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Abstract

We propose a novel topic-guided coherence
modeling (TGCM) for sentence ordering. Our
attention based pointer decoder directly utilize
sentence vectors in a permutation-invariant
manner, without being compressed into a sin-
gle fixed-length vector as the paragraph repre-
sentation. Thus, TGCM can improve global
dependencies among sentences and preserve
relatively informative paragraph-level seman-
tics. Moreover, to predict the next sentence,
we capture topic-enhanced sentence-pair in-
teractions between the current predicted sen-
tence and each next-sentence candidate. With
the coherent topical context matching, we
promote local dependencies that help iden-
tify the tight semantic connections for sen-
tence ordering. The experimental results show
that TGCM outperforms state-of-the-art mod-
els from various perspectives.

1 Introduction

Modeling the coherence among sentences to com-
pute their gold order is one of the fundamen-
tal tasks in Natural Language Processing (NLP)
with many applications such as document model-
ing (Narayan et al., 2018a), extractive document
summarization (Jadhav and Rajan, 2018; Nallapati
et al., 2017), question answering (Yu et al., 2018;
Liu et al., 2017), conversational analysis (Zeng
et al., 2018), automated text generation (Guo et al.,
2018), and image captioning (Anderson et al.,
2018). The coherence helps readers to improve
reading comprehension and better understand the
intent of a document. Sentence ordering is a set-
to-sequence problem, which aims to identify the
correct order of a sentence set. To do this, various
studies on sentence ordering typically combine the
coherent features extracted from sentences.

In recent years, most of the traditional ap-
proaches to sentence ordering are designed based

on a pairwise strategy (Chen et al., 2016; Agrawal
et al., 2016; Li and Jurafsky, 2016). The sen-
tence pair ordering (SPO) models determine the
relative order within a sentence pair via neural
networks based semantic matching, which com-
putes the relevance between the two sentence vec-
tors. However, such models cause combinatorial
optimization problems because search algorithms
(e.g., beam search) are necessary to find the most
optimal permutation. Since the SPO models only
focus on the sentence-pair interactions (i.e., local
dependency), they have trouble in capturing the
interactions among three or more input sentences
(i.e., global dependency) in an entire paragraph.

More recently, state-of-the-art models aim to
put randomly sorted sentences into a coherent
paragraph with the correct order so that the whole
sentences have the highest coherence probabil-
ity (Vinyals et al., 2015a; Gong et al., 2016; Lo-
geswaran et al., 2018; Cui et al., 2018). Unlike the
SPO models, these models can perform the sen-
tence set ordering (SSO) task for an entire para-
graph based on the pointer network (Vinyals et al.,
2015b). Hierarchical RNN networks consisting of
sentence and paragraph encoders take unordered
sentences as input. They build a paragraph-level
vector representation, which represents a semantic
summary of the input sentences. Then, a pointer
network based decoder fetches the paragraph vec-
tor and iteratively outputs sentences in the correct
order. At this time, since the output sentences are
taken from the input sentences, this can solve the
combinatorial optimization problems, which the
SPO models suffer from. Also, the SSO models
can capture the global dependency among input
sentences via the paragraph vector.

Despite the successes of the SSO models, there
still exist severe limitations as shown in Figure 1.

• [L1] The conventional pointer decoders for the
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SSO task only utilize the last hidden state at the
end of paragraph encoders. The encoder always
pushes sentence information into a single fixed-
length paragraph vector, no matter how many
sentences are in the paragraph. Thus, they may
struggle with the bottleneck problem where im-
portant information between the encoder and
the decoder is shrunk. Especially, the more the
number of sentences, the more difficult to pre-
serve the global information of the paragraph.

• [L2] The attention layer repeatedly decides the
next sentence from sentence-pair interactions
between the current predicted sentence and each
paragraph-independent candidate {si}51. Thus,
they do not elaborately utilize the context of
previously predicted sentences {s1, s2, s3} and
the context of s4 conditioned on the context
of the paragraph (i.e., the shuffled sentences
{s2, s4, s5, s1, s3}), where the coherent con-
texts indicate the local information that helps
determine the tight s3-s4 interactions.

To address the above limitations, this paper pro-
poses a novel Topic-Guided Coherence Modeling
(TGCM) for sentence ordering by capturing lo-
cal and global dependencies among sentences.
Specifically, TGCM is composed of two major
components: topic-sensitive sentence encoder and
attentive pointer decoder.

To complement the structural limitations of ex-
isting RNN-based pointer decoders, which se-
quentially decode one paragraph vector, our at-
tentive pointer decoder relies entirely on the at-
tention mechanism (Vaswani et al., 2017) without
any recurrent units or convolutions. Since our de-
coder directly receives the set of sentence vectors
regardless of their input order via attention, our
encoder is free from the constraint that all sen-
tences must be compressed into a single fixed-
length vector as a paragraph representation. As a
result, the preservation of global information im-
proves the global dependencies among sentences
and provides a relatively informative paragraph-
level semantics, which can deal with the bottle-
neck problem. Moreover, TGCM can better pre-
serve the fine-grained word/sentence-level seman-
tics from the encoder to the decoder.

Instead of paragraph-independent next-sentence
candidates, the topic-sensitive sentence encoder
enriches each candidate sentence with its topical
context conditioned on the paragraph context via

paragraph
vectorshuffled 

sentences

Content-Based Attention Layer

Figure 1: Pointer decoder for sentence ordering. Based
on the paragraph vector encoded from the shuffled sen-
tences, the attention layer selects the next sentence s4
following s3 from sentence-pair interactions between
the previously predicted s3 and each candidate {si}51.

topic modeling based on Latent Dirichlet Alloca-
tion (LDA) (Blei et al., 2003). For each position of
the decoder, TGCM also incorporates the topical
context flow of previously predicted sentence se-
quence into the current predicted sentence. It then
predicts the next sentence from topic-enhanced
sentence-pair interactions with the coherent top-
ical context as local information. Consequently,
the preservation of local information promotes
the local dependencies between the current pre-
dicted sentence and each next-sentence candidate,
resulting in identifying the strongest semantic con-
nection for ordering a shuffled paragraph.

2 Related Work

The key idea of sentence modeling is to embed
each sentence into continuous vector spaces by
combining word vectors with recurrent neural net-
works (RNNs) (Mikolov et al., 2010) to capture
long-term dependencies between words and con-
volution neural networks (CNNs) (Kim, 2014) to
capture important local invariance context.

Sentence Pair Modeling: To identify the re-
lationship between given two sentences, sentence
pair modeling learns a semantic matching func-
tion based on neural networks, which extracts
their task-specific features. As a famous example,
question answering measures relevance between
question-answer pairs with a matching function
and ranks candidate answer sentences (Severyn
and Moschitti, 2016; Liu and Huang, 2016). Re-
cent models further measure the semantic simi-
larity elaborately by using multi-attention mech-
anism (Tan et al., 2018; Tay et al., 2018) and a
word-level similarity matrix (Pang et al., 2016;
Shen et al., 2017).

Another example is the SPO task. Chen et al.
(2016) compute a similarity score for each sen-
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tence pair independently. After pairwisely scor-
ing, they use a beam search algorithm to find an
optimal order for input sentences. Agrawal et al.
(2016) develop a pairwise scoring model to or-
ganize unordered image-caption pairs. However,
such models have the combinatorial optimization
problem of finding the most optimal permutation.
Moreover, they cannot capture the paragraph-level
contextual information, which indicates the global
dependency of an entire paragraph.

Sentence Set Modeling: To solve the above is-
sues, the pointer network (Vinyals et al., 2015b)
is proposed based on the sequence-to-sequence
model (Sutskever et al., 2014). The pointer net-
work consists of encoding input tokens to a sum-
mary vector, decoding next token vectors itera-
tively via content-based attention over input to-
ken vectors, and producing the output token se-
quence from the output token vectors. Inspired
by the pointer network, state-of-the-art SSO mod-
els (Vinyals et al., 2015a; Gong et al., 2016; Lo-
geswaran et al., 2018) usually employ hierarchical
RNN-based encoders to produce a paragraph vec-
tor from unordered sentences. Then, the pointer
network based decoders predict the correct sen-
tence sequence. However, the paragraph vector
depends on the permutation of input sentences.

To address the issue, ATTOrderNet (Cui et al.,
2018) employs self-attention at the encoder to cap-
ture global dependencies regardless of an input
sentence order. However, similar to traditional
models, they also compress sentence vectors into
a single fixed-length vector via average pooling.
While Our TGCM is also permutation-agnostic to
input sentences, we feed the sentence vector set
directly into the attentive pointer decoder and cap-
ture the coherent topical context in sentence-pair
interactions via topic modeling. Thus, unlike AT-
TOrderNet, TGCM can simultaneously improve
both local and global dependencies.

Topic-Aware Sentence Modeling: The com-
monly used topic model is based on LDA, which
extracts the latent topic vectors (i.e., topic distri-
butions) of words, sentences, and paragraphs from
a training corpus. Given sentences in a paragraph,
their topic latent vectors help in capturing global
topical context for the paragraph and local top-
ical context for each sentence. Therefore, topic
modeling is used in various research fields requir-
ing sentence modeling (Narayan et al., 2018b; Di-
eng et al., 2016; Gong et al., 2018). LTMF (Jin

et al., 2018) is a context-aware recommender sys-
tem, which combines LSTMs and topic modeling
before applying matrix factorization. They extract
the global context information related to words in
a user review via topic distributions.

3 The Proposed Model

In this section, we present TGCM as a novel
topic-guided coherence modeling for SSO. TGCM
can address the above-mentioned limitations [L1]
and [L2] simultaneously. We first build a topic-
distribution generating function via topic mod-
eling. Then, we describe two major compo-
nents: topic-sensitive sentence encoder and at-
tentive pointer decoder. The encoder leverages
the topic distributions of a paragraph and its sen-
tences. Then, the decoder directly utilizes them in
a permutation-agnostic manner and determines the
correct order of randomly sorted sentences.

3.1 Problem Definition

The primary goal of sentence set ordering is to
put an unordered set of sentences into a coherent
paragraph in the correct order. Specifically, given
a paragraph p, the correct sentence sequence and
its order are denoted by Sp = [s1, s2, ..., s|p|] and
Op = [os1 , os2 , ..., os|p| ], respectively, where |p|
denotes the number of sentences in p.

Given a shuffled sentence sequence, our TGCM
outputs a sentence sequence Ŝp whose order is de-
noted by Ôp. The objective of coherence model-
ing is to make the coherence probability for the
predicted order Ôp approximate to the coherence
probability for the correct order Op as follows:

P (Op|p) ≈ P (Ôp|p), (1)

where P (Op|p) and P (Ôp|p) denote the coher-
ence probabilities for Op and Ôp, respectively.

3.2 Topic Latent Vectors

Given the number of hidden topics, which is de-
noted by dt, the preprocessing of TGCM trains
a topic model on a given corpus as shown in
Figure 2. The topic model builds a generat-
ing function topicDistribution(·) based on the
probability distribution over topics for each word.
At test time, topicDistribution(·) infers the dt-
dimensional topic latent vectors tdoc (i.e., topic
distribution) of a new, unseen document doc such
as sentences and paragraphs.
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training corpus 

LDA-based
topic modeling

per-corpus topic distributions

…

topicDistribution( )

(unseen document)

( hidden topics)

Figure 2: Topic modeling on a corpus as preprocessing
of TGCM. topicDistribution(·) returns LDA-based
features, a topic latent vector tdoc of a given document.

To do this, we utilize LDA (Blei et al., 2003),
which is the most simple and popular algorithm
for topic modeling. The topic latent vectors of
sentences and paragraphs indicate the sentence-
level (local) and the paragraph-level (global) topi-
cal context via hidden topics, respectively.

3.3 Topic-Sensitive Sentence Encoder
Attention-Based bi-LSTM Layer. We leverage
an extended version of LSTMs (Hochreiter and
Schmidhuber, 1997) as our base model in Figure
3, which overcomes the gradient vanishing of ex-
isting RNNs. Particularly, attention-based bidirec-
tional LSTMs (Att-BLSTMs) (Zhou et al., 2016)
are mostly used in sentence modeling.

In this layer, we aim to produce the sentence
vector s from a given sentence s consisting of a
word sequence [w1, w2, ..., wn]. Each word wi

is encoded into a word embedding wi ∈ Rdw .
Att-BLSTMs consist of two sub-networks with
forward and backward LSTMs, which take the
word embeddings [w1,w2, ...,wn] and output se-
quences of forward and backward hidden states
[
−→
h 1,
−→
h 2, ...,

−→
h n] and [

←−
h 1,
←−
h 2, ...,

←−
h n], respec-

tively as follows:
−→
h t =

−−−−→
LSTM(Mt,

−→
h t−1),

←−
h t =

←−−−−
LSTM(Mt,

←−
h t+1),

(2)

where Mt is a set of learnable parameters. Then,
we combine the forward and backward hidden
states by an element-wise sum as follows:

hi = [
−→
h i ⊕

←−
h i]. (3)

Thus, the hidden state vectors [h1,h2, ...,hn] ∈
Rdw×n are obtained from previous LSTM layers
and fed into an attention layer as follows:

α = softmax(mT
1 tanh([h1,h2, ...,hn])),

s = [h1,h2, ...,hn]αT ,
(4)

…

sentence sentence sentence 

…

shuffled paragraph 
(sentence sequence)

Attention-Based
bi-LSTM

Word Embedding

Attention-Based
bi-LSTM

Word Embedding

Attention-Based
bi-LSTM

Word EmbeddingtopicDistribution(·)

…

…

…

…

… …

…

…

element-wise 
multiplication

input

…

Linear Linear Linear

topic-sensitive 
sentence vectors

(permutation-agnostic)

Figure 3: Architecture of topic-sensitive sentence en-
coder. The encoder takes a shuffled paragraph con-
sisting of {s2, s|p|, ..., s1} and outputs {s̃2, s̃|p|, ..., s̃1}
from their vectors and topic latent vectors of the para-
graph and sentences. The outputs are directly utilized
in a decoder without being compressed into a vector.

where m1 ∈ Rdw and α ∈ Rn denote a weight
vector and resulting attention weights, respec-
tively. s ∈ Rdw is the final sentence vector of s,
which is computed by a weighted sum between the
hidden state vectors and the attention weights.

Topic-Sensitive Sentence Vectors. As shown
in Figure 3, our topic-sensitive sentence encoder
takes a shuffled paragraph p as input, which con-
sists of unordered sentences {si}|p|1 . We create
sentence vectors si for all sentences si with the
attention-based bi-LSTMs. In addition, topic la-
tent vectors tp ∈ Rdt and tsi ∈ Rdt are generated
by topicDistribution(·) for p and si, where dt
denotes the number of latent topics.

During the encoding of TGCM, we multiply tsi
and tp for each sentence si to weight the coherent
latent topics that appear simultaneously in both the
sentence and the paragraph. The topic latent vec-
tor tsi captures how topical a sentence si is in it-
self (local context), whereas the topic latent vector
tp representes the overall theme of a paragraph p
(global context). Thus, the encoder can extract the
paragraph-level context relating to each sentence
by enriching the context of the sentence with its
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topical relevance to the paragraph as follows:

(tp ⊗ tsi) ∈ Rdt ; si ∈ {s1, s2, ..., s|p|}, (5)

where the operation ⊗ indicates an element-wise
multiplication. To combine tp ⊗ tsi with the sen-
tence vectors si, we apply two linear transforma-
tions with a ReLU activation to each tp ⊗ tsi sep-
arately. Then, the transformed vectors are added
with the corresponding sentence vectors as fol-
lows:

s̃i = max(0, (tp⊗tsi)ᵀW1+b1)W2+b2+si, (6)

where s̃i ∈ Rdw denotes a topic-sensitive sentence
vector. Thus, the global topical context relating
to the local topical context of each sentence is in-
corporated into the corresponding sentence vector.
This helps our pointer decoder for next-sentence
predictions to guide the semantic connection be-
tween a predicted sentence and its next sentence
by considering coherent topical context flow.

3.4 Attentive Pointer Decoder

As shown in Figure 4, we build the attentive
pointer decoder based on the decoder of Trans-
former (Zhou et al., 2016) and the pointer net-
work (Narayan et al., 2018b). The pointer net-
work determines next token vectors iteratively via
content-based attention over input token vectors.
For coherent topical context matching, our de-
coder is mainly composed of a stack of n attention
modules relying entirely on attention which have
been attracted as a promising technique in many
sequence-based tasks (Bahdanau et al., 2014).

Existing SSO models utilized RNN-based de-
coders cannot pass encoded sentence vectors be-
cause their decoders sequentially decode one para-
graph vector. Attention mechanisms allow each
sentence in a different position to link other sen-
tences regardless of the order and number of in-
put sentences. Thus, our attention based pointer
decoder directly utilize the topic-sensitive sen-
tence vectors {s̃2, s̃|p|, s̃3, ..., s̃1} in a permutation-
agnostic manner (global information). This allows
our model to avoid bottleneck problems which
dilute word/sentence semantics between encoder
and decoder and fully utilize the semantics for sen-
tence ordering.

Moreover, Our attentive pointer decoder can
capture topic-enhanced sentence-pair interactions
between the current predicted sentence and

topic-sensitive 
sentence vectors

…

…

predicted sentence sequence
(shifted right)

Masked Multi-Head 
Self-Attention

Add & Normalization

repeat
n times

Feed
Forward

Multi-Head Attention

Add & Normalization

inject
n times

…Feed
Forward

Feed
Forward

probabilistic distribution

Attention

1st input

(permutation-agnostic)

coherent topical 
context matching

2nd input
3rd input

Linear Linear Linear

Add & Normalization

…

…

Figure 4: Architecture of attentive pointer decoder. The
decoder fetches permutation-agnostic topic-sensitive
sentence vectors {s̃2, s̃|p|, s̃3, ..., s̃1} from the encoder.
For coherent topical context modeling, at the 3rd step,
a stack of n attention modules position-wisely takes
{→, s1, s2} and newly created topic latent vectors
{t∅, ts1 , ts1,s2}, where t∅ denotes a zero vector. The
topic vectors are generated by incrementally including
previously predicted {s1, s2}, The attention layer out-
puts a probabilistic distribution over encoder outputs
{s̃2, s̃|p|, s̃3, ..., s̃1} and select the next sentence s3.

encoder outputs {s̃2, s̃|p|, s̃3, ..., s̃1}) as next-
sentence candidates. With the coherent topical
context (local information) matching, we promote
local dependencies for identifying the tight seman-
tic connections for sentence ordering.

Coherent Topical Context Matching. Our at-
tentive pointer decoder employs a stack of atten-
tion modules identical with the decoder of Trans-
former (Zhou et al., 2016) for the coherent topi-
cal context matching. Given query Q ∈ Rn×dm ,
key K ∈ Rn×dm , and value V ∈ Rn×dm , the
attention mechanism computes the output matrix
Outatt ∈ Rn×dm obtained from the value matrix
V with an attention weight α as follows:

α = softmax(
QKᵀ

√
dk

), Outatt = αV, (7)

where α is calculated with the query-key pair by
the scaled dot product. Note that self-attention is
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the case when all query, key, and value matrices
are the same. Masked attention, a variant of at-
tention, masks out all positions after the current
position by arbitrarily setting a large value (−∞)
in the softmax function.

Firstly, for the coherent topical context match-
ing, we position-wisely feed previously predicted
sentence vectors and their newly created topic
latent vectors to the masked multi-head self-
attention sub-layer. In that, each topic latent vector
is generated by topicDistribution(·) with pre-
dicted sentences in all positions before the current
position. Thus, we incorporate the topical context
flow of the previously predicted sentence sequence
into the corresponding predicted sentence vector.

After a residual connection (He et al., 2016) and
layer normalization (Lei Ba et al., 2016), the re-
sulting vectors are injected as the query matrix
Q into the multi-head attention sub-layer. The
sub-layer also takes permutation-agnostic topic-
sensitive sentence vectors obtained from our en-
coder as the key and value matrices K and V.
We follow Transformer for the remaining coherent
topical context matching process, including multi-
head attention strategy. As a result, with the mul-
tiple attention modules, TGCM draws global de-
pendencies among sentences by attending over the
topic-sensitive sentence vectors repeatedly.

Probabilistic Distribution for Ordering. At the
ith step, the attention module of the decoder takes
previously predicted sentences {s̃1, ..., s̃i−1} and
s̃0 for the token ”→” as inputs. After repeating
the attention module n times, we then utilize the
dw-dimensional output vector ci−1 corresponding
to the (i − 1)th decoder position. As shown in
Figure 4, at the 3rd step, the output vector (c3) of
the 3rd position is fed into the final attention layer
as like in conventional pointer decoders.

In the final attention layer, for the output vector
ci of the attention modules, TGCM produces an
output distribution over topic-sensitive sentence
vectors {s̃1, s̃2, ..., s̃|p|} obtained from encoder via
content-based attention as follows:

uj
i = vᵀ

a tanh(Wa

[
s̃j
ci

]
), (1 < j < |p|),

P (ôi|ô<i, s̃1, s̃2, ..., s̃|p|) = softmax(ui),

(8)

where ôi denotes the order of the ith position.
Wa ∈ Rd×2d vᵀ

a ∈ Rd denote the weight ma-
trix and vector, respectively, which are shared in
all positions. Thus, we can select the correct next

Train Valid Test #Voca.

NIPS abstract 2,248 (5.91) 409 (5.95) 402 (5.86) 16,721
ANN abstract 8,569 (4.83) 962 (4.84) 2626 (4.97) 34,485
NSF abstract 96,070 (8.68) 10,185 (8.73) 21580 (8.63) 334,090
arXiv abstract 884,912 (5.38) 110,614 (5.39) 110,615 (5.37) 64,557
SIND 40,155 (5) 4,990 (5) 5,055 (5) 30,861

Table 1: The number of paragraphs, average sentences
(in parentheses), and vocabulary size of 5 datasets.

sentence si that yields the highest probability from
the output distribution.

Finally, the selected sentence vector si is fed
into the decoder along with previously selected
sentences {s1, s2, ..., si−1} and newly created
topic latent vectors {t∅, ts1 , ts1,s2 , ..., ts1,...,si} as
inputs at the (i+ 1)th step.

Training. For each correct sentence sequence, we
sample 5 shuffled sentence sequences at training
phase. Following the typical sentence ordering
models, we train parameters of our model to max-
imize the coherence probability by minimizing the
loss function as follows.

L = − 1

|D|
logP (Ôp|p,Θ) +

λ

2
||Θ||22, (9)

where Θ and λ denote a set of trainable parameters
and a regularization parameter, respectively.

4 Experimental Setup

The parameters of TGCM were tuned by the RM-
SProp1 optimizer, which adaptively adjusts the
learning rate for each parameter and resolves the
problem of Adagrad (Duchi et al., 2011) where the
learning rate radically decreases or increases.

All experiments were implemented in Python
using TensorFlow (Abadi et al., 2016), which sup-
ports the GPU-accelerated deep learning. We
also utilized Natural Language Toolkit2 (NLTK)
(Loper and Bird, 2002) for sentence tokenization
and data preprocessing, and Gensim3 for LDA-
based topic modeling. The word embeddings were
initialized with pre-trained GloVe vectors of di-
mension dw = 200, trained by GloVe (Penning-
ton et al., 2014). We trained our LDA-based topic
model for each dataset with its training, valid, and
test corpora.

1http://www.cs.toronto.edu/˜tijmen/
csc321/slides/lecture_slides_lec6.pdf

2https://www.nltk.org/
3https://radimrehurek.com/gensim/

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.nltk.org/
https://radimrehurek.com/gensim/
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4.1 Datasets
We first conducted our experiments on commonly
used 4 abstract datasets: NIPS, ANN (Wang et al.,
2018), NSF, and arXiv (Chen et al., 2016), which
contain abstracts of research papers. The abstracts
datasets collected from NIPS papers, ACL Anthol-
ogy Network (AAN) corpus, NSF Research Award
abstract, and arXiv website, respectively. Ab-
stracts have the logical consistency of high qual-
ity, which helps coherence modeling for sentence
ordering. We further considered the Sequential
Image Narrative Dataset (SIND) (Huang et al.,
2016), which consists of personal multimodal sto-
ries consisting of five sentences per story. We
did not utilize accident and earthquake datasets
(Barzilay and Lapata, 2008) because the datasets
are too small and do not provide the validation set.
Following the setup in (Logeswaran et al., 2018),
we split undivided datasets for training, validation,
and test. Table 1 shows the details of the 5 datasets
used in our experiments.

4.2 Evaluation Metrics
Following the evaluation metrics widely used in
previous SPO and SSO models, we adopted three
metrics to assess sentence ordering performance:
Kendall’s tau, perfect match ratio, and positional
accuracy.

Kendall’s tau (τ ): Kendall’s tau (Lapata, 2003,
2006) measures the ordinal association between
two sequences to automatically evaluate coher-
ence modeling as follows:

τ =
1

|D|
∑
i∈|D|

2× inversions(Opi , Ôpi)

|pi|(|pi| − 1)/2
, (10)

where |D| and |pi| denote the total number of para-
graphs in a test dataset D and the number of sen-
tences in a paragraph pi, respectively. The func-
tion inversions(Opi , Ôpi) returns the number of
sentence-pair interchanges for reconstructing the
correct order Opi from the predicted order Ôpi .
The value ranges from -1 to 1. A higher value
indicates better performance. The evaluation met-
ric closely correlates with user ratings and reading
times, which are related with the readability.

Perfect Match Ratio (PMR in %): The perfect
match ratio is the ratio of exactly matching orders
across all predicted paragraphs as follows:

PMR =
1

|D|
∑
i∈|D|

I(Opi = Ôpi), (11)

where I(Opi = Ôpi) denotes the indicator func-
tion, which returns 1 if the correct sentence order
Opi and the predicted sentence order Ôpi are iden-
tical and 0 otherwise.

Positional Accuracy (PAcc in %): The positional
accuracy is defined as the ratio of the matched
sentence-level absolute positions between the pre-
dicted and correct orders as follows:

PAcc =
1

|D|
∑
i∈|D|

∑
j∈|pi|

I(osj = ôsj ) (12)

where osj denotes the absolute position of sen-
tence sj in the correct sequence Sj . Likewise, ôsj
denotes the absolute position of sentence sj in the
predicted sequence Ŝj . I(osj = ôsj ) denotes the
indicator function equal to 1 if osj = ôsj and 0
otherwise.

4.3 Hyperparameters

For LDA-based topic modeling, we decided its hy-
perparameters β and dt with a grid search on each
dataset. Following Griffiths and Steyvers (2004),
we kept α = 0.1 and β = 50/dt constantly and
obtained the best results with dt = 300 for all ab-
stract datasets and dt = 200 for SIND. We initially
configured dw = 200 with the Glove vectors and
updated the word vectors during training. For our
attentive pointer decoder, we followed the same
hyperparameters in Transformer and used a learn-
ing rate of 0.01. Other parameters were initialized
randomly based on He et al. (2015).

5 Experimental Results

This section reports experimental results on the
sentence ordering task for determining a co-
herent order of a given sentence. The pro-
posed TGCM was compared with state-of-the-
art methods as baselines such as Pairwise Model
(Chen et al., 2016), Seq2seq (Logeswaran et al.,
2018), RNN Decoder (Logeswaran et al., 2018),
V-LSTM+PtrNet (Logeswaran et al., 2018),
CNN+PtrNet (Gong et al., 2016), LSTM+PtrNet
(Gong et al., 2016), and ATTOrderNet (Cui et al.,
2018). Here, except the random model, all of
the baselines are based on neural networks, which
are typically more competitive than traditional ap-
proaches (e.g., utilizing handcraft features). For
the LDA-based topic model in our preprocessing,
we obtained the topic distributions of words by
learning their relative importance for each topic.
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NIPS abstract ANN abstract NSF abstract arXiv abstract SIND

τ PMR PAcc τ PMR PAcc τ PMR PAcc τ PMR PAcc τ PMR PAcc

Random Model 0 7.53 15.59 0 8.07 19.36 0 5.42 9.46 0 8.07 14.11 0 6.05 9.32
Pairwise Model 0.47 19.72 26.63 0.58 21.54 41.82 0.25 13.56 15.51 0.66 33.43 50.79 0.32 10.43 30.75
Seq2seq 0.27 14.39 21.18 0.40 18.09 36.62 0.10 11.63 13.68 0.52 29.43 45.67 0.21 8.64 26.18
RNN Decoder 0.67 23.31 48.22 0.66 21.31 52.06 0.48 14.87 25.79 0.66 35.53 48.31 0.38 10.68 31.53
V-LSTM+PtrNet 0.72 27.87 51.55 0.73 29.79 58.06 0.51 18.53 28.33 0.72 41.74 55.90 0.45 13.44 35.26
CNN+PtrNet 0.66 26.79 48.64 0.69 26.65 58.21 0.52 16.73 33.22 0.71 39.28 52.92 0.48 12.32 35.52
LSTM+PtrNet 0.67 28.20 50.87 0.69 30.41 58.20 0.52 19.53 32.45 0.72 40.44 54.31 0.48 12.34 34.45
ATTOrderNet 0.72 29.87 56.09 0.73 32.11 63.24 0.55 21.35 37.72 0.73 42.19 56.11 0.49 14.01 36.24

TGCM-S 0.72 29.02 57.67 0.74 34.14- 64.65 0.53 21.09 39.15 0.73 42.51 55.16 0.51 14.41 36.75
TGCM 0.75 31.44 59.43 0.75 36.69 65.16 0.55 22.35 42.67 0.75 44.28 58.31 0.53 15.18 38.71

Table 2: Performance of neural networks based models on the sentence ordering task. Best results are in boldface.

arXiv SIND

Head Tail Head Tail

Random Model 23.06 23.16 22.78 22.56
Pairwise Model 84.85 62.37 - -
CNN+PtrNet 89.43 65.36 73.53 53.26
LSTM+PtrNet 90.47 66.49 74.66 53.30
ATTOrderNet 91.00 68.08 76.00 54.42

TGCM-S 91.15 67.93 77.34 54.64
TGCM 92.46 69.45 78.98 56.24

Table 3: Performance of predicting the correct head
and tail sentences on arXiv and SIND. The results are
directly taken from (Cui et al., 2018).

We could infer the topic latent vectors of new doc-
uments at the test phases.

Given a shuffled sentence sequence, the main
goal is to find the most coherent sentence se-
quence. The coherence probability of a predicted
sentence sequence is approximated to the coher-
ence probability of a correct sentence sequence. In
Table 2-3, the several values of some models are
directly taken from (Cui et al., 2018), while we
implemented the rest of models using their pub-
lic code with the same experimental setup. Some
methods do not release their implemented codes
and so were implemented. In the case of the lat-
est model ATTOderNet, we only utilized the high-
performance model among three versions.

We discuss the reason for our highest perfor-
mance among previous models by classifying the
factors affecting performance into four categories:
sentence set modeling, topic latent vectors, permu-
tation invariance, and attention at decoder.

5.1 Impact of Sentence Set Modeling

This is related to the global dependencies of an
entire paragraph. We observed that the perfor-
mances of the random model and the pairwise

model (Chen et al., 2016) were the worst. The
pairwise model only learns the relative order from
sentence-pair interactions. Since the two models
do not consider all sentences at a time, they can-
not leverage paragraph-level information. In other
words, they cannot capture the global dependen-
cies that help sentence ordering.

5.2 Impact of Topic Latent Vectors

Furthermore, we evaluated the variant version of
TGCM, referred to TGCM-S, where the encoder
of TGCM-S do not combine topic latent vectors
and original sentence vectors. Also, the decoder
of TGCM-S do not take newly created topic la-
tent vectors. This allows us to explore whether
the topic latent vectors actually help the sentence
ordering task. Since TGCM-S cannot perform
coherent topical context matching, TGCM-S do
not elaborately capture the local dependencies,
which help to identify tight semantic connections
between the current predicted sentence and each
next-sentence candidate.

As shown in the Tables 2-3, full TGCM outper-
formed TGCM-S which employs only attention-
based bi-LSTMs without topic modeling. Al-
though TGCM-S do not utilize topical context
features at encoder and decoder (such as tp and
ts), TGCM-S also employs the transformer-based
attentive pointer decoder. Thus, we found that
topic modeling additionally contributes to model-
ing sentences through global topical context relat-
ing to local topical context of each sentence, re-
sulting in improving the sentence ordering perfor-
mance.

5.3 Impact of Permutaion Invariance

Compared to ATTOrderNet and our TGCM, the
performance of other models was relatively low.
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The conventional models typically adopt hierar-
chical RNN-based encoders, which combine sen-
tence vectors sequentially and generate paragraph-
level representation as a vector. Since they are de-
pendent on the permutation of the input sentences,
their paragraph-level representations are not reli-
able.

On the other hand, self-attention-based AT-
TOrderNet (encoder side) and attention-based our
TGCM/TGCM-S (decoder side) use a set of sen-
tence representations in a permutation-invariant
manner rather than a single vector to represent a
paragraph. Thus, these models can capture global
dependencies regardless of the order of input sen-
tences. The outputs of their encoder are more in-
formative and reliable for improving the sentence
ordering performance.

5.4 Impact of Attention at Decoder

This is related to solving the bottleneck problem
by enhancing the expressiveness of the decoder’s
input and capturing the global and local dependen-
cies among input sentences simultaneously.

Table 2-3 show that ATTOrderNet and TGCM,
which utilize an attention mechanism, perform
much better than all the other models. With an
encoder employing self-attention mechanism, AT-
TOrderNet can capture some global dependencies
with the reliable paragraph-level representation re-
gardless of their input order. However, since AT-
TOrderNet also compresses sentence vectors into
a single fixed-length paragraph vector via an aver-
age pooling layer, the word/sentence-level seman-
tics from the encoder to the decoder are diluted.

In contrast to ATTOrderNet, TGCM feeds the
sentence vectors directly into a decoder without
compressing them into a single vector. Then, the
attention mechanism allows our decoder to receive
and utilize the sentence vectors, regardless of the
order and number of sentences. As a result, since
our TGCM could elaborately capture both local
and global dependencies simultaneously, TGCM
showed the best sentence ordering performance
among all comparative models on all datasets.

6 Conclusions

We propose TGCM which better preserves lo-
cal and global information for sentence ordering.
Our attentive pointer decoder fully utilizes the se-
mantics of sentence vectors without being com-
pressed into a paragraph vector. Our sentence

encoder produces topic-sensitive sentence vectors
via topic modeling. With the coherent topical con-
text matching between the current predicted sen-
tence and each next-sentence candidate, we pro-
mote local dependencies that help identify the
tight semantic connections. The empirical results
on sentence ordering demonstrate that TGCM out-
performs state-of-the-art models.
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