
(BiLSTM) is an efficient method to encode se-
quential information. Formally, given an input
math word problem sentence x = {xt}nt=1 , we
first embed each word into a vector et. Then these
embeddings are fed into a BiLSTM layer to model
the sequential information.

ht = (LSTM(hft−1, et);LSTM(hbt−1, et)),
(1)

where ht is the concatenation of the hidden states
hft and hbt , which are from both forward and back-
ward LSTMs. These representation vectors are
then fed into the following decoder stage.

3.3 Tree-structured Decoder
For decoding, we follow Dong and Lapata (2016)
and build a top-down hierarchical tree-structured
decoder. However, their model is built for se-
mantic parsing and some components are unnec-
essary and redundant for equation template decod-
ing. Benefited by the fact that operator nodes must

+ 	𝑛#

*

（

（

<s>

0

Figure 3: Framework of the tree structured decoder.
The yellow dotted line refers to sibling feeding. The
blue dotted line refers to previous token feeding. The
orange solid line refers to parent feeding. The dotted
line means it uses embedding information, while the
solid line means it uses the hidden state information.

have two children and number nodes must be leaf
nodes, we build a decoder which is specialized for
math equation AST, as shown in Figure 3. It ex-
tends a vanilla sequence-based LSTM decoder by
using tree-based information feeding as the input,
and also an auxiliary stack to help the model know
which is the next token to decode and automati-
cally end the decoding process without a special
token.

3.3.1 Tree-based Information Feeding
The input of each time step consists of three parts:
parent feeding, sibling feeding and previous token
feeding.

The parent feeding hparent refers to using the
LSTM hidden state of the parent node as the input
when decoding children nodes, which is shown as
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Figure 4: One example of tree-structured decoding with the auxiliary stack.

the orange solid line in Figure 3. This can let the
model be informed of the parent node status. For
the root node, this part of the input is padded as
zeros.

The sibling feeding esibling refers to using the
embedding of the left sibling node as the input
when decoding the right sibling node, which is
shown as the yellow dotted line in Figure 3. This
can let the model be informed whether we are de-
coding the left or right sibling. For the root node,
we use a special token 〈s〉 for sibling feeding. For
the left-most node, we use a special token ( for
sibling feeding.

The previous token feeding eprev refers to us-
ing the previous token in prefix order as the input
when decoding the next token, which is shown as
the blue dot line in Figure 3. This can let the model
be informed of what part is already decoded by the
tree. For the root node, we also use the special to-
ken 〈s〉 for previous token feeding.

At time step t, the input edt of the LSTM unit is
the concatenation of these three components.

edt = (hparent; esibling; eprev). (2)

3.3.2 Tree-Structured LSTM
The tree-structured decoder uses LSTM to gener-
ate the equation template in a top-down manner, as
the grey solid line in Figure 3, and use an auxiliary
stack to guide the decoding process. Given the in-
put edt shown in the previous section, we generate
the output token yt with one LSTM layer and one
Multi-layer Perceptron (MLP) layer.

hdt = LSTM(hdt−1, e
d
t ) (3)

yt = argmax(MLP (hdt )) (4)

Algorithm 1: The algorithm of using the aux-
iliary stack to guide tree decoding.

Input: Encoder Output hn
Output: The Predicted Prefix Notation

Equation Equap = {spi }
n2
i=1

1 initialize empty stack S and list Equap;
2 while S.size!=1 or S.top is not quantity do
3 generate token yt;
4 tmp = S.top;
5 S.push(yt);
6 if yt is quantity then
7 while tmp is a quantity do
8 subtree t = S.top[3];
9 S.pop;S.pop;S.pop;

10 tmp = S.top;S.push(t);
11 Equap = S.pop;

As shown in Algorithm 1 and Figure 3, if the
predicted token yt is an operator, then we predict
the left child node of the operator and push this to-
ken into the stack S. If the predicted token yt is a
quantity, we check the stack to determine which is
the next token that needs to be decoded. If the top
of the stack is an operator, then we push yt into the
stack and go on to decode the right sibling node of
the current node. If the top of S is a quantity, we
follow Algorithm 1 to find the next position to de-
code. We push yt to the stack and pop out the top
three tokens, which should be 〈op〉〈num〉〈num〉.
These three tokens form a subtree t and we regard
this subtree t as one quantity unit in the following
process. Then we examine the status of the stack
again, if the top of the stack is still a number, we
push t back to the stack and continue until the top
of the stack is not a quantity. When the loop stops,
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if the top of the stack is an operator, we push back
t and continue to decode the operator’s right child
node, and if the stack is empty, the decoding pro-
cess ends because the AST is completed. Here we
still push back the tree unit to the stack and treat
the status that only one number is in the stack as
the ending condition, which refers to line 2 in Al-
gorithm 1. In this way the condition that the first
generated token is the answer number can be uni-
fied. With the help of this stack, we can guide the
decoding process, including which token to gen-
erate next and when to stop naturally without any
special tokens.

We show one example of the decoding process
with the an auxiliary stack in Figure 4. The up-
per half part shows the status of the stack, where
the solid blocks stand for the inserted tokens. The
lower half part shows the status of the AST dur-
ing decoding, where the solid line stands for the
generated nodes and the dotted line stands for the
node that should be generated in the next step. The
decoder first generates −, +, n1 and n2 and forms
a complete subtree in the AST. This subtree +, n1
and n2 is then popped out of the stack and +n1n2
are pushed back as one unit. The model then con-
tinues to predict the sibling node of the subtree’s
root node, which is the dotted line circle in Fig-
ure 4. The top three tokens of the stack now form
a complete subtree again and is popped out of the
stack. The stack is now empty, we push it back and
the stack only contains one number unit, then the
decoding process ends and the equation template
is popped out.

3.3.3 Attention Mechanism
An attention mechanism has shown its effective-
ness in various natural language processing tasks.
We extend the decoder with an attention mecha-
nism by adjusting Equation 4. Instead of directly
using the hidden state hdt to predict the output to-
ken yt, we consider relevant information from the
input vectors to better predict yt. Formally, given
the LSTM hidden state hdt and the encoder outputs
{ht}nt=1, we calculate the attention weights αi

t and
attention vector st as follows:

st =
n∑

i=1

αi
t ·hi =

n∑
i=1

exp(hi · hdt )∑n
j=1 exp(hj · hdt )

·hi (5)

In lieu of Equation 4, we use the attention vec-
tor st, which considers relevance of the encoder
information to predict the output token yt.

4 Experiments

To demonstrate the effectiveness of our model, we
conduct experiments on the Math23K dataset. Our
method achieves the state-of-the-art (SOTA) sin-
gle model performance and also exceeds the pre-
vious ensemble model SOTA.

4.1 Dataset

Math23K Math23K is one large-scale Chinese
MWP dataset that contains 23,162 math problems
and math equation solutions. The questions are
elementary school level. Every question is linear
and contains only one unknown variable.

Although there are other large-scale datasets
such as Dolphin18K and AQuA, which are in En-
glish, they either contain many small typos (e.g.,
using x to represent ∗) or contain wrong answers
and templates. Other datasets such as ALG514
and MAWPS are much more smaller. Therefore,
we decide to conduct experiments on Math23K,
which is the only large-scale, clean and high-
quality dataset.

4.2 Implementation Details

The embedding vectors are pretrained on the train-
ing set with the word2vec algorithm. The dimen-
sion of the embedding is 128. We use a two-layer
BiLSTM with the hidden size 512 for the encoder.
The decoder is a two-layer LSTM with 1024 hid-
den size. We use a teacher forcing ratio of 0.83
during training. We use cross entropy as the loss
function and Adam to optimize the parameters.
We also use dropout to avoid over-fitting. The
batch size is 128.

4.3 Results

Table 2 shows the results of our system and other
novel systems of MWP on the Math23k test set.
The retrieval-style models compare a question
in the test set with the questions in the train-
ing set, choose the template that has the highest
similarity, and then fill in the numbers into the
template (Upadhyay and Chang, 2017; Robaidek
et al., 2018). The classification-style models train
a classifier to select an equation template, and
then map the numbers into the template (Kush-
man et al., 2014). For retrieval and classifi-
cation models, we use the results of Robaidek
et al. (2018). The generation models use end-
to-end style encoder-decoder systems to generate
an equation template and then fill in the numbers.
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Model Acc

Retrieval
Cosine (Robaidek et al., 2018) 23.8%
Jaccard (Robaidek et al., 2018) 47.2%

Classification
Self-Attention (Robaidek et al., 2018) 56.8%
Bi-LSTM (Robaidek et al., 2018) 57.9%

Generation
DNS (Wang et al., 2017) 58.1%
BiLSTM+Suffix+EN (Wang et al., 2018a) 66.7%
Semantically-Aligned† (Chiang and Chen, 2018) 65.8%
T-RNN (Wang et al., 2019) 66.9%
Ours 69.0%

Ensemble
DNS+Retrieval (Wang et al., 2017) 64.7%
DNS+suffix+EN Ensemble (Wang et al., 2018a) 68.4%
T-RNN+Retrieval (Wang et al., 2019) 68.7%

Table 2: Math word problem solving accuracy on Math23K. † denotes that the result is 5-fold cross validation
performance. All other models are tested on the test set.

Model Acc
Prefix Baseline 66.8%

+ Sibling Feeding 67.8 %
+ Parent Feeding 68.1 %

Full Model 69.5%

Table 3: Ablation study on Math23K by removing
modules.

Wang et al. (2017) proposed a DNS model, which
used seq2seq with SNI to generate an equation
template. Wang et al. (2018a) proposed a BiL-
STM+Suffix+EN model, which extends the DNS
model by decoding the suffix notation and ap-
plies equation normalization. Chiang and Chen
(2018) introduced a copy mechanism to generate
equation templates in a semantically-aligned man-
ner. T-RNN (Wang et al., 2019) extends the BiL-
STM+Suffix+EN model by first generating a tem-
plate with unknown operators and then filling in
the operators with a Recursive Neural Network.
The ensemble models use bagging to combine the
results of different models.

Our seq2tree model is also a generation-style
model. As shown in Table 2, we achieve state-of-
the-art single model performance on the test set,
and even better results than all the previous en-
semble models, which can demonstrate the effec-
tiveness of our proposed method.

Model Invalid Templates
EOS as terminator 1.3%
Stack as terminator 0.2%

Table 4: Ablation study on Math23K by using different
terminating methods.

5 Analysis and Discussion

5.1 Ablation Study

To get better insight into our seq2tree system, we
conduct ablation study on Math23K development
set, which is shown in Table 3. The prefix base-
line denotes the model that removes parent feeding
and sibling feeding, but only uses previous token
feeding for the input. Thus, this model loses par-
ent and sibling information and falls into a linear
seq2seq model based on the prefix notation. The
prefix baseline performs competitive results com-
pared to previous single model SOTA (66.9%),
which proves the effectiveness of top-down de-
coding. Parent feeding and sibling feeding sep-
arately improve the baseline model by 1.1% and
1.0%, demonstrating the importance of informing
the model of AST structure information.

In Table 4, we also report the percentage of
invalid templates by using different terminating
methods. We remove the auxiliary stack and use
a special end-of-sentence (EOS) token, which was
used in previous studies to terminate the decod-
ing process (Wang et al., 2017, 2018a). We can
see that using the stack as a terminator can let
the model generate very low percentage of invalid
templates and outperforms the EOS method.
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Problem A person is taking a trip from A to B. He took a train for n1 of the trip the first day. He
took a bus and travelled for n2 km the second day. He still needs to travel for n3 of the total
distance. How far is it from A to B?

Gold suffix order: x = n1 1 n2 - n3 - / prefix order: x = / n1 - - 1 n2 n3
Prediction BiLSTM+Suffix+EN: n1 n2 - n3 / (error) Ours: / n1 - - 1 n2 n3 (correct)

Figure 5: One example of our system compared with BiLSTM+Suffix+EN (Wang et al., 2018a).

#Operators Proportion(%) Acc(%)
0 0.1 100.0
1 17.3 82.7
2 52.2 74.5
3 19.1 59.9
4 6.6 42.4
5 3.4 44.1
6 0.9 55.6
7 0.3 0
8 0 0
9 0.1 100.0

Table 5: Accuracy of different template lengths on
Math23K.

5.2 Case Study
Here we give an example that is improved by our
tree-structured decoding system. As shown in Fig-
ure 5, in the gold equation of this example, there
is a long distance between two pairs of parent-
child nodes n1 and / and also 1 and −. The BiL-
STM+Suffix+EN model failed to capture the re-
lationship between these two pairs of parent-child
nodes and caused an error. Our model has a bet-
ter ability to capture the relation between pairs of
parent-child nodes even if there is a long distance
between them in the notation.

5.3 Error Analysis
In Table 5, we show the results of how the ac-
curacy changes as the template becomes longer.
We can see that our model’s performance becomes
very low when the equation becomes longer. This
shows that our model has limitations at predict-
ing long templates. This is because longer tem-
plates often match with more complex questions
which are more difficult to solve. Thus, this model
still has room for improvement on reasoning, in-
ference and semantic understanding. Meanwhile,
only a few examples in Math23K match with
complex templates, so introducing data augmenta-
tion techniques or constructing a new dataset with
more complex examples may further improve the

Domain Proportion(%) Acc(%)
Distance & Speed 20.5 70.2

Tracing 27.0 74.1
Engineering 5.4 64.1

Interval 0.2 50.0
Circle Geometry 1.5 33.3
Plane Geometry 1.1 81.8

Profit 0.5 40.0
Solid Geometry 1.3 46.2

Interest Rate 0.5 80.0
Production 0.4 100.0

Table 6: Accuracy of different question domains on
Math23K.

model’s performance.
In Table 6, we examine the performance of the

model in different question domains. MWPs in
the same domain usually share similar logic, while
there is an obvious difference between questions
across different domains. Accurately detecting the
question domain is very laborious, so we do this
experiment by simply detecting frequent keywords
of each domain in the question. We show fur-
ther details in the appendix. The results show that
the performance of the model has obvious vari-
ance among different domains and limitations in
some domains such as solid geometry. This is
because these domains require complicated exter-
nal knowledge for solving these questions, such as
Scircle = πr2. It is difficult for the model to au-
tomatically summarize these kinds of information
with only supervision of the equation templates.
Adding external knowledge for this task may fur-
ther improve the model.

6 Conclusion

We proposed a sequence-to-tree generative model
to improve template generation for solving math
word problems. The hierarchical top-down tree-
structure decoder can use the information of the
abstract syntax tree of an equation during decod-
ing. With the help of an auxiliary stack, this
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decoding process can end without any redundant
special tokens. Our model achieves state-of-the-
art results on the large-scale dataset, Math23k,
demonstrating the effectiveness of our approach.
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A Prefix Notation Algorithm

Algorithm 2: The algorithm of converting or-
dinary equations to its prefix notation.
Input: The Ordinary Equation String

Equa = {si}n1
i=1

Output: The Prefix Notation Equation String
Equap = {spi }

n2
i=1

12 initialize empty stack S and list Equapinv;
13 for i← n1 to 1 do
14 if si is quantity then
15 Equapinv.append(si);
16 else if si is ) then
17 S.push(si);
18 else if si is operator then
19 while True do
20 if si is prior to S.top or S.top is )

or S is empty then
21 S.push(si);
22 break;
23 else
24 Equapinv.append(S.top);
25 S.pop();
26 else if S.top is ( then
27 while S.top is not ) do
28 Equapinv.append(S.top);
29 S.pop();
30 S.pop()
31 Equap = Equapinv.inverse()

Here we show the details of the converting al-
gorithm. The input is the ordinary equation string
and the output is the prefix notation of the equa-
tion.

B Domain Keywords

We show the table of the keywords for each do-
main. These keywords were manually collected

by observation.

Domain Keywords
Distance & Speed 速 度,千 米,路 程,相

距,全程
Tracing 相 遇,相 对,相 反,相

背,相向
Engineering 工程,零件,工程队,公

路,修路
Interval 利润
Circle 半径,圆,直径,周长
Plane Geometry 三角形,正方形,长方

形,边长
Profit 间隔,隔
Solid Geometry 体 积,侧 面 积,横 截

面,表面积,圆柱,长方
体

Interest Rate 利息,利率
Production 超产,减产

Table 7: The list of keywords in the domain specific
studies.


