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Abstract

In natural language inference (NLI), contexts
are considered veridical if they allow us to
infer that their underlying propositions make
true claims about the real world. We inves-
tigate whether a state-of-the-art natural lan-
guage inference model (BERT) learns to make
correct inferences about veridicality in verb-
complement constructions. We introduce an
NLI dataset for veridicality evaluation con-
sisting of 1,500 sentence pairs, covering 137
unique verbs. We find that both human and
model inferences generally follow theoretical
patterns, but exhibit a systematic bias towards
assuming that verbs are veridical–a bias which
is amplified in BERT. We further show that,
encouragingly, BERT’s inferences are sensi-
tive not only to the presence of individual verb
types, but also to the syntactic role of the verb,
the form of the complement clause (to- vs.
that-complements), and negation.

1 Introduction

A context is veridical when the propositions it
contains are taken to be true, even if not explic-
itly asserted. For example, in the sentence “He
does not know that the answer is 5”, “know” is
veridical with respect to “The answer is 5”, since
a speaker cannot felicitously say the former sen-
tence unless they believe the latter proposition to
be true. In contrast, “think” would not be veridical
here, since “He does not think that the answer is
5” is felicitous whether or not it is taken to be true
that “The answer is 5”. Understanding veridical-
ity requires semantic subtlety and is still an open
problem for computational models of natural lan-
guage inference (NLI) (Rudinger et al., 2018).

This paper deals specifically with veridicality
in verb-complement constructions. Prior work
in this area has focused on characterizing verb
classes–e.g. factives like “know that” (Kiparsky

and Kiparsky, 1968) and implicatives like “man-
age to” (Karttunen, 1971)–and on incorporating
such lexical semantic information into computa-
tional models (MacCartney and Manning, 2009).
However, increasingly, linguistic evidence sug-
gests that inferences involving veridicality rely
heavily on non-lexical information and are better
understood as a graded, pragmatic phenomenon
(de Marneffe et al., 2012; Tonhauser et al., 2018).

Thus, in this paper, we revisit the question
of whether neural models of natural language
inference–which are not explicitly endowed with
knowledge of verbs’ lexical semantic categories–
learn to make inferences about veridicality consis-
tent with those made by humans. We solicit hu-
man judgements on 1,500 sentence pairs involv-
ing 137 verb-complement constructions. Analy-
sis of these annotations provides new evidence of
the importance of pragmatic inference in model-
ing veridicality judgements. We use our collected
annotations to analyze how well a state-of-the-art
NLI model (BERT, Devlin et al., 2018) is able to
mimic human behavior on such inferences. The
results suggest that, while not yet solved, BERT
represents non-trivial properties of veridicality in
context. Our primary contributions are:

• We collect a new NLI evaluation set of 1,500
sentence pairs involving verb-complement
constructions (§4).1

• We discuss new analysis of human judge-
ments of veridicality and implications for
NLI system development going forward (§5).

• We evaluate the state-of-the-art BERT model
on these inferences and present evidence that,
while there is still work to be done, the

1https://github.com/alexisjihyeross/
verb_veridicality

https://github.com/alexisjihyeross/verb_veridicality
https://github.com/alexisjihyeross/verb_veridicality
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model appears to capture non-trivial proper-
ties about verbs’ veridicality in context (§6).

2 Background and Related Work

There is significant work, both in linguistics and
NLP, on veridicality and closely-related topics
(factuality, entailment, etc). We view past work
on veridicality within NLP as largely divisible into
two groups, which align with two differing per-
spectives on the role of the NLI task: the sentence-
meaning perspective and the speaker-meaning per-
spective. Briefly, the sentence meaning approach
to NLI takes the position that NLP systems should
strive to model the aspects of a sentence’s seman-
tics which are closely derivable from the lexicon
and which hold independently of context (Zaenen
et al., 2005). In contrast, the speaker meaning ap-
proach to NLI takes the position that NLP sys-
tems should prioritize representation of the goal-
directed meaning of a sentence within the context
in which it was generated (Manning, 2006). Work
on veridicality which aligns with the sentence-
meaning perspective tends to focus on charac-
terizing verbs according to their lexical seman-
tic classes (or “signatures”), while work which
aligns with the speaker-meaning approach focuses
on representing “world knowledge” and evaluat-
ing inferences in naturalistic contexts.

Lexical Semantics (Sentence Meaning). Most
prior work treats veridicality as a lexical semantic
phenomenon. Such work is largely based on lex-
icons of verb signatures which specify the types
of inferences licensed by individual verbs (Kart-
tunen, 2012; Nairn et al., 2006; Falk and Martin,
2017). White and Rawlins (2018); White et al.
(2018) evaluated neural models’ ability to carry
out inferences in line with these signatures, mak-
ing use of templatized “semantically bleached”
stimuli (e.g. “someone knew something”) in order
to avoid confounds introduced by world knowl-
edge and pragmatic inference. McCoy et al.
(2019) perform a similar study, though without
specific focus on veridicality lexicons.

Most applied work related to veridicality also
falls under the lexical semantic approach. In
nearly all cases, relevant system development in-
volves explicit incorporation of verb lexicons and
associated logical inference rules. MacCartney
and Manning (2009); Angeli and Manning (2014);
and others incorporated knowledge of verb signa-
tures within a natural logic framework (MacCart-

ney, 2009; Sánchez Valencia, 1991) in order to
perform natural language inference. Richardson
and Kuhn (2012) incorporated signatures into a se-
mantic parsing system. Several recent models of
event factuality similarly make use of veridicality
lexicons as input to larger machine-learned sys-
tems for event factuality (Saurı́ and Pustejovsky,
2012; Lotan et al., 2013; Stanovsky et al., 2017;
Rudinger et al., 2018). Cases et al. (2019) used
nested veridicality inferences as a test case for a
meta-learning model, again assuming verb signa-
tures as “meta information” known a priori.

Pragmatics (Speaker Meaning). Geis and
Zwicky (1971) observed that implicative verbs
often give rise to “invited inferences”, beyond
what is explainable by the lexical semantic type
of the verb. For example, on hearing “He did not
refuse to speak”, one naturally concludes that “He
spoke” unless additional qualifications are made
(e.g. “...he just didn’t have anything to say”).
de Marneffe et al. (2012) explored this idea in
depth and presented evidence that such pragmatic
inferences are both pervasive and annotator-
dependent, but nonetheless systematic enough
to be relevant for NLP models. Karttunen et al.
(2014) makes similar observations specifically in
the case of evaluative adjectives, and Pavlick and
Callison-Burch (2016) specifically in the case of
simple implicative verbs. In non-computational
linguistics, Simons et al. (2017, 2010); Tonhauser
et al. (2018) take a strong stance and argue that
veridicality judgements are entirely pragmatic,
dependent solely on the question under discussion
(QUD) within the given discourse.

This Work. This paper assumes the speaker-
meaning approach: we take the position that mod-
els which consistently mirror human inferences
about veridicality in context can be said to un-
derstand veridicality in general. We acknowledge
that the question of what is the “right” approach to
NLI has existed since the original definition of the
recognizing textual entailment (RTE) task (Dagan
et al., 2006) and remains open. However, there
has been a de facto endorsement of the speaker-
meaning definition, evidenced by the widespread
adoption of NLI datasets which favor informal,
“natural” inferences over prescriptivist annotation
guidelines (Manning, 2006; Bowman et al., 2015;
Williams et al., 2018). (Note, recently, there have
been explicit endorsements as well; see Westera
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Factive He realized that he had to leave this house. → He had to leave this house.
[+/+] He did not realize that he had to leave this house. → He had to leave this house.

Implic. At that moment, I happened to look up. → At that moment, I looked up.
[+/−] At that moment, I did not happen to look up. → ¬ At that moment, I looked up.

Implic. He refused to do the same. → ¬ He did the same.
[−/◦] He did not refuse to do the same. 6→ He did the same.

NA Many felt that its inclusion was a mistake. 6→ Its inclusion was a mistake.
[◦/◦] Many did not feel that its inclusion was a mistake. 6→ Its inclusion was a mistake.

Table 1: Examples of several verb signatures and illustrative contexts for each. Signature s1/s2 denotes that the
complement will project with polarity s1 in a positive environment and polarity s2 in a negative environment.

and Boleda (2019)). Thus, from this perspective,
we ask: do NLI models which are not specifically
endowed with lexical semantic knowledge pertain-
ing to veridicality nonetheless learn to model this
semantic phenomenon?

3 Projectivity and Verb Signatures

Veridicality is typically treated as a lexical seman-
tic property of verbs, specified by the verb’s sig-
nature. These signatures can indicate that a verb
licenses positive (+), negative (−), or neutral (◦)
inferences. Specifically, Karttunen (2012) defines
these as two-bit signatures, to reflect that verbs2

may behave differently in positive vs. negative
environments. For example, a factive verb con-
struction like “know that” has a +/+ signature,
indicating that the complement projects positively
in both positive and negative environments. That
is, both “He knows that the answer is 5” and
“He does not know that the answer is 5” imply
that “The answer is 5”. In contrast, a verb like
“manage to” has the signature +/− since, in a
positive environment, the complement projects (“I
managed to pass”→“I passed”) but, in a neg-
ative environment, the negation of the comple-
ment projects (“I did not manage to pass”→ ¬“I
passed”). Other verbs may exhibit veridicality
only in positive or negative environments but not
in both. For example, “refuse to” has signature
−/◦: “She refused to dance”→ ¬“She danced”,
but “She did not refuse to dance” neither implies
nor contradicts the claim “She danced”. Still
other verbs are entirely non-veridical (◦/◦). For
example, “hope to” is not expected to license any
inferences about the truth of its complement. We

2Karttunen (2012) actually discusses these signatures for
implicative verbs only. We adopt the notation, but use it in
for factives and uncategorized verbs as well.

consider 8 signatures3 in total. Table 1 provides
several examples. Table 2 lists all of the signatures
and the corresponding verbs we consider.

4 Data

For our analysis, we collect an NLI dataset for
veridicality evaluation derived from the MNLI
corpus. This data is publicly available at https:
//github.com/alexisjihyeross/
verb_veridicality.

4.1 Generating NLI Pairs
We generate NLI-style premise/hypothesis pairs
based on sentences drawn from the train+dev
splits of the MultiNLI (Williams et al., 2018)
corpus. Specifically, we collect all sentences
appearing in MNLI4 which contain any verb-
complement construction, e.g. any sequence
matching the pattern: verb {“to”|“that”}
{VP|S}. Since we aim to manipulate the environ-
ment (positive vs. negative) ourselves in a con-
trolled manner, we filter out sentences which al-
ready contain explicit negation words (e.g. “no”,
“not”, “never”, “n’t”), conditionals (“if”), and
passive constructions (“was intended to”). From
the selected sentences, we take a stratified sample
over the lemma of verb. For use in later analysis,
we associate each lemma with a signature using
a manually-curated dictionary5 of implicative and
factive verbs, and assign the signature of ◦/◦ to
verbs which do not appear in the dictionary. We
sample a set of sentences for every lemma, taking

3Seven from http://web.stanford.edu/
group/csli_lnr/Lexical_Resources/, plus ◦/◦.

4We removed sentences from the telephone genre, since
the parses on these tended to be noisy and thus our manipula-
tions often yielded incorrect or difficult to interpret sentences.

5http://web.stanford.edu/group/csli_
lnr/Lexical_Resources/

https://github.com/alexisjihyeross/verb_veridicality
https://github.com/alexisjihyeross/verb_veridicality
https://github.com/alexisjihyeross/verb_veridicality
http://web.stanford.edu/group/csli_lnr/Lexical_Resources/
http://web.stanford.edu/group/csli_lnr/Lexical_Resources/
http://web.stanford.edu/group/csli_lnr/Lexical_Resources/
http://web.stanford.edu/group/csli_lnr/Lexical_Resources/
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no more than 40 sentences per lemma, and weight-
ing our sampling to prefer shorter sentences, in or-
der to reduce cognitive load on our raters.

+/+ realize that (34) know that (32) remember that (17) find that (12)
notice that (12) reveal that (12) acknowledge that (11) admit that (11) learn
that (11) observe that (11) see that (11) note that (10) recognize that (10)
understand that (10) discover that (8) +/− manage to (30) begin to (12)
serve to (11) start to (11) dare to (8) use to (7) get to (6) come to (5) −/+
forget to (15) fail to (10) ◦/+ suspect that (11) explain that (10) mean
to (10) predict that (10) ◦/− attempt to (28) −/◦ refuse to (36) decline
to (12) remain to (7) +/◦ show that (12) confirm that (11) demonstrate
that (10) ensure that (9) help to (9) tend to (8) ◦/◦ try to (34) hope that
(20) hope to (18) mention that (14) like to (12) continue to (12) expect that
(12) agree that (12) love to (12) reply that (12) conclude that (12) say that
(12) complain that (12) speculate that (12) state that (12) suggest that (12)
worry that (12) mean that (12) intend to (11) insist that (11) imply that (11)
indicate that (11) plan to (11) promise to (11) prove to (11) saw that (11)
seem that (11) tell that (11) think that (11) felt that (11) write that (11)
decide to (11) assume that (11) believe that (11) assert that (11) concern
that (11) estimate that (11) convince that (11) decide that (11) appear that
(11) argue that (11) aim to (11) cease to (10) strive to (10) proceed to (10)
choose to (10) seem to (10) prove that (10) provide that (10) seek to (10)
appear to (10) comment that (10) contend that (10) want to (10) doubt that
(10) feel that (10) fear that (10) agree to (10) announce that (9) claim that
(9) struggle to (9) hear that (9) propose to (9) wish to (9) say to (9) turn to
(8) wish that (8) work to (8) advise that (8) move to (8) claim to (8) expect
to (8) report that (8) happen to (8) propose that (8) hold that (8) declare that
(8) prefer to (8) need to (8) give that (7) deserve to (7) threaten to (7) exist
to (7) be that (7) prepare to (6) wait to (6) pretend to (6) ask to (6) return to
(6) request that (5) demand that (4) recommend that (4) require that (4)

Table 2: 137 verbs belonging to 8 signatures. Paren-
theses denote number of contexts in which each verb
appears in our final, annotated dataset (§4)
.

We consider each sampled sentence S to
be a candidate premise. We then generate
premise/hypothesis pairs as follows. We use the
parse tree provided by MNLI to extract the com-
plement clause C. When needed, we inflect6 the
verb in the complement to match the tense of the
main verb. We then generate two 〈p, h〉 pairs: the
sentence and the complement as-is 〈S,C〉, and the
negated sentence plus the complement 〈¬S,C〉.
For example, given an original sentence like “He
knows that the answer is 5”, we would generate
two 〈p, h〉 pairs: 〈“He knows that the answer is
5”, “The answer is 5”〉 and 〈“He does not know
that the answer is 5”, “The answer is 5”〉. The
examples shown in Table 1 illustrate 〈p, h〉 pairs
drawn from our dataset, generated this way.

4.2 Annotation
For each 〈p, h〉 pair, we collect human judgements
on Amazon Mechanical Turk. We have raters la-
bel entailment on a 5-point likert scale in which
−2 means that h is definitely not true given p and
2 means that h is definitely true given p. This ordi-
nal labelling scheme7 matches prior work on com-
mon sense inference (Zhang et al., 2017), and on

6https://www.clips.uantwerpen.be/
pages/pattern-en

7Full annotation guidelines in Supplementary.

veridicality specifically (de Marneffe et al., 2012).
We do not provide examples for boundary cases
(the difference between −2,−1 or 1, 2) to avoid
biasing raters by providing explicit guidance about
the extent to which common sense can factor in.
Raters have the option of indicating with a check
box that one or both sentences does not make
sense, and thus that they are unable to judge. We
require that raters have had at least 100 approved
tasks, have maintained an 98% approval rating,
and are located in an primarily English-speaking
country (US, AU, GB, CA). We collect three an-
notations per p/h pair, and pay $0.10 per set of six
pairs labelled.

Quality Controls and Exclusion Criteria. We
remove all sentence pairs in which one or more
raters checked the “does not make sense” box. We
remove sentences from our analysis unless both
the 〈S,C〉 and the 〈¬S,C〉 pairs passed this fil-
ter. Finally, we remove verbs from our analysis
which, after the above filtering, do not appear with
at least 4 sentences (i.e. 8 p/h pairs). Our fi-
nal dataset contains 137 verb types across 1,498
sentences (2,996 pairs). Table 2 lists the verbs in-
cluded in our dataset and the number of sentences
in which each appears.8 To measure inter-rater
agreement, for each example and each of the three
raters assigned to the example, we calculated the
correlation between that rater’s score and the aver-
aged score of the other two raters. The Spearman
correlation among raters, averaged across the three
raters for each example, was 0.78 for positive con-
texts and 0.74 for negative contexts.

4.3 Aggregation

We take the mean of the three human judgements
for each sentence pair. We then represent each
verb v (in the context of a given sentence S) using
a continuous analog of the projectivity signatures
discussed in §3. That is, we take the mean score
for 〈S,C〉 as a measure of the veridicality of v (in
the context of S) in a positive environment, and the
mean score for 〈¬S,C〉 as a measure of the veridi-
cality in a negative environment. For example,
given S=“David Plotz failed to change my mind”
and C=“David Plotz changed my mind”, we get a
soft projectivity “signature” of −2.0/1.67, which
is consistent with the expected (discrete)−/+ sig-
nature for “fail to”.

8See Supplementary for number of contexts that were ex-
cluded for each verb.

https://www.clips.uantwerpen.be/pages/pattern-en
https://www.clips.uantwerpen.be/pages/pattern-en
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Figure 1: Human judgements (top, blue) and model predictions (bottom, orange) for verbs in each category. Gray
squares denote the region in which judgements are expected fall, given the signature. Each colored dot corresponds
to a single context (verb within a specific sentence); each black dot corresponds to a single verb (averaged score
over all contexts in which it was judged).

5 Analysis of Human Judgements

Figure 1a plots these soft veridicality signatures
for each sentence. We see that, averaged across all
the contexts in which they are judged, verbs tend
to behave as expected given their assigned lexi-
cal semantic signature. However, we observe two
noteworthy trends, discussed below. We note that
these observations are consistent with arguments
made by de Marneffe et al. (2012) about the strong
effects of pragmatics on veridicality judgments.

Veridicality Bias. First, we observe a system-
atic “veridicality bias”, in which inferences about
complements are often made (positive or nega-
tive), even in environments when the expectation
is that the verb is non-veridical (◦ signature). This
trend is most evident in the case of verbs with ◦/◦
signatures, for example, “think that”, “want to”.
While embedding under such verbs should not li-
cense any inferences about the truth of the comple-
ment, we observe that, in practice, these verbs tend
to behave like +/− verbs. That is, the comple-
ment is taken as true in positive environments and
as false in negative environments. Table 3 shows
some examples for which this is the case.

Within-Verb Variation. Second, we observe
that, while individual verb types tend to behave
in line with their expected signatures on average,
signatures provide a weak signal for predicting the
inferences licensed by the verb in any sentence in-
dividually. That is, within each signature, we see
high variance across contexts, in all cases span-

[+] (1.7) The GAO has indicated that it is
unwilling to compromise.
→ It is unwilling to compromise.

[−] (−1.0) The GAO has not indicated that it
is unwilling to compromise.
→ ¬ It is unwilling to compromise.

[+] (1.3) But most visitors prefer to linger
in Formentera.
→ But most visitors linger in For-
mentera.

[−] (−1.3) But most visitors do not prefer to
linger in Formentera.
→ ¬ But most visitors linger in
Formentera.

Table 3: Examples of verbs which are expected to be
◦/◦, but which behave like +/− in context. We refer
to this trend as a general “veridicality bias”.

ning at least 2 points (on our −2 to 2 scale). Ta-
ble 4 shows examples of words receiving differ-
ent signatures based on context. Quantitatively, in
an ordinary least squares regression9, we find that
using verb signature alone to predict the human
judgments in a given context explains only a small
amount of the observed variation (R2 ≈ 0.11).10

9statsmodels.regression.linear_model.
OLS.html

10For context, using the verb type itself produced R2 ≈
0.72. We experimented with other contextual features in
combination with linguistic category and/or verb type (e.g.
tense of the main verbs, first vs. third person subjects, etc.) to
try to improve the fit of the model, but did not find any note-

statsmodels.regression.linear_model.OLS.html
statsmodels.regression.linear_model.OLS.html
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[+] (1.7) Everyone knows that the CPI is
the most accurate.
→ The CPI is the most accurate.

[+] (1.7) Everyone does not know that the
CPI is the most accurate.
→ The CPI is the most accurate.

[+] (0.7) I know that I was born to succeed.
→ I was born to succeed.

[◦] (0.3) I do not know that I was born to
succeed.
6→ I was born to succeed.

Table 4: Examples of how the factive verb “know that”
can exhibit different signatures, depending on context.

Takeaways. Overall, we interpret the above
analysis as evidence that veridicality judgments
rely heavily on contextual as opposed to purely
lexical semantic factors. While this is not a novel
conclusion (Simons et al., 2010; de Marneffe et al.,
2012), it is still frequently the case that system
development concerned with improving veridical-
ity judgements nearly always proceeds by incor-
porating explicit lexical semantic knowledge into
the pipeline or architecture (Richardson and Kuhn,
2012; Lotan et al., 2013; Stanovsky et al., 2017;
MacCartney and Manning, 2009; Angeli and Man-
ning, 2014; Saurı́ and Pustejovsky, 2012; Cases
et al., 2019; Rudinger et al., 2018). Our analy-
sis suggests such approaches are likely to yield
only incremental gains. While admittedly more
difficult to encode, focusing on context-specific
factors first, e.g. predicate classes and pragmat-
ics (de Marneffe et al., 2012) or question under
discussion (Simons et al., 2010), would likely be
more productive and may ultimately override the
need for verb signatures altogether.

6 Analysis of BERT Predictions

We now turn to our primary question: do cur-
rent NLI models capture the veridicality of verbs?
In particular, we are interested in the behavior of
a distributional model that is not specifically en-
dowed with lexical semantic information related

worthy effects. It is likely that more careful featurization of
highly relevant concepts–e.g. at-issueness (Tonhauser et al.,
2018)–could yield more conclusive insights about which as-
pects of context lead to within-signature, or within-verb, vari-
ation. We leave such analysis for future work, and conclude
simply that endowing NLI models with knowledge of projec-
tivity signature is not alone sufficient for producing human-
like inferences on such sentences.

to veridicality. We ask two questions. First: does
such a model learn to make inferences consis-
tent with those made by humans? Second: if the
model does mirror human inferences, are the pre-
dictions based solely on the presence of specific
lexical items, or are they sensitive to structural fac-
tors (namely, syntactic position and complement
type)? Again, we prioritize modeling speaker
meaning. Thus, we believe the model should ide-
ally reflect the same biases and variation observed
in the human judgments, not necessarily the infer-
ences expected based on the lexical semantic sig-
natures of the verbs.

6.1 Setup

We use the state-of-the-art BERT-based NLI
model. Specifically, we use the original Tensor-
Flow implementation11 of the NLI model built
on top of the pertained BERT language model
(Devlin et al., 2018). We use the model off-
the-shelf, with default training setup and hyper-
parameters. To fine-tune the model for the NLI
task, we use the standard train/dev splits from the
MNLI corpus, but, to avoid confounds, we remove
the 1,500 p/h pairs from which our new test set
is derived (as described in §4).12 The model is
trained to make a softmax classification over three
classes: {ENTAILMENT, CONTRADICTION, NEU-
TRAL}. When necessary to compare these discrete
predictions to our continuous human judgments,
we map the prediction to a continuous value using
P (ENTAILMENT) − P (CONTRADICTION). This
score ranges from −1 to 1 and is comparable to
our human scores. Conversely, when necessary to
compare the continuous human score to the dis-
crete predictions, we discretize scores into evenly-
sized bins13. Overall, similar performance trends
hold whether we compare in discrete space or
continuous space. In the analyses below, we use
whichever is most interpretable, as reported.

6.2 Overall Prediction Performance

We first measure raw prediction performance: do
the inferences made by the BERT mirror the infer-
ence that our human raters made? Figure 1b shows
scatter plots of the models predictions (mapped
into continuous space) side-by-side with the hu-

11https://github.com/google-research/
bert

12See Supplementary Material for a discussion of the
prevalence of veridicality phenomena in MNLI train.

13CON: s < − 2
3

; NEU: − 2
3
≤ s < 2

3
; ENT: 2

3
≤ s

https://github.com/google-research/bert
https://github.com/google-research/bert
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Count Positive Negative
Sent. Verb Exp. Acc. ρ Exp. Acc. ρ Example Verbs

Fact 212 15 + 0.62 0.17 + 0.29 0.40 realize that, know that
Impl 100 9 + 0.57 0.51 − 0.73 0.51 manage to, begin to
Impl 25 2 − 0.80 0.61 + 0.52 0.39 forget to, fail to
Impl 63 6 ◦ 0.27 0.21 + 0.43 0.43 suspect that, explain that
Impl 28 1 ◦ 0.11 0.25 − 0.71 0.45 attempt to
Impl 55 3 − 0.93 0.70 ◦ 0.02 -0.10 refuse to, decline to
Impl 80 8 + 0.38 0.21 ◦ 0.54 0.21 show that, confirm that
NA 935 93 ◦ 0.21 0.35 ◦ 0.44 0.47 try to, hope to

Overall 1,498 137 0.34 0.63 0.44 0.57

Table 5: Accuracy and Spearman correlation of BERT MNLI model predictions against human judgements. The
+/ − /◦ symbols denote the expected labels based on the lexical semantic category of the verb, and are not
necessarily the labels given by our human annotators (compare against Figure 1).

man scores just discussed. Table 5 shows per-
formance evaluated against human judgements in
terms of both (discrete) classification accuracy
and (continuous) Spearman correlation. Broadly
speaking, the model’s predictions appear to fol-
low the same trends as the humans’ ratings (Fig-
ure 1). That is, averaged across contexts, the
model’s treatment of verbs is the same as the hu-
mans’ treatment: largely in line with the signa-
tures, but with a bias against assuming neutral
(non-veridical) behavior. However, whereas the
humans’ judgments span all levels of certainty
(taking a range of values from −2 to 2), the
model tends to make predictions with high con-
fidence. This is especially the case in positive
environment, where the model nearly always pre-
dicts with 99+% confidence. In negative environ-
ments, the model expresses a grater range of un-
certainty values, and is much more closely in line
with what we observe in human judgements. In
terms of quantitative measures of accuracy (Table
5), the most notable trend is that the model per-
formance is highest for cases in which the nega-
tion of the complement is expected to project (−
signatures). This is true regardless of whether
that behavior occurs in a positive or negative en-
vironment. We note that, for such cases, human
judgements closely align with the lexical semantic
predictions. The model performs worst in posi-
tive environments when the verb is expected to be
non-veridical (◦ signatures). This appears to result
from the model’s tendency to over-exaggerate the
veridicality bias: i.e. whereas humans show a gen-
eral tendency to assume the complement projects

in these cases, the model predicts ENTAILMENT

with near certainty (see Figure 1).

6.3 Counterfactual Analysis

Next, we ask: are the above-observed trends in
BERT’s predictions driven predominantly by lex-
ical priors–i.e. the presence of a specific verb–or
are they sensitive to other lexicosyntactic factors
that should ideally affect the inference?

Experimental Design. For each verb construc-
tion vt (e.g. “try to” or “realize that”) in
our dataset, we perform several manipulations in
which we insert v or t into sentences where they
did not originally appear, and observe the effect
this has on the distribution of the model’s predic-
tions. Our specific manipulations and the expected
effects are described below. Table 6 shows exam-
ples. For convenience, we use D to refer to the
set of all the 〈S,C〉 pairs in our dataset, Dvt to
refer to all the pairs in which vt appears as the
main verb clause in S, and Dto (Dthat) to refer to
all the pairs in which C is a to-complement (that-
complement). When clear from context, we abuse
notation and use e.g. D to refer both to the dataset
itself and to the distribution of the model’s predic-
tions when run over the dataset.

Replace Main Verb: For each pair 〈S,C〉 ∈ D,
we replace the main verb in S with the target verb
v, generating a new premise S∗. We expect that,
if the model is sensitive specifically to presence of
v and its effect on inferences, then the distribution
of model predictions over all 〈S∗, C〉 pairs should
be more similar to the target distribution of predic-
tions over all of Dvt than to the baseline distribu-
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Main Verb (Match) Main Verb (Mismatch)
S He attempted to overcome the sensation. S I decided that the department had acted illegally.
S∗ He tried to overcome the sensation. S∗ I tried that the department had acted illegally.
C He overcame the sensation. C The department had acted illegally.

Complement Verb Complement Type
S He attempted to overcome the sensation. S They tried to get his attention.
S∗ He attempted to try the sensation. S∗ They tried that get his attention.
C∗ He tried the sensation. C They got his attention.

Table 6: Examples of counterfactual manipulations with the target verb construction “try to”.

tion of predictions over all of D. We differenti-
ate between settings with “matched” complement
types, where we generate S∗ from pairs in Dt,
from those with “mismatched” complement types,
where we generate from pairs in D¬t. E.g., for
a target vt = “try to”, we consider substitutions
into premises from Dto as “matched” and substi-
tutions into Dthat as “mismatched”. Preserving
this distinction allows us to both avoid confounds
due to ungrammatical substitutions, and to investi-
gate whether the model is sensitive to verbs which
behave differently when they take different com-
plements. For example, “forget” is −/+ when it
takes to but +/+ when it takes that.

Replace Complement Verb: For each
〈S,C〉 ∈ D, we replace the main verb in C with
the target verb v, generating a new hypothesis C∗.
We expect that, if the model is sensitive not just to
the presence of v, but also its syntactic role, then
the distribution of predictions over all 〈S,C∗〉
pairs should resemble the baseline distribution
over D more than the target distribution over Dvt.

Replace Complement Type: For each pair
〈S,C〉 ∈ Dvt, we replace the t in S with the al-
ternative complement type (“to”→ “that”; ‘that”
→ “to”), generating a new premise S∗. This gen-
erates ungrammatical sentences, and serves as a
control experiment, to check whether the model
is considering the entirety of the context in which
the verb construction appears, or merely the vt bi-
gram. We expect that, if the model is considering
the whole context, the distribution of predictions
over all 〈S∗, C〉 should resemble the target distri-
bution Dvt more than the baseline distribution Dt.

Results. Table 7 shows, for verbs within each
signature, the KL divergence between the post-
manipulation prediction distribution (D∗) and 1)
the baseline distribution (D) and 2) the target dis-
tribution (Dvt). Results are shown for both the

main and complement verb manipulations.
A few trends are worth highlighting. First, we

do see evidence that the model’s prediction de-
pends at least in part on the individual verb type.
This is supported by the fact that, across verb sig-
natures, manipulation of the main verb leads to
distributions which are more similar to the target
verb distribution Dvt than to the baseline distri-
bution D. This trend is strongest for verbs which
involve − signatures. Second, we see encourag-
ing, though not overwhelming, evidence that the
model’s prediction are sensitive to the syntactic
position of the verb. This is supported by the fact
that, in general, the similarity betweenD∗ andDvt

is much lower (higher KL) when the manipulation
occurs in the complement clause compared than
when it occurs in the main clause. Note that, ide-
ally, this manipulation should not effect the pre-
diction distribution at all. Nonetheless, the trend
is clear and points in the right direction.

Table 8 shows the KL divergence between D∗

and the target verb distributionDvt in the matched
and mismatched cases.14 We see that BERT be-
haves as we hope–namely, it makes different pre-
dictions for v to constructions and v that construc-
tions, even when the v is the same. Manipulat-
ing the main verb only substantially affects pre-
dictions when the manipulation occurs in a context
with the right complement type (matched); when
the manipulation results in a ungrammatical sen-
tence (mismatched), the prediction remains close
to baseline. An example of such verb-construction
differentiation is shown in Figure 2 for the verb
know that, but this is a trend seen across verbs.
Moreover, we see that this effect is not just driven
by sensitivity to the specific vt bigram. That is,
simply swapping “to” with “that” (or vice-versa)
in a naturally-occurring context leads to a small

14See Supplementary for breakdown by verb type.
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Main Verb Compl. Verb
Pos. Neg. Pos. Neg.

+/+ D∗‖Dvt 0.00 0.01 0.02 0.14
D∗‖D 0.17 0.43 0.05 0.08

+/− D∗‖Dvt 0.01 0.02 0.17 0.01
D∗‖D 0.17 0.67 0.04 0.39

−/+ D∗‖Dvt 0.04 0.06 1.36 1.39
D∗‖D 1.32 1.40 0.04 0.42

◦/+ D∗‖Dvt 0.01 0.02 0.01 0.06
D∗‖D 0.12 0.22 0.03 0.05

◦/− D∗‖Dvt 0.05 0.07 0.13 0.01
D∗‖D 0.01 0.76 0.04 0.42

−/◦ D∗‖Dvt 0.28 0.11 1.90 0.53
D∗‖D 0.65 0.26 0.03 0.35

+/◦ D∗‖Dvt 0.00 0.06 0.05 0.31
D∗‖D 0.14 0.04 0.00 0.02

◦/◦ D∗‖Dvt 0.00 0.02 0.01 0.06
D∗‖D 0.02 0.00 0.00 0.02

Table 7: Comparison (KL divergence) of post-
manipulation prediction distribution to target verb dis-
tribution (Dvt, top row) and baseline distribution (D,
bottom row). High similarity toDvt suggests the model
changed its predictions in response to the manipulation.

shift in the distribution of the model’s predictions
away from the target Dvt distribution, but not to
the same degree as replacing a “that”-taking verb
with a “to”-taking verb in a naturally-occurring
“that” context (or vice-versa). This result pro-
vides some evidence that BERT’s prediction is in-
fluenced by aspects of the context other than just
the presence of the vt bigram.

Match Mis. Swap

Fact +/+ 0.01 0.48 0.25
Impl +/− 0.01 0.86 0.16
Impl −/+ 0.05 1.72 0.10
Impl ◦/+ 0.01 0.16 0.22
Impl ◦/− 0.06 0.86 0.00
Impl −/◦ 0.19 1.16 0.71
Impl +/◦ 0.03 0.23 0.28
NA ◦/◦ 0.01 0.03 0.46

Table 8: KL divergence between D∗ and Dvt for com-
plement type manipulations (“to” vs. “that”). Insert-
ing v into a context affects BERT’s predictions only
when the complement is compatible with v.

Figure 2: Results for the main verb replacement exper-
iment for the verb know that. In examples with the VB
that construction, the replacement results in predictions
that resemble those for know that. For VB to examples,
the resulting counterfactual predictions resemble those
of the base examples.

7 Conclusion

We investigate how well BERT, a neural NLI
model not explicitly endowed with knowledge of
lexical semantic verb signatures, is able to learn
to make correct inferences about veridicality. We
collect a new NLI dataset of human veridicality
judgements. We observe that human judgments
often differ from what is predicted given the lexi-
cal semantic types of verbs, and that BERT is able
to replicate many of these judgments, although
there is still significant room for improvement.
Through counterfactual experiments, we show that
individual verbs strongly influence BERT’s pre-
dictions, and that these cues interact with syntactic
information in desirable ways.
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