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Abstract

Neural models of dialog rely on generalized
latent representations of language. This paper
introduces a novel training procedure which
explicitly learns multiple representations of
language at several levels of granularity. The
multi-granularity training algorithm modifies
the mechanism by which negative candidate
responses are sampled in order to control the
granularity of learned latent representations.
Strong performance gains are observed on the
next utterance retrieval task using both the
MultiWOZ dataset and the Ubuntu dialog cor-
pus. Analysis significantly demonstrates that
multiple granularities of representation are be-
ing learned, and that multi-granularity training
facilitates better transfer to downstream tasks.

1 Introduction

Producing generalized representations of language
is a well-studied problem in natural language pro-
cessing (NLP) (Montague, 1973; Davidson and
Harman, 2012). Neural models typically encode
an input into a latent vector, which is then used by
upper layers. As such, improving the quality or
generality of the learned representations will typi-
cally improve performance on the final task due to
the increased representative power of the model.

Constructing meaningful representations of di-
alog is challenging. To effectively represent the
dialog context, a latent dialog representation must
contain the information necessary to (1) estimate a
belief state over user goals (Williams et al., 2013),
(2) track entity mentions (Zhao et al., 2017), (3)
resolve anaphora co-references (Mitkov, 2014),
(4) model the communicative purpose of an utter-
ance (Core and Allen, 1997) and (5) resolve am-
biguity in natural language. A large focus area of
dialog research is the development of neural archi-
tectures which learn effective representations of
the input (Zhou et al., 2016; Wu et al., 2016; Zhou

et al., 2018). With the goal of training a model for
next utterance retrieval, Zhou et al. (2018) use a
deep self-attention network to produce a represen-
tation of each utterance within a dialog and fol-
low it with an attention between utterances and 3-
D convolutional layers.

Recent work has explored the use of large-scale
self-supervised pre-training on very large corpora
(Kiros et al., 2015; Peters et al., 2018; Devlin et al.,
2018; Radford et al., 2018) as a means of improv-
ing natural language representations. These pre-
trained models have yielded state-of-the-art results
on several downstream NLP tasks (Wang et al.,
2018): text classification, natural language infer-
ence, and question answering. Though such meth-
ods have proven useful across several downstream
tasks (Wang et al., 2018), using them for dialog re-
quires expensive fine-tuning of the complex mod-
els (Dinan et al., 2019; Alberti et al., 2019). The
need for this fine-tuning is due to the pre-training
procedure. First, the domain and style of dialog
corpora differ significantly from the majority of
the data used during pre-training. This necessi-
tates fine-tuning in order to adapt the representa-
tions to more varied input. Second, the pre-trained
representations, which are all obtained through
various language modelling objectives, do not nec-
essarily capture properties of dialog at several lev-
els of granularity (e.g., belief state, entities, co-
references, high-level user goals).

Though large-scale pre-training improves the
strength and generality of latent representations,
this effect is minimized when transferring to dia-
log tasks or out-of-domain data. To this end, this
paper explores an alternate mechanism of learn-
ing strong and general representations for the task
of next utterance retrieval (Lowe et al., 2015).
We propose Multi-Granularity Training (MGT),
which simultaneously trains multiple levels of rep-
resentation. It later combines these latent repre-
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sentations to obtain more general models of dia-
log. Different granularities of representation cap-
ture different properties of the input. For exam-
ple, a high-granularity representation will capture
specific words and entities mentioned in the dia-
log context. A low-granularity representation will
instead capture more abstract properties of the dia-
log, such as the domain of the conversation or the
high-level user goal. MGT combines representa-
tions at several levels of granularity, resulting in
stronger and more general representations of di-
alog. The strength of representations is a conse-
quence of learning the dedicated representations
at each level of granularity. The generality re-
sults from learning several diverse representations
across multiple granularities, thereby encompass-
ing a wider amount of information. Since the rep-
resentations are learned on dialog data and for the
final task, this method does not suffer from the
aforementioned shortcomings of pre-training.

The specific MGT procedure is motivated by
the fact that observing different negative examples
during training results in different representations.
A model trained to select the correct response out
of a set of lexically similar candidates will likely
learn fine-grained representations of each word in
an effort to identify minute differences between
the candidates. On the other hand, a model trained
to select a response from a set of topically diverse
candidates will likely learn broader and more ab-
stract representations of each utterance. Typically,
negative examples are randomly sampled which
results in learned representations that fit the aver-
age training example. MGT relies on an algorithm
for controlled sampling of negative candidate re-
sponses, which allows for the construction of mul-
tiple training sets in order to learn multiple levels
of granularity.

MGT is agnostic to the underlying model ar-
chitecture. Though the majority of experiments
in this paper are carried out with a dual encoder
(Lowe et al., 2015) as the base model, MGT is
also applied on top of Deep Attention Matching
networks (Zhou et al., 2018) and obtains strong
performance gains.

MGT is evaluated using the MultiWOZ dataset
(Budzianowski et al., 2018) and the Ubuntu dia-
log corpus (Lowe et al., 2015) to train models for
next utterance retrieval. Results show that MGT
obtains better performance than ensembling (Per-
rone and Cooper, 1992) multiple baseline mod-

els. At the same time, it also serves as a better
downstream representation of dialogs. The con-
tributions of this paper are: (1) a training proce-
dure which learns multiple granularities of latent
representations for a task, (2) improved perfor-
mance on next utterance retrieval across two di-
verse datasets, (3) an analysis significantly demon-
strating that multiple granularities of representa-
tion have indeed been learned.

2 Related Work

This section discusses two areas of related work:
language representations and the next utterance re-
trieval task.

2.1 Language Representations

Recent work has focused on improving latent rep-
resentations of language through the use of large-
scale self-supervised pre-training on very large
corpora. Kiros et al. (2015) trains a sequence-to-
sequence model (Sutskever et al., 2014) to predict
the surrounding sentences, and uses the final en-
coder hidden state as a generic sentence represen-
tation. ELMo (Peters et al., 2018) trained a bi-
directional language model on a large corpus in or-
der to obtain strong contextual representations of
words. OpenAI’s GPT (Radford et al., 2018) pro-
duces latent representations of language by train-
ing a large transformer (Vaswani et al., 2017) with
a language modelling objective. Devlin et al.
(2018) further improves on this line of research by
introducing the masked language modelling objec-
tive and a multi-tasking pre-training loss. Each of
these methods has obtained state-of-the-art results
on the GLUE benchmark (Wang et al., 2018), sug-
gesting that they are strong and general represen-
tations of language.

These pre-trained representations of language
have been applied to numerous tasks. Of partic-
ular interest are applications of these representa-
tions to dialog tasks. As part of the 2nd ConvAI
challenge (Dinan et al., 2019), the best perform-
ing models on both human and automated evalua-
tions (Wolf et al., 2019) were fine-tuned versions
of OpenAI’s GPT (Radford et al., 2018). Despite
strong performance gains, transferring OpenAI’s
GPT required fine-tuning the full model because
the dialog data was in a different domain and re-
quired different information to be contained in the
representations. Recently, Mehri et al. (2019) in-
troduce several dialog specific pre-training objec-
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tives that obtain strong performance gains across
multiple downstream dialog tasks.

2.2 Next Utterance Retrieval

Lowe et al. (2015) construct Ubuntu, the largest
retrieval corpus for dialog, and present the dual
encoder architecture as a baseline architecture.
Kadlec et al. (2015) present several strong base-
line architectures for this dataset. Zhou et al.
(2016) present the Multiview architecture which,
with the aim of constructing broader representa-
tion, learns both word-level representations and
utterance-level representations. Sequential Match-
ing Networks (SMN) (Wu et al., 2016) represent
each utterance in the dialog context and construct
segment-segment matching matrices between the
response and each utterance in the context. Deep
Attention Matching (DAM) (Zhou et al., 2018)
uses deep transformers (Vaswani et al., 2017) to
construct representations of each utterance in a di-
alog context, followed by cross-attention and con-
volutional layers.

Previous work on next utterance retrieval has
proposed architectural modifications in an effort to
improve the representative powers of the models.
This paper presents a training algorithm applicable
to any neural architecture, which explicitly forces
the model to learn different granularities of repre-
sentation.

3 Methods

This section describes three methods used for next
utterance retrieval: a strong baseline dual encoder
architecture, an ensemble of dual encoders, and an
ensemble of dual encoders with multi-granularity
training.

3.1 Dual Encoder

Given a dialog context, next utterance retrieval se-
lects the correct response from a set of k candi-
dates. The retrieval baselines presented by Kadlec
et al. (2015) first encode the dialog context and
a candidate response. Then they use the product
of the latent representations to output a probabil-
ity. This baseline architecture consists of two en-
coders, one to encode the context and one for the
response.

Previous approaches using Ubuntu were trained
for binary prediction (i.e., predict the probability
of a particular response), and used during testing
to select from a candidate set. To mitigate the dis-

crepancy between training and testing, our base-
line is trained to select the correct response from
a candidate set. Since the Ubuntu training set con-
sists of 0/1 labels, the training set was modified
by considering only the positive-labeled examples,
and uniformly sampling k−1 negative candidates.

Let c1,...,N denote the words of the dialog con-
text, ri1,...,Mi

denote the words of the i-th candidate
response and rgt denote the ground-truth response.
Given fc, the LSTM encoder of the context, and
fr, the LSTM encoder of the candidate responses,
the forward propagation of the dual encoder is de-
scribed by:

c = fc(ci) i ∈ [1, N ] (1)

ri = fr(r
i
j) j ∈ [1,Mi] (2)

rgt = fr(r
gt
j ) j ∈ [1,Mgt] (3)

αgt = cT rgt (4)

αi = cT ri (5)

The final loss function is:

L = − log p(ri1,...,Mi
|c1,...,N ) (6)

= − log

(
exp(αgt)

exp(αgt) +
∑K

j=1 exp(αj)

)
3.2 Ensemble of Dual Encoders
Ensembling multiple models (Perrone and
Cooper, 1992) has been empirically shown to
improve performance, since it maintains a low
model bias while significantly reducing the model
variance. In ensembling, multiple models are
trained and their predictions are averaged during
inference. Specifically, if αl denotes the output of
model l ∈ [1, L], the output probability is defined
as:

p(ri1,...,Mi
|c1,...,N ) =

1

L

L∑
l=1

exp(αl
i)∑K

j=1 exp(α
j
i )

(7)

Since ensembling reduces the model variance
while maintaining low bias, it is most effective
when the models are diverse and each model ex-
cels at a particular type of input. In typical en-
semble training, the different models are either
obtained through different random initializations
or at different checkpoints from the same train-
ing run. In such an approach, there is no mech-
anism which explicitly enforces diversity between
the models.
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3.3 Multi-Granularity Training
During baseline model training, the negative re-
sponse candidates were uniformly sampled from
R, the set of all responses in the training set. MGT
is proposed in an effort to explicitly model differ-
ent granularities of representation through a con-
trolled method of sampling negative candidates.

Consider a training corpus consisting of a set of
dialog contexts and ground-truth responses, T =
(C,Rgt). In the baseline training, k − 1 negative
response candidates are uniformly sampled from
the set of all responses, R:

Ti = (Ci, R
gt
i , [Ni,1, Ni,2, . . . , Ni,k−1]) (8)

∀j ∈ [1, k − 1] Ni,j ∼ Uniform(R)

MGT is motivated by the idea that observing
different types of negative candidate response sets
will result in different representations. Nega-
tive candidates which are lexically similar to the
ground truth response should result in models that
carefully consider each word in order to produce
fine-grained representations and identify minute
differences between candidate responses. On the
other hand, very semantically distant candidate re-
sponses should result in very broad and abstract
representations of language. While there may be
many methods of sampling negative responses to
influence what the model learns, this paper focuses
on using the semantic similarity of the candidate
responses as a means of controlling the granular-
ity of learned representations.

Given the LSTM response encoder, fr, the mea-
sure of semantic similarity is defined as:

ri = fr(Ri,j) j ∈ [1,Mi] (9)

rk = fr(Rk,j) j ∈ [1,Mk] (10)

d(Ri, Rk) =
ri

T rk
||ri|| · ||rk||

(11)

This approach relies on a cosine-similarity as a
measure of semantic distance between dialog ut-
terances. While not a perfect measure, for the
purposes of the MGT algorithm it appears to be
a sufficient measure. Since the training algorithm
groups together similarly distant negative candi-
dates, it is robust to noise in the measure of seman-
tic distance. Future work may explore whether a
better distance measure improves the MGT algo-
rithm.

A distance matrix D is constructed between all
of the responses in R, such that Di,j = d(Ri, Rj).
The objective of MGT is to train L models at L
different levels of granularity. For a particular re-
sponse Ri, rather than sampling negative candi-
dates from the entire set of R, the set of responses
R is split into L segments based on distance from
Ri. Define a function b(Di, l) which considers a
list of distances and returns the maximum distance
in the l-th segment of a total ofL segments. This is
equivalent to sortingDi and taking the

(
|R| × l

L

)
-

th value.
The distance matrix, D, is used to segment

the set of potential negative candidates, R, for
each training example (Ci, R

gt
i ), into L buckets:

P 1
i , . . . , P

L
i . Given the definition of segmentation

provided above, P 1
i will consist of responses that

are strictly closer (as defined by d) to Ri than the
responses in P 2

i . When training the l-th model at
the l-th level of granularity, the negative responses
for Ri are sampled from P l

i rather than R. P l
i is

constructed using b(Di, l), which was defined to
return the maximum value in the l-th segment.

This method is used to construct L different
training corpora, T 1, . . . , TL. A particular T l is
constructed as follows:

T l
i = (Ci, R

gt
i , [N

l
i,1, . . . , N

l
i,k−1]) (12)

P l
i = {r ∈ R | d(Ri, r) ∈ (b(Di, l − 1), b(Di, l)}
∀j ∈ [1, k − 1] N l

i,j ∼ Uniform(P l
i )

After the L different training corpora, L differ-
ent models are trained. Models trained on closer
candidate sets should learn more granular repre-
sentations while models trained on more distant
candidate sets should learn more abstract repre-
sentations of dialog. Upon obtaining L different
models, the output probability is produced by the
ensembling method described in Equation 7.

4 Experiments

This section describes the datasets and presents
experimental procedures aimed at evaluating the
different approaches to next utterance retrieval.

4.1 Datasets

Two retrieval corpora, MultiWOZ (Budzianowski
et al., 2018) and Ubuntu (Lowe et al., 2015) were
used. MultiWOZ contains task-oriented conversa-
tions between a tourist and a Wizard-of-Oz, while
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Ubuntu contains both open-domain and technical
dialog snippets collected from Internet Relay Chat
(IRC). The diversity of these two datasets provides
insight into the general applicability of MGT.

4.1.1 MultiWOZ

The MultiWOZ dataset (Budzianowski et al.,
2018) was converted into a retrieval corpus. Mul-
tiWOZ contains 8422 dialogs for training, 1000
for validation and 1000 for testing. There are 20
candidate responses for each dialog context.

4.1.2 Ubuntu Dialog Corpus

The original Ubuntu corpus (Lowe et al., 2015)
has 1,000,000 training examples. Typical interac-
tions include individuals asking for technical as-
sistance in a conversational manner. The subject
of conversation is not explicitly bounded and may
be any topic. As described in Section 3.1, the
training corpus is modified in order to train as a
retrieval task rather than as a binary prediction
task. Negative training examples (500,127) are
filtered out. The size of the new training dataset
is 499,873. There are a total of 10 candidate re-
sponses for each context. The validation and test
sets remain unchanged, with 19,561 validation ex-
amples and 18,921 test examples.

4.2 Experimental Setup

Unless otherwise specified, the size of ensembles
and the number of models in MGT is L = 5.
For MGT, the highest performing checkpoint at
each granularity is selected using the validation
score. For the ensemble method, the top perform-
ing checkpoints are selected from a single run.

4.2.1 MultiWOZ Setup

Two distinct encoders are trained, one to encode
the dialog context and the other for the candidate
responses. Each encoder is a single layer, uni-
directional LSTM with an embedding dimension
of 50 and a hidden size of 150. These hidden sizes
match the best performing hyperparameters iden-
tified by Budzianowski et al. (2018). The Adam
optimizer (Kingma and Ba, 2015) with a learn-
ing rate of 0.005 is used to train the model for 20
epochs. The vocabulary is 1261 words, the batch
size is 32, and gradients are clipped to 5.0. A
checkpoint is saved after each epoch, and the best
checkpoint is selected using performance on the
validation set.

4.2.2 Ubuntu Setup
Each encoder is a single layer, uni-directional
LSTM with an embedding dimension of 300 and a
hidden size of 150. The Adam optimizer (Kingma
and Ba, 2015) with a learning rate of 0.005 is used
to train the model for 20 epochs. The vocabulary
is 10002 words, the batch size is 128, and gradi-
ents are clipped to 5.0. Only the last 160 words
of each dialog context are used. The word embed-
dings are initialized with pre-trained GloVe em-
beddings (Pennington et al., 2014). A checkpoint
is saved after each epoch, and the best checkpoint
is selected using performance on the validation set.

4.2.3 Deep Attention Matching Experiment
MGT is a training procedure which is agnostic to
the underlying model architecture. Though the
majority of the experiments presented in this pa-
per use the dual encoder architecture (Lowe et al.,
2015), MGT is applied on top of the state-of-the-
art architecture for Ubuntu: the Deep Attention
Matching Network (DAM) (Zhou et al., 2018).
When applying MGT to DAM, the sampling of
negative candidates is done using the baseline dual
encoder architecture.

4.3 Multi-Granularity Training Example

Table 1 shows an example dialog context, ground-
truth response and the negative candidate re-
sponses sampled at several levels of cosine dis-
tance, as per Equation 11. These negative candi-
date responses are retrieved by MGT’s sampling
algorithm, and are used to train multiple models at
different levels of granularity.

The negative candidates for the higher granu-
larity models are much closer to the ground-truth
response than the candidates for the lower granu-
larity models. As such, models trained at higher
granularities will learn more granular representa-
tions of dialog in order to identify minute dif-
ferences between responses. Examples for lower
granularity models are more distant in meaning,
and models may instead learn to represent higher-
level attributes of the dialog.

5 Results

Multi-granularity training is proposed in order to
learn strong and general latent representations of
dialog. To evaluate the strength and generality of
the learned representations, experiments are con-
ducted to evaluate three different properties of
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Dialog Context:
USER: i need an expensive place to dine in the center of town .
SYS: what type of food are you wanting at this restaurant ?
USER: type of food does not matter to me .
Ground-Truth Response:
SYS: yes there are 33 such restaurant -s . would you like me to book 1 for you ?
Closest Neg. Cand. (for Highest Granularity Model):
SYS: i have 5 indian restaurant -s in the west . if i may , might i suggest the rice boat . i can reserve
a table for you if you would like .
2nd Closest Neg. Cand. (for 2nd Highest Granularity Model):
SYS: how about the avalon ?
3rd Closest Neg. Cand. (for 3nd Highest Granularity Model):
SYS: i would be happy to book that for you .are you travelling alone ?
2nd Furthest Neg. Cand. (for 2nd Lowest Granularity Model):
SYS: i apologize , there s been a misunderstanding . before we can book your taxi , we need to know
which college . there are 18 colleges . what area are you looking for ?
Furthest Granularity Neg. Cand (for Lowest Granularity Model):
SYS: i need to know when you want to leave and arrival time in order for me to order you a taxi .

Table 1: An example dialog context from the training set. Along with the ground-truth response, negative candi-
dates sampled at five different levels of semantic distance are shown. The retrieval models are trained to differen-
tiate between the ground-truth response and the different negative candidates.

MGT: (1) improved performance on the task of
next utterance retrieval, (2) explicit modelling of
different granularities, and (3) improved general-
ity and transferability to other dialog tasks.

5.1 Next Utterance Retrieval

Next utterance retrieval is reliant on latent rep-
resentations of dialog. Several experiments are
conducted to evaluate whether MGT improves the
representative power of models and results in bet-
ter performance on the task of next utterance re-
trieval. MGT is expected to outperform standard
ensembling, since MGT explicitly models mul-
tiple granularities and trains more diverse mod-
els. The performance of MGT is evaluated us-
ing both MultiWOZ (Budzianowski et al., 2018)
and Ubuntu (Lowe et al., 2015). Experiments are
conducted using two different underlying architec-
tures, a dual encoder baseline (Lowe et al., 2015)
and a Deep Attention Matching network (Zhou
et al., 2018).

5.1.1 MultiWOZ

Performance on the MultiWOZ retrieval task is
evaluated with mean reciprocal rank (MRR), and
Hits@1 (H@1). Mean reciprocal rank is defined

Model Name MRR Hits@1
Dual Encoder 79.55 66.13%
Ensemble (5) 81.53 69.47%
Multi-Granularity (5) 82.74 72.18%

Table 2: Performance on MultiWOZ. MGT is com-
pared to a baseline dual encoder, and an ensemble of
dual encoders with an identical number of parame-
ters. All bold-face results are statistically significant
to p < 0.01.

as follows:

MRR =
1

N

N∑
i=1

1

ranki
(13)

Hits@1 is equivalent to accuracy. It measures
how often the ground-truth response is selected
from the K = 20 candidates.

The results in Table 2 demonstrate the strong
performance gains obtained with MGT. With L =
5 granularities, MGT outperforms a similarly
sized ensemble of dual encoders. These results
demonstrate that explicitly enforcing the policy
that makes models learn multiple granularities of
representation improves the representative power
and performance on next utterance retrieval.
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Model Name MRR R10@1 R2@1

Previous Research
Dual Encoder (Lowe et al., 2015) - 63.8 90.1
MV-LSTM (Pang et al., 2016) - 65.3 90.6
Match-LSTM (Wang and Jiang, 2016) 65.3 90.4
Multiview (Zhou et al., 2016) - 66.2 90.8
DL2R (Yan et al., 2016) - 62.6 89.9
SMN (Wu et al., 2016) - 72.6 92.6
DAM (Zhou et al., 2018) - 76.7 93.8

Dual Encoder Experiments
Dual Encoder (Lowe et al., 2015) 76.84 63.6 90.9
Ensemble (5) 78.91 66.9 91.7
Multi-Granularity (5) 80.10 68.7 91.9

Deep Attention Matching Experiments
DAM (Zhou et al., 2018) (re-trained) 83.74 74.54 93.08
Ensemble (5) 84.03 74.95 93.27
Multi-Granularity (5) 84.26 75.30 93.45

Table 3: Results for next utterance retrieval on the Ubuntu dialog corpus. This table shows previous work, and
experimental results with two underlying architectures: a dual encoder model and Deep Attention Matching net-
works. The results shown in the DAM experiments section are performed with the open-sourced implementation of
Zhou et al. (2018), which obtains slightly worse performance than they report. All bold-face results are statistically
significant to p < 0.01.

5.1.2 Ubuntu

Previous research used several variations of the
RN@k metric to evaluate retrieval performance on
the Ubuntu dialog dataset. RN@k refers to the
percentage of the time that the ground truth re-
sponse was within the top-k predictions for a can-
didate set size of N utterances. R10@1 on Ubuntu
is equivalent to Hits@1 and accuracy. In addition
to MRR, we report R10@1 and R2@1, top-1 accu-
racy with a candidate set size of 10 and 2, respec-
tively.

MGT is applied on top of the dual encoder
baseline (Lowe et al., 2015) and Deep Attention
Matching networks (Zhou et al., 2018). The re-
sults shown in Table 3 show the performance of
MGT using two different underlying architectures,
as well as previous work. Across both base ar-
chitectures, MGT outperforms ensembling. The
primary difference between these two methods is
that MGT explicitly ensures that several granular-
ities of representation are learned. As such, these
results reaffirm the hypothesis that learning mul-
tiple granularities of representation leads to more
diverse models, and more general representations
of dialog.

Even with the dual encoder as the underlying
model, MGT outperforms all previous work ex-

cept for Sequential Matching Networks (SMN)
(Wu et al., 2016) and Deep Attention Matching
networks (DAM) (Zhou et al., 2018). The Deep
Attention Matching experiment performs MGT
using DAM1 as the underlying architecture. MGT
has good performance improvement on top of
DAM, roughly double the improvement obtained
by ensembling. This suggests that MGT can be
used as a general purpose training algorithm which
learns multiple-granularities of representation and
thereby produces stronger and more general mod-
els.

5.2 Explicit Granularity Modelling
Multi-granularity training learns multiple granu-
larities of representation. However, strong perfor-
mance on next utterance retrieval, does not neces-
sarily prove that several granularities are explicitly
modelled. To analyze whether the models oper-
ate at different levels of granularity, the content
of the representations must be considered. The
L = 5 trained models, each at a different gran-
ularity, have their weights frozen. These frozen

1It should be noted that the open-source implementation
provided by Zhou et al. (2018) was used, however perfor-
mance was slightly lower than the results they reported. We
speculate that given a DAM implementation that matches
their reported results, MGT would obtain a similarly-sized
improvement (+0.76 R@1).
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Model Name BoW (F-1) DA (F-1)
Highest Abstraction 57.00 19.24
2nd Highest Abs. 57.69 19.14
Medium 58.49 18.31
2nd Highest Gran. 58.38 16.88
Highest Granularity 59.43 15.46

Table 4: Results of the granularity analysis experiment.
L = 5 models trained to capture different granularities
of representation. All bold-face results are statistically
significant to p < 0.01.

models are then used to obtain a latent representa-
tion of all the dialog contexts in MultiWOZ. A lin-
ear layer is then trained on top of these representa-
tions for a downstream task. During this training,
only the weights of the linear layer are updated.
This evaluates the information contained in these
learned representations.

Two different downstream tasks are considered;
bag-of-words prediction and dialog act prediction.
Bag-of-words prediction is the task of predicting a
binary vector corresponding to the words present
in the last utterance of the dialog context. This
task requires very granular representations of lan-
guage, and therefore the models trained to capture
high granularity representations should have the
highest performance. Dialog act prediction is the
task of predicting the set of dialog acts for the next
system response. This is a high-level task that re-
quires abstract representations of language, there-
fore the models with the lowest granularity should
do well.

The results in Table 4 confirm the hypothe-
sis that MGT results in models that learn differ-
ent granularities of representation. It is clear that
higher granularity models better capture the infor-
mation necessary for the bag-of-words task, while
higher abstraction (lower granularity) models bet-
ter capture information for dialog act prediction.

5.3 Generalizability and Task Transfer
One motivation of MGT is to improve the general-
ity of representation, and facilitate easy transfer to
various tasks. Truly general representations of lan-
guage would require no fine-tuning of the model,
and we would only need to learn a linear layer in
order to extract the relevant information from the
representation. Bag-of-words prediction and di-
alog act prediction are again used to evaluate the
ability of MGT to transfer without any fine-tuning.

The results shown in Table 5 demonstrate

Model Name BoW (F-1) DA (F-1)
Dual Encoder 60.13 19.09
Ensemble (5) 64.11 22.39
Multi-Granularity (5) 67.51 22.85
Fine-tuned 90.33 28.75

Table 5: Experimental results demonstrating perfor-
mance on two downstream tasks, without any fine-
tuning of the latent representations. All bold-face re-
sults are statistically significant to p < 0.01.

Model Name DA (F-1)
Random Init 28.75
Dual Encoder 32.63
Ensemble (5) 31.71
Multi-Granularity (5) 33.46

Table 6: Experimental results demonstrating perfor-
mance on the downstream task of dialog act predic-
tion, when the model is fine-tuned on all available
data. All bold-face results are statistically significant
to p < 0.01.

that MGT results in more general representations
of language, thereby facilitating better transfer.
However, there is room for improvement when
comparing to models fine-tuned on the down-
stream task. This suggests that additional mea-
sures can be taken to improve the representative
power of these models.

The results in Table 6 demonstrate that MGT
learns general representations which effectively
transfer to downstream tasks, especially more dif-
ficult tasks such as dialog act prediction. Fine-
tuning the latent representations learned by MGT,
results in improved performance on dialog act pre-
diction.

6 Conclusions and Future Work

This paper presents multi-granularity training
(MGT), a mechanism for learning strong and gen-
eral representations for next utterance retrieval.
Through the use of a sampling algorithm to se-
lect negative candidate responses, multiple gran-
ularities of representation are learned during train-
ing. Strong performance gains are observed on the
task of next utterance retrieval on both MultiWOZ
and Ubuntu. Experiments show that MGT is a
generally applicable training procedure which can
be applied to multiple underlying model architec-
tures. Quantitative analytic experiments demon-
strate that multiple granularities of representation
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are in fact being learned, and that MGT facilitates
better transfer to downstream tasks both with and
without fine-tuning.

There are several avenues for future work. First,
this method is general and broadly applicable,
which suggests that it may improve performance
on other tasks and domains. A particularly in-
teresting application would be to generalize this
method to language generation tasks. Second, a
useful improvement on top of MGT would be a
more sophisticated method of combining the mul-
tiple granularities of representations. Third, while
this paper focuses on capturing multiple represen-
tations at different levels of granularity, it would
be interesting to generalize MGT to learning mul-
tiple representations along several different axes
(e.g., domains, styles, intents, etc.).
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