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Abstract

Modern state-of-the-art Semantic Role Label-
ing (SRL) methods rely on expressive sentence
encoders (e.g., multi-layer LSTMs) but tend
to model only local (if any) interactions be-
tween individual argument labeling decisions.
This contrasts with earlier work and also with
the intuition that the labels of individual argu-
ments are strongly interdependent. We model
interactions between argument labeling de-
cisions through iterative refinement. Start-
ing with an output produced by a factorized
model, we iteratively refine it using a refine-
ment network. Instead of modeling arbitrary
interactions among roles and words, we en-
code prior knowledge about the SRL problem
by designing a restricted network architecture
capturing non-local interactions. This model-
ing choice prevents overfitting and results in
an effective model, outperforming strong fac-
torized baseline models on all 7 CoNLL-2009
languages, and achieving state-of-the-art re-
sults on 5 of them, including English.

1 Introduction

Semantic role labeling (SRL), originally intro-
duced by Gildea and Jurafsky (2000), involves the
prediction of predicate-argument structure, i.e.,
identification of arguments and their assignment
to underlying semantic roles. Semantic-role rep-
resentations have been shown to be beneficial in
many NLP applications, including question an-
swering (Shen and Lapata, 2007), information ex-
traction (Christensen et al., 2011) and machine
translation (Marcheggiani et al., 2018). In this
work, we focus on dependency-based SRL (Haji¢
et al., 2009), a popular version of the task which
involves identifying syntactic heads of arguments
rather than marking entire argument spans (see the
graph in red in Figure 1). Edges in the depen-
dency graphs are annotated with semantic roles
(e.g., AO:PLEASER) and the predicates are labeled
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entity fulfilled (A1)

pleaser (A0) satisfy.01

gold

Initial: Refined

entity fulfilled (A1) ip-~ ~~, satisfy.01

T An  easier standard for a state to  satisfy

Figure 1: An example of structured refinement, the sen-
tence fragment is from CoNLL-2009: the initial pre-
diction by the factorized model in blue, the refined one
(identical to the gold standard) in red.

with their senses from a given sense inventory
(e.g., SATISFY.01 in the example).

Before the rise of deep learning methods, the
most accurate SRL methods relied on model-
ing high-order interactions in the output space
(e.g., between arguments or arguments and pred-
icates) (Watanabe et al., 2010; Toutanova et al.,
2008). Earlier neural methods can model such
output interactions through a transition system,
and achieve competitive performance (Hender-
son et al.,, 2013). However, current state-of-
the-art SRL systems use powerful sentence en-
coders (e.g., layers of LSTMs (Li et al., 2018; He
et al., 2017) or multi-head self-attention (Strubell
et al., 2018)) and factorize over small fragments
of the predicted structures. Specifically, most
modern models process individual arguments and
perform predicate disambiguation independently.
The trend towards more factorizable models is not
unique to dependency-based SRL but common for
most structured prediction tasks in NLP (Kiper-
wasser and Goldberg, 2016; Dozat and Man-
ning, 2017, 2018). The only major exception
is language generation tasks, especially machine
translation and language modeling, where larger
amounts of text are typically used in training.

Powerful encoders, in principle, can capture
long-distance dependencies and hence alleviate
the need for modeling high-order interactions in
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the output. However, capturing these interactions
in the encoder would require substantial amounts
of data. Even if we have domain knowledge about
likely interactions between components of the pre-
dicted graphs, it is hard to inject this knowledge in
an encoder.

Consider the example in Figure 1. The ar-
gument ‘state’ appears in the highly ambigu-
ous syntactic position ’[.] to satisfy’. All
three core semantic roles of the predicate SAT-
ISFY.01 can in principle appear here: patient
(A1:ENTITY_FULFILLED, as in ‘a sweet tooth to
satisfy’), instrument (A2:METHOD, as in ‘a lit-
tle dessert to satisfy your sweet tooth’) and agent
(AO: PLEASER, as in our actual example). The
basic factorized model got it wrong, assigning Al
to the argument ‘state’. However, taking into ac-
count other arguments, the model can correct the
label. The configuration ‘Al fo satisfy’ is more
likely when an agent (AQ) is present in the sen-
tence. The lack of an agent boosts the score for
the correct configuration ‘A0 fo satisfy’.

Our iterative refinement approach encodes the
above intuition. In iterative refinement (Lee et al.,
2018), a refinement network repeatedly takes pre-
vious output as input and produces its refined ver-
sion. Formally, we have

yt+1 = Refine(z, yt).

Naturally, such refinement strategy also requires
an initial prediction °, which is produced by a
(‘base’) factorized model.

Refinement strategies have been successful in
machine translation (Lee et al., 2018; Novak et al.,
2017; Xia et al., 2017; Hassan et al., 2018), but
their effectiveness in other NLP tasks is yet to
be demonstrated.! We conjecture that this dis-
crepancy is due to differences in data availabil-
ity. Given larger amounts of training data typi-
cally used in machine translation, their base mod-
els and refinement networks overfit to a lesser ex-
tent. Overfitting in (1) the base model and (2) the
refinement network are both problematic. The first
implies that either there are no mistakes in the base
models in the training set or their distribution is
very different from that in the test regime, so the
training material for the inference networks ends
up being misleading. The second naturally means
that refinement will fail at test time. We address
both these issues by designing restricted inference

!See extra discussion and related work in section 2.

networks and adding a specific form of noise when
training them.

Our structured refinement network is simple but
encodes non-local dependencies. Specifically, it
takes into account the information about the role
distributions on the previous iteration aggregated
over the entire sentences but not the informa-
tion what the other arguments are. It is a coarse
compressed representation of the prediction, yet
it represents long-distance information not readily
available within the factorized base model. While
this is not the only possible design, we believe
that the empirical gains from using this simple re-
finement network, demonstrate the viability of our
general framework of iterative refinement with re-
stricted inference networks. They also suggest that
intuitions underlying declarative constraints used
in early work on SRL (Punyakanok et al., 2008;
Das et al., 2012) can be revisited but now encoded
in a flexible soft way to provide induction biases
for the refinement networks. We leave this for fu-
ture work.

We consider the CoNLL-2009 dataset (Hajic
et al., 2009). We start with a strong factorized
baseline model, which already achieves state-of-
the-art results on a subset of the languages. Then,
using our structure refinement network, we im-
prove on this baseline on all 7 CoNLL-2009 lan-
guages. The model achieves best-reported results
in 5 languages, including English. We also ob-
serve improvements on out-of-domain test sets,
confirming the robustness of our approach. We
perform experiments demonstrating the impor-
tance of adding noise, and ablation studies show-
ing the necessity of incorporating output interac-
tions. Furthermore, we provide analysis on con-
straint violations and errors on the English test
set.?

2 Related Work

Learning to refine predictions from neural struc-
tured prediction models has recently received sig-
nificant attention. Our approach bears similarity
to methods used in machine translation (Lee et al.,
2018; Novak et al., 2017; Xia et al., 2017). All
these methods refine a translated sentence pro-
duced by a seq2seq model with another seq2seq
model. Among them, the deliberation networks

2 The code and experiment settings can be ac-
cessed at https://github.com/ChunchuanLv/
Iterative_Inference

1072


 https://github.com/ChunchuanLv/Iterative_Inference
 https://github.com/ChunchuanLv/Iterative_Inference

by Xia et al. (2017) rely on BiLSTMs and im-
prove initial predictions from an competitive base-
line and obtain state-of-art-results on English-to-
French translation. Later, it has been shown
that the deliberation networks can improve trans-
lation when used within the Transformer frame-
work (Hassan et al., 2018).

Certain approaches, not necessarily directly op-
timized for refinement, can nevertheless be re-
garded as iterative refinement methods. Structured
prediction energy networks (SPENs) are trained to
assign global energy scores to output structures,
and the gradient descent is used during inference
to minimize the global energy (Belanger and Mc-
Callum, 2016). As the gradient descent involves
iterative optimization, its steps can be viewed as
iterative refinement. In particular, Belanger et al.
(2017) build a SPEN for SRL, but for the span-
based formalism, not the dependency one we con-
sider in this work. While they improve over their
baseline model, their baseline model used multi-
layer perceptron to encode local factors, thus the
encoder power is limited. Moreover their refined
model performs worse in the out-of-domain set-
ting than their baseline model, indicating overfit-
ting (Belanger et al., 2017).

In the follow-up work, Tu and Gimpel (2018,
2019) introduce inference networks to replace gra-
dient descent. Their inference networks directly
refine the output. Improvements over competi-
tive baselines are reported on part-of-speech tag-
ging, named entity recognition and CCG super-
tagging (Tu and Gimpel, 2019). However, their
inference networks are distilling knowledge from
a tractable linear-chain conditional random field
(CRF) model. Thus, these methods do not pro-
vide direct performance gains. More importantly,
the interactions captured in these models are likely
local, as they learn to mimic Markov CRFs.

Denoising autoencoders (Vincent et al., 2008)
can also be used to refine structure. Indeed, image
segmentation can be improved through iterative
inference with denoising autoencoders (Romero
et al., 2017; Drozdzal et al., 2018). Their frame-
work is very similar to ours, albeit we are working
in a discrete domain. One other difference is that
by using a convolutional architecture in the refine-
ment network, they are still modeling only local
interactions. At a more conceptual level, Bengio
et al. (2013) argued that a denoising autoencoder
should not be too robust to the input variations as

to ignore the input. This indicates that we should
not expect refinement networks to correct all the
errors, even in theory, and hence, the refinement
networks do not need to be particularly powerful.

Very recently, Wang et al. (2019) used high
order statistical model for Semantic Dependency
Parsing (Oepen et al., 2015), and obtain improve-
ments over strong baseline using BiLSTM. They
attempted loopy belief propagation and mean field
variational inference for inference, and train the
model end to end. Such inference steps are well
motivated. This work is similar to energy network
approach (Belanger and McCallum, 2016), while a
global score function is provided, and approximate
inference steps are used. Comparing to ours, the
inference can also be regarded as iterative struc-
ture refinement. Yet, we do not provide a global
score and directly try to model the refinement. In
principle, our formalization should give us more
liberty in terms of designing the refinement net-
work.

3 Dependency Semantic Role Labeling

In this section, we introduce the notation and
present our factorized baseline model.

3.1 Notation

In dependency SRL, for each sentence of length
n, we have a sequence of words w, dependency
labels dep, part-of-speech tags pos, each being a
discrete sequence of length n. To simplify no-
tation, we consider one predicate at a time. We
denote the number of roles by r, it includes the
‘null’ role, signifying that the corresponding word
is not an argument of the predicate. Formally,
P € A,,_1 is the probability distribution over m
predicate senses, and A,,,_; represents the corre-
sponding probability simplex. We also have pred-
icate sense embeddings II € R™%dx and index 7,
throughout the discussion, refers to the position of
the target predicate in the sentence. R € A?_, is
a matrix of size n X r such that each row sums to
1, corresponding to a probability distribution over
roles. In particular R; o is the probability of i-th
word not being an argument of the predicate.

We index role label and sense predictions from
different refinement iterations (‘time steps’) with
t,i.e. Pt and RY. The index ¢ ranges from 0 to 7',
and P° and R? denotes the predictions from the
factorized baseline model. Details (e.g., hyperpa-
rameters) are provided in the appendix.
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3.2 Factorized Model

Similarly to recent approaches to SRL and seman-
tic graph parsing (He et al., 2017; Li et al., 2018;
Dozat and Manning, 2018), our factorized base-
line model starts with concatenated embeddings x.
Then, we encode the sentence with a BiLSTM,
further extract features with an MLP (multilayer
perceptron) and apply a bi-affine classifier to the
resulting features to label the words with roles.
We also use a predicate-dependent linear layer for
sense disambiguation.

More formally, we start with getting a sentence
representation by concatenating embeddings. We
have 2% € R"*dw_gdep ¢ Rnxds ppos ¢ Rnxdp
for words, dependency labels and part-of-speech
tags, respectively. We concatenate them to form a
sentence representation:

x = 2V o xdeP o £POS ¢ RXdw (D
‘We further encode the sentence with a BILSTM:
h =BiLSTM(x) € R"*% )

From these context-aware word representations,
we produce features for argument identification
and role labeling that will be used by a bi-affine
classifier. Note that, for every potential predicate-
argument dependency (i.e. a candidate edge), we
need to produce representations of both endpoints:
the argument and the predicate ‘sides’. For the ar-
gument side, h”® will be used to compute the log-
its for argument identification and h”! will be used
for deciding on its role:

b0 =MLP(h) € R™*%o (3)
h*t =MLP(h) € R™*%: 4)
Similarly, for the predicate side, we also extract
two representations h{ and h¢' (recall that the
predicate is at position j):
h¢ =MLP(h;) € R%o (5)
h?t =MLP(h;) € R%: (6)
We then obtain logits I”° corresponding to the de-
cision to label arguments as null, and logits 1°* for
other roles. So, we have:
170 =BiAffine(h?, h**) € R" (7)
" =BiAffine(h?!,h"') e R™(—1  (8)

Unlike Dozat and Manning (2018), where argu-
ment identification and role labeling are trained

with two losses,> we feed them together into a

single softmax layer to compute the semantic-role
distribution RO:
1% =IP0 o TP1 ¢ R™*X" (9)
R? =Softmax(I%) € A", (10)

Now, for sense disambiguation, we need to extract
yet another predicate representation h™:

h™ =MLP(h;) € R (11)

In the formalism we use (PropBank), senses are
predicate-specific, so we use predicate-specific
sense embedding matrices II. The matrix II acts
as a linear layer before softmax:

I"=IT-h"™ ¢ R™
P% =Softmax(I™) € A1

(12)
(13)

This ends the description of our baseline model,
which we also use to get initial predictions for it-
erative refinement.

4 Structured Refinement Network

In this section, we introduce the structured refine-
ment network for dependency SRL. When doing
refinement, it has access to the roles distribution
R! € A" | and the sense distribution P* € A,,_;
computed at the previous iteration (i.e. time ).
In addition, it exploits the sentence representation
x € R™%_ Qur refinement network is limited
and structured, in the sense that it only has access
to a compressed version of the previous prediction,
and the network itself is a simple MLP.

Similarly to our baseline model, we extract fea-
ture vectors g from input x and further separately
encode the argument representation g® and the
predicate token representation g™ :

g =BiLSTM(z) € R™*% (14)
g® =MLP(g) € R"*d (15)
g™ =MLP(g;) € R% (16)

To simplify the notation, we omit indexing them
by t, except for Rf and P?. We use two refinement
networks, one for roles and another one for predi-
cate senses.

3The separate processing of 1?0 and I°* rather than us-
ing a single MLP for all roles, including null, results in extra

representation power allocated for the argument identification
subtask.
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4.1 Role Refinement Network

First, we describe our structured refinement net-
work for role labeling. We use ¢ to index argu-
ments. We obtain a compressed representation o;
used for refining R! by summing up the probabil-
ity mass for all roles, excluding the null role:

Oiu= Y Rj,€R (17)
ki
0; = 0] € R™! (18)

Intuitively, o; is the aggregation of all other roles
being labeled by the current predicate. We con-
catenate o; with feature vectors of the current ar-
gument g®, predicate g, the relaxed predicate
sense embedding I1T-P? and the role probability it-
self (R;) to form the input to a two-layer network:

28 =Rloo;0glog™o (TIIT-PY)  (19)
22 cR2r—1+2dg+dr
M =W o(Wq - z) € R (20)
M =[M¢,] € R™, 1)

where o is the logistic sigmoid function, W, €
Rérx (2r=1+2dg+dr) 7o ¢ Rr*dr are Jearned lin-
ear mappings. We obtain our refined logits M for
the i-th argument; M“ refers to the stacked matrix
of logits for all arguments. To obtain the refined
role distribution, we add up M® and I“ that we
got from the baseline model, and follow that by a
softmax layer:

R =Softmax(M® +1%) € A” ,  (22)

4.2 Sense Refinement Network

To build a representation for sense disambigua-
tion, we simply compute the probability mass for
each role (excluding the null role) to obtain r™, and
concatenate this with g™ and IIT - P?:

I‘ﬂ' :ZR’Z,L S RT—].
k

5 :(HT . Pt) or™ o g7r c ]Rr—l—I—alg—‘,-d7r

(23)

(24)

Differently from the role refinement network,
sense prediction is predicate-specific. Therefore,
we first map z™ to R, and then take the inner
product with the predicate-specific sense embed-
dings II to get the refined logits:

M™T=IT-WT™.o(W, -2") € R™ (25)

Similarly to role refinement, o is the logistic func-
tion, W, € R&rx(r—1tdg+dr) pym o Rmxdr gre
learned linear mappings. Again, we combine the
logits M™ and I™ before the softmax layer:
P! =Softmax(M™ 4+17) € A,y

4.3 Weight Tying

Our refinement networks are similar to the denois-
ing autoencoders (DAEs; Vincent et al. 2008), so
we use the weight-tying technique popular with
DAEs. We believe that the technique may be even
more effective here as the amount of labeled data
for SRL is lower than in many usual applications
of DAEs. We tie W, with a subset of W< rows:
specifically with the rows acting on R! in the com-
putation of M (see equations 19 and 20). Simi-
larly, we tie W, with the part of W7 correspond-
ing to IIT - P (see equations 24 and 25). Formally,

27
(28)

(26)

W™ = W dy]
where W : k] takes the first & rows of matrix 1.

4.4 Self Refinement

We describe a simpler version of the refinement
network which we will use in experiments to test
whether the improvements with the structured re-
finement network over the factorized baseline are
genuinely coming from modeling interaction be-
tween arguments rather than from simply combin-
ing multiple classifiers. This simpler refinement
network does not account for any interactions be-
tween arguments. Instead of equations 19 and 24,
we have:

7¢ =Rloglog™ € R72dg+dx

5 :(HT . Pt) ° g7r c ]Rngrd7T

(29)
(30)
Everything else is kept the same as in the full
model, expect that the size of W and W7 needs

to be adjusted. We refer to this ablated network as
the self-refinement network.

5 Training for Iterative Structure
Refinement

In this section, we describe our training procedure.

5.1 Two-Stage Training

We have two models: the baseline model, produc-
ing the initial predictions, and the iterative refine-
ment network, correcting them. While it is possi-
ble to train them jointly, we find joint training slow
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to converge. Instead, we train the factorized base-
line model first and then optimize the refinement
networks while keeping the baseline model fixed.

5.2 Stochastic Training

Our baseline model overfits to the training set,
and, if simply training on its output, our refine-
ment network would learn to copy the base pre-
dictions. Instead, we perturb the baseline pre-
diction during training. Naturally, we can add
dropout (Srivastava et al., 2014) and recurrent
dropout (Gal and Ghahramani, 2016) to our neu-
ral networks. However, for the smaller data set
we use, we find this not sufficient. In particu-
lar, we use Gumbel-Softmax instead of Softmax.
Gumbel-Softmax(I) = Softmax(I+ A4€), where
the random variable € is drawn from the standard
Gumbel distribution (Maddison et al., 2017; Jang
et al., 2017), and ), is a hyper-parameter control-
ling decoding stochasticity.*

5.3 Loss for Iterative Refinement

Let us denote gold-standard labels for roles and
predicates as R* and P*. We use two separate
losses Lpase(R*, P*, ) and L, efine(R*, P*, ) for
our two-stage training. We define losses for pre-
dictions from each refinement iteration and sum
them up:

Lpase(R*, P*, ) = L(R*,RY) 4+ L(P*,PY)

€1V
T
‘Creﬁne(R*a P*, -’L') = Z ﬁ(R*, Rt) + ,C(P*, Pt)
t=1
(32)

We adopt the Softmax-Margin loss (Gimpel and
Smith, 2010; Blondel et al., 2019) for individual
L. Effectively, we subtract 1 from the logit of the
gold label, and apply the cross entropy loss.

6 Experiments

Datasets We conduct experiments on CoNLL-
2009 (Hajic et al., 2009) data set for all languages,
including Catalan (Ca), Chinese (Zh), Czech (Cz),
English (En), German (De), Japanese (Jp) and
Spanish (Es). We use the predicted part-of-speech
tags, dependency labels, and pre-identified predi-
cate, provided with the dataset. The statistics of
datasets are shown in Table 2.

*A more canonical way of controlling stochasticity is to
use the temperature but we prefer not to scale the gradient.

Hyperparameters We use ELMo (Peters et al.,
2018) for English, and FastText embeddings (Bo-
janowski et al., 2017; Grave et al., 2018) for all
other languages. We train and run the refine-
ment networks for two iterations. All other hyper-
parameters are the same for all languages, except
BiLSTMs for English is larger than others.
Training Details Training the refinement network
takes roughly 2 times more time than the baseline
models, as it requires running BiLSTMs. The ex-
tra computation for the structured refinement net-
work is minimal. For English, training the iterative
refinement model for 1 epoch takes about 6 min-
utes on one 1080ti GPU. Adam is used as the op-
timizer (Kingma and Ba, 2015), with the learning
rate of 3e-4. We use early stopping on the devel-
opment set. We run 600 epochs for all baseline
models, and 300 epochs for the refinement net-
works. Batch sizes are chosen from 32, 64, or 128
to maximize GPU memory usage. Our implemen-
tation is based on PyTorch and AllenNLP (Paszke
et al., 2017; Gardner et al., 2018).

6.1 Results and Discussions

Test Results Results for all CoNLL-2009 lan-
guages on the standard (in-domain) datasets are
presented in Table 1. We compare our best model
to the best previous single model for the cor-
responding language (excluding ensemble ones).
Most research has focused on English, but we in-
clude results of recent models which were eval-
uated on at least 3 languages. When compared
to the previous models, both our models are very
competitive, with the exception of German. On the
German dataset, Mulcaire et al. (2018) also report
a relatively weak result, when compared to Roth
and Lapata (2016). The German dataset is the
smallest one in terms of the number of predicates.
Syntactic information used by Roth and Lapata
(2016) may be very beneficial in this setting and
may be the reason for this discrepancy. Our struc-
tured refinement approach improves over the best
previous results on 5 out of 7 languages. Note that
hyper-parameters of the refinement network are
not tuned for individual languages, suggesting that
the proposed method is robust and may be easy to
apply to new languages and/or new base models.
The only case where the refinement network was
not effective is Chinese, where it achieved only a
negligible improvement.

Out-of-Domain Results on the out-of-domain
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Model Ca Cz De En Ja Es Zh Avg.
Roth and Lapata (2016) - - 80.10 86.7 - 80.20 794 -
Marcheggiani et al. (2017) - 86.00 - 87.7 - 80.30 81.2 -
Mulcaire et al. (2018)* 7945  85.14 6997 8724 76.00 77.32 81.89 | 79.57
Previous best single model | 80.32  86.02 80.10 9040 78.69 80.50 84.30 | 82.90
Baseline model 80.69 87.30 75.06 90.65 8197 79.87 83.26 | 82.69
Structured refinement 8091 87.62 7587 90.99 8254 80.53 83.31 | 83.11

Table 1: Labeled F1 score (including senses) for all languages on the CoNLL-2009 in-domain test set. For previous
best result, Catalan is from Zhao et al. (2009), Japanese is from Watanabe et al. (2010), Czech is from Henderson
et al. (2013), German and Spanish are from Roth and Lapata (2016), English is from Li et al. (2018) and Chinese
is from Cai et al. (2018). We report the best testing results from Mulcaire et al. (2018).

#sent  #pred  #pred/#sent
Ca | 13200 37444 2.84
Cz | 38727 414133 10.69
De | 36020 17400 0.48
En | 39279 179014 4.56
Ja | 4393 25712 5.85
Es | 14329 43828 3.06
Zh | 22277 102827 4.62

Table 2: Number of sentences and predicates in train-
ing set of different languages.

testing sets are presented in Table 4.° We ob-
serve improvements from using refinement in all
the cases. This shows that our refinement ap-
proach is robust against domain shift.

Ablations We report development set results in
different settings in Table 3. Our full model per-
forms 2 refinement iterations, uses weight tying,
and the Gumbel noise.® We select the best con-
figuration for each language to report the test set
performance in Table 1 and Table 4.

As expected, weight tying is beneficial for
lower-resource languages such as Catalan,
Japanese and Spanish (see Table 2 for dataset
characteristics). The Gumbel noise helps for all
languages except for Czech and English, the two
largest datasets. In particular, we observe almost
no improvement on the Spanish dataset without
using the Gumbel noise. ~We note relatively
consistent but small gains from using 2 refinement
iterations. The magnitude of the gains may be
an artifact of us having the loss terms £(R*, R!)
and L(P*,P!), encouraging not only the final
(second), but also the first, iteration to produce

SRoth and Lapata (2016) has better in-domain testing
score, but did not report the out-of-domain score.

We set Ag = b forrole and A7 = 50 for sense, so that
initial predictions contain around 20% errors.

accurate predictions. A potential alternative
explanation is that our refinement network is
restricted to simple interactions, resulting in the
fixed point reachable in one step.

Constraints Violation We consider violation of
unique core roles (U), continuation roles (C) and
reference roles (R) constraints from Punyakanok
et al. (2008); FitzGerald et al. (2015) in Table 6.
U is violated if a core role (AO - A5, AA) appears
more than once; C is violated when the C-X role is
not preceded by the X role (for some X); R is vi-
olated if R-X role does not appear. Our approach
results in a large reduction in the uniqueness con-
straint violations. Our model slightly reduces the
number of R violations, while He et al. (2017) re-
ported that deterministically enforcing constraints
is not helpful (albeit in span-based SRL). However
learning those constraints in a soft way might be
beneficial.

Argument Interaction vs. No Argument In-
teraction We compare the structured refinement
network and the self-refinement network in Ta-
ble 5. Both networks share the same hyper-
parameters. The structured refinement network
consistently outperforms the self-refinement coun-
terpart. This suggests that the refinement model
benefits from accessing information about other
arguments when doing refinement. In other words,
modeling argument interaction appears genuinely
useful.

Improvement Decomposition We report labeled
role precision, recall and sense disambiguation
accuracy in Table 7. Our structured refinement
approach consistently improves over the baseline
model in all metrics. While we cannot assert the
improvements on all metrics are significant, this
suggests that it learns some non-trivial interactions
instead of merely learning to balance precision and
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Model Ca Cz De En Ja Es Zh Avg.
Baseline | 81.69 8843 7397 89.60 8296 80.49 85.27 | 83.20
Full 82.11 88.62 7495 89.82 83.60 81.19 85.52 | 83.69

1 iteration | 82.07 88.62 75.07 89.93 83.49 81.03 85.47 | 83.40
un-tied 81.99 88.61 75.04 89.79 8347 80.89 8549 | 83.61
no Gumbel | 82.07 88.71 74.62 90.08 83.33 80.55 85.42 | 83.54

Table 3: Labeled F1 score (including senses) for all languages on development set for different configurations.

English Test Ood

Liet al. (2018) 90.4 81.5
Baseline 90.65 81.98
Structured Refinement 90.99 82.18
German Test Ood

Zhao et al. (2009) 76.19 67.78
Baseline 75.06 65.25
Structured Refinement 75.87 65.69
Czech Test Ood
Marcheggiani et al. (2017) 86.0  87.2
Baseline 87.30 85.80
Structured Refinement 87.62 86.04

Table 4: Labeled F1 scores (including senses) on En-
glish, German, Czech in-domain and out-of-domain
test sets; we chose the previous models achieving the
best scores on the out-of-domain test sets.

recall.

Error Correction Analysis We show the errors
that the structured refinement network corrects in
Figure 2. In the baseline confusion matrix, we see
the errors are fairly balanced for all the roles we
consider here. In the error correction matrix, the
corrections are also fairly evenly distributed. Yet,
this is not completely uniform. There is a tendency
towards filtering out arguments rather than gener-
ating new ones.

7 Conclusions and Future Work

We propose the structured refinement network for
dependency semantic role labeling. The structured
refinement network corrects predictions made by
a strong factorized baseline model while modeling
interactions in the predicated structure. The result-
ing model achieves state-of-the-art results on 5 out
of 7 languages in the CoNLL-2009 data set, and
substantially outperforms the factorized model on
all of these languages.

For the future work, the structured refinement
network can be further improved. For example, we

Error Correction Matrix

Baseline Confusion Matrix

Null 345 1 0 24

True role
> >
= o

Corrected role
H
=]
o
(=]
-]

>
)

Al A2 Null A0 Al A2
Baseline predicated role

Null A0
Baseline predicted role

Figure 2: Confusion matrix for the baseline model, and
a correction matrix where the errors were corrected by
the refinement network. Only Null, A0, Al, A2 are
presented here.

can take an inspiration from either declarative con-
straints used in the previous work (Punyakanok
et al., 2008) or from literature on lexical seman-
tics of verbs, studying patterns of event and argu-
ment realization (e.g., Levin 1993). Indeed, the
unique role constraint as a declarative constraint
is one of the motivation for the concurrent work
on modeling argument interaction in SRL (Chen
et al.,, 2019). That work relies on capsule net-
works (Sabour et al., 2017) and focuses primarily
on enforcing the role uniqueness constraint.

The framework can be extended to other tasks.
For example, in syntactic dependency parsing: the
refinement network can rely on representations of
grandparent nodes, siblings and children to pro-
pose a correction. In general, structure refinement
networks should allow domain experts to incorpo-
rate prior knowledge about output dependencies
and improve model performance.
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Table 6: Unique core roles violations (U), continuation
roles violations (C) and reference roles violations (R)
on English in-domain test set.

Model RP RR Sense
Baseline 88.1 88.3 96.2
Structured Refinement | 88.7 88.5 96.3

Table 7: Labeled roles precision (RP), recall (RR) and
sense disambiguation accuracy (Sense) on English in-
domain test set.
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