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Abstract

While achieving great fluency, current ma-
chine translation (MT) techniques are bottle-
necked by adequacy issues. To have a closer
study of these issues and accelerate model
development, we propose automatic detect-
ing adequacy errors in MT hypothesis for
MT model evaluation. To do that, we anno-
tate missing and wrong translations, the two
most prevalent issues for current neural ma-
chine translation model, in 15000 Chinese-
English translation pairs. We build a super-
vised alignment model for translation error de-
tection (AlignDet) based on a simple Align-
ment Triangle strategy to set the benchmark
for automatic error detection task. We also dis-
cuss the difficulties of this task and the benefits
of this task for existing evaluation metrics.

1 Introduction

Different translation errors impact translation
comprehensibility and adequacy differently. For
example, wrong product or terminology transla-
tion can be considered more severe than missing
translation in the eCommerce domain. Though
many machine translation evaluation (MTE) met-
rics have been proposed, most of them are not
able to provide a direct connection between the
score and the error class to emphasize the differ-
ent impact on translation comprehension and ad-
equacy. Most MTE scores measure the similarity
between the MT hypothesis and the reference us-
ing n-gram and are useful in providing immediate
feedback on model performance for system devel-
opment and objective evaluation for system com-
parison. To further analyse the MT hypothesis,
fine-grained translation analysis is normally con-
ducted manually which involves expensive human
effort (Popovi¢ and Ney, 2011; Popovi¢, 2011b;
Fishel et al., 2012; Vilar et al., 2006).
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This motivates early unsupervised error detec-
tion methods (Popovi¢ and Ney, 2011). Such
methods find the erroneous words by calculating
the edit distance between the MT hypothesis and
its corresponding reference. However, such un-
supervised methods suffer from low accuracy and
inability to provide and distinguish certain error
classes like Missing words and Wrong translation'
(cf. Sec 3). On the other hand, the works on
supervised methods are few due to limited train-
ing resources available. The annotated corpus
are mainly collected from outputs of Phrase-based
Machine Translation systems and usually suffer
from small quantity (around 200 instances per lan-
guage pair) (Fishel et al., 2012), noisy contents
(derived from student assignments) (Wisniewski
et al., 2014) or overabundant efforts (additional
human efforts are required on postediting the MT
hypothesis) (Popovi¢ and Arcan, 2016), making
the progress and development of this task chal-
lenging.

We believe a corpus annotated with differ-
ent translation error classes will facilitate the re-
search on translation error detection. There-
fore, we construct a high quality annotated corpus
(TransErr) comprising 15000 Chinese-English
translation pairs with inter-annotator agreement
at 0.804 measured by Cohen’s Kappa (Cohen,
1960). Different from existing error detection
works which focus on all error classes, we cur-
rently only take care of missing and wrong trans-
lation (Specia et al., 2018), the major errors re-
lated to adequacy, which is a wide-known issue in
neural machine translation (NMT) (Zheng et al.,
2019). The errors tags are annotated on source
(Chinese) sentences to reflect the loyalty and ad-
equacy with respect to the source. Based on
TransErr, we discuss the error distribution of dif-

'The wrong translation is referred to as incorrect lexical
choice in (Popovi¢ and Ney, 2011)
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ferent systems and challenges of unsupervised er-
ror annotations using post-edits.

TransErr enables the study task of supervised
MT error detection. We benchmark this task
by providing a simple yet efficient model called
(AlignDet). AlignDet is based on our observation
of the Alignment Triangle whose basic idea is that
if a word is well translated, the translated word
and the corresponding word in reference should
be equivalent. We implement such observation by
employing both monolingual and bilingual align-
ment systems as well as various features. We fur-
ther provide error analyses of AlignDet to give
more insight to this task.

To study the application of this task, we further
conduct a discussion on the impact of different
error classes on MT evaluation metrics based on
WMT Chinese-English Direct Assessment (DA)
corpus (Bojar et al., 2017). We find that embrac-
ing the results of our simple AlignDet model in ex-
isting MTE metrics helps to achieve significantly
better correlation with human. Our further analy-
sis on gold standard error annotation suggests that
wrong translation tends to produce worse transla-
tion. This discovery gives further credence for the
usefulness of our proposed adequacy-oriented er-
ror detection task.

In short, the paper is towards carrying out the
first systematic study of supervised approaches for
error detection, with the goal of accelerating the
research and development of MT towards human
translation quality. Our systematic contribution
lies on annotated data, supervised model and dis-
cussions of its potential to help existing machine
translation evaluation task. Specifically:

e We propose a task of adequacy-oriented er-
ror detection for machine translation eval-
uation and contribute a high-quality corpus
TransErr annotated by professional annota-
tors for machine translation. The corpus are
available?.

We propose an AlignDet to set the bench-
mark of this task based on our key obser-
vation of Alignment Triangle. As far as we
know, this is the first model making use of all
three alignments from source, MT hypothesis
and reference concurrently.

’Please contact us to get the TranErr corpus and the
AlignDet source code. Before that, you need to have access
to LDC NIST MT evaluation sets {LDC2005T06, NIST02,
NISTO03, NIST04, NISTO05, NISTO08}.
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e We conduct various discussions on the chal-
lenges of this task and its potential to help
existing machine translation evaluation task.

2 Related Work

Existing automatic MTE focus on measuring the
similarity between MT hypothesis and references.
Various dimensions have been considered, such
as lexical level (Papineni et al., 2002; Snover
et al.,, 2009; Lo, 2017; Popovi¢, 2017), syn-
tax level (Owczarzak et al.,, 2007; Duma and
Menzel, 2017; Liu and Gildea, 2005), semantic
level (Stanojevi¢ and Sima’an, 2015; Shimanaka
et al., 2018) and discourse level (Guzman et al.,
2014). However, such methods give an overall
score to a system or give a relative ranking to a
pair of systems, without any detailed insight of
MT system output.

To get the fine-grained insights of the MT model
performance, Popovi¢ and Ney (2011); Popovié
et al. (2011a) make the first step towards auto-
matic translation error detection using unsuper-
vised approach by performing monolingual align-
ment between a MT hypothesis and its corre-
sponding reference through WER (Levenshtein,
1966) and PER (Tillmann et al., 1997). Popovic¢
(2011b) further develop this algorithm into an
open-source tool and demonstrates that the de-
tected errors helps to build better evaluation met-
rics. However, the edit distance algorithm is not
robust (c¢. f Sec. 3.2). Zeman et al. (2011)
improve the monolingual alignment by borrowing
ideas from HMM (Vogel et al., 1996) but the error
detection performance is still far from real appli-
cation. To facilitate this task, Wisniewski et al.
(2014) derive corpus of 4,854 source sentences
from the assignment of master student specializ-
ing on translation but the data turns out to be too
noisy.

At the same time, edit distance is carried over
to another shared task in WMT (Callison-Burch
et al., 2012; Specia et al., 2018; Fan et al., 2018;
Vaswani et al., 2017) called word-level Quality
Estimation (QE) (Luong et al., 2013; Han et al.,
2013; Wisniewski et al., 2014; Kim et al., 2017).
In QE tasks, the edit distance is calculated between
a MT hypothesis and its post-edits. Word needs
to be edited is tagged as BAD while the unedited
words are tagged as GOOD. The task requires par-
ticipants to predict the label for each word. Al-
though similar to our settings, our error detection



task differs from the word-level QE task in the fol-
lowing aspects:

e The QE task is for confidence estima-
tion (Specia et al., 2010) which estimates
whether an output is good for an end user.
Our error detection task is for fine-grained
evaluation and comparison during model de-
velopment.

QE only have GOOD and BAD tag on the MT
hypothesis. It cannot make robust distinction
on different error classes due to the intrinsic
shortcomings of the edit distance algorithm.

Existing QE data does not have reliable la-
bel on the source sentence to indicate which
source word cause the errors (c.f Sec. 3.2),
which is claimed as “particularly important
to translation adequacy” in WMT 18 (Specia
et al., 2018) and WMT 19°.

3 TranErr Corpus and Analysis

TransErr corpus comprises 15000 triples <source,
MT hypothesis, reference> with source sen-
tences extracted from LDC NIST MT evaluation
sets {LDC2005T06, NIST02, NIST03, NIST04,
NISTOS, NIST08}. MT hypothesis is obtained
through an NMT engine trained on 25 million
Chinese-English parallel sentences. To study the
correlation between error detection and human
evaluation, we also conduct additional annotation
on WMT17 Direct Assessment (DA) dataset con-
taining 560 Chinese-English translation pairs.
Annotation is conducted by two professional
translators who specialize on Chinese-English
translation. All three information <source, MT
hypothesis, reference> are given during annota-
tion. Annotators are instructed to mark on the
source the two adequacy related errors (Missing
& Wrong) found in the MT hypothesis and to fol-
low the minimum span principle, i.e. identify-
ing the minimum number of words whose content
are not (correctly) conveyed in the MT hypothe-
sis regardless of fluency and grammatical correct-
ness. If a span in the source is incorrectly trans-
lated in the MT hypothesis, all words in that span
will be marked as Wrong (W); if totally missing,
it will be marked as Missing (M). Due to the in-
trinsic difference between the two languages, not
all words in the source need to be translated in the

*http://www.statmt.org/wmt19/
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MT hypothesis. In this case, we do NOT anno-
tate them as missing. We also have more strin-
gent conditions for proper nouns and terminolo-
gies since their translations are more specific and
domain dependent. They have to be unerringly
correct or otherwise, marked as Wrong Terminol-
0gy (WT) or Missing Terminology (MT*). All cor-
rectly translated words are automatically assigned
a label OK.

Annotators are first asked to annotate 100 sen-
tence pairs followed by a discussion among the
project team to resolve any disagreement. After
5 such iterations, we start the formal annotation.
10% overlapped instances are given to each an-
notator for monitoring the inter-annotation agree-
ment (IAA). The disagreed instances are discussed
every day. We obtain an overall IAA of 0.804 mea-
sured by Cohen’s Kappa. The speed for both an-
notators is about 50 sentence pairs per hour.

3.1 Translation Error Analysis

Table 1 shows the error distribution of TransErr
and WMT 17 corpus. The corpora have differ-
ent BLEU with TransErr having more missing (M)
errors and WMT17 more wrong (W) errors. As
WMT17 contains output from multiple MT sys-
tems, we further investigate the errors distribu-
tions among the different systems, in particular
the output from AFRL and NRC. AFRL and NRC
have comparable BLEU but different human eval-
vation. Error distributions for the two corpora
vary quite significantly with AFRL having more
W errors (45% W and 19% WT) while NRC has
more M errors (31% M and 31% MT). This demon-
strates the importance of classifying translation er-
rors and the need for the errors to be considered
during evaluation.

3.2 Challenges of Automatic Translation
Error Annotation

Though MTE and error detection are two different
tasks, they are closely related. Popovi¢ and Ney
(2011) presented the first framework for automatic
analysis and classification of translation errors us-
ing unsupervised approach for SMT systems. The
work has been evolved to word-level QE task in
WMT. Instead of directly annotating errors on the
source as in our proposed task, we re-implement

“In this paper, we conventionally use the normal font MT
to represent machine translation while use the typewriter font
MT to stand for Missing Terminology.



Human BLEU  Sen Word OK W WT M MT
TransErr - 19.1 15000 403691 388372 4529/0.29 1694/0.11 8234/0.54 862/0.06
WMT17 - 16.2 560 14090 13025 410/039  206/0.19  320/030 129/0.12
AFRL -0.016  20.6 34 917 820 44 10.45 19/0.19 17/0.18 17/0.18
NRC 0.079 20.3 32 786 698 17/0.19 17/0.19 27/0.31 27/0.31

Table 1: Corpus Statistics for TransErr, WMT17, AFRL and NRC. AFRL and NRC are subsets of WMT17.
Human is the corresponding system-level DA score assigned by human in WMT17. All BLEU are calculated
using one reference. Sen and Word columns list the number of sentences and words while the other four columns
present the number of each error class and its proportion.

Label | OK W WT M MT
FI [093 033 030 043 035

Table 2: F1 for each class annotated by the unsuper-
vised method using our manual annotation as gold ref-
erence

QE and follow (Popovi¢ and Ney, 2011) to de-
rive source annotation through two stages of align-
ments. The first stage is monolingual alignment
between post-edits and MT hypotheses through
calculating their edit distance to find missing and
wrong translations. The second stage is bilin-
gual alignment using Giza++ (Och and Ney, 2000)
on post-edits and the sources to propagate the er-
ror labels on the post-edits to the corresponding
sources. Similar to our manual annotation, we as-
sign MT and WT label for terminologies.

Ex. 1 Baiersi ziyouticao  dangzhong de yi duan ...

S = — B

P It was a segment of floor exercise routine ...
T It was a segment of’ 00T EXercise ...

Ex.2 daituli ... qude zhiye 3 , 000 sheng

s EREEE .. nuE BRML 3, 000 B

P achigved his career 3 , 000 win ...

T made a career 3 , 000 win ...

Figure 1: Examples of unsupervised annotation on
WMTI17. (S), (P) and (T) refer to source, post-edits
and MT hypothesis respectively. Solid line indicates
correct alignment. Solid line with a red cross refers
to wrong alignment while dotted line refers to missing
alignment. This convention applies to the whole paper.

To get empirical study, we perform unsuper-
vised annotation on our WMT17 dataset using the
above-mentioned method. Table 2 demonstrates
its F1 score using the manual annotation as the
gold standard. We investigate and summarize the
causes in Figure 1:

e The edit distance algorithm is not robust in
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error class detection since it is purely based
on symbolic comparison. (Ex. 1) illustrates
a case where Byers’s is missing. However,
TER tool tags it as a substitution of the in
the MT hypothesis because there is a perfect
symbolic alignment before and after the
erroneous word. This intrinsic inability to
detect missing and wrong translation is also
discussed in (Popovi¢ and Ney, 2011).

Giza++ cannot generate reliable alignments
for low-frequency words (Riley and Gildea,
2010) and such low-frequency words con-
tribute to a large extent of erroneous words.
These misalignments propagate from the
post-edits to the source sentence and lead to
incorrect error tags. (Ex. 2) gives an exam-
ple, the Dettori should be aligned to daituli
but was not aligned to any word by GIZA++.
This leads to an incorrect OK tag in the source
sentence.

As such, unsupervised error annotation presents
many challenges even leveraging on post-edits.
Hence a set of more reliable annotated data will
be able to contribute much to the error detection
task.

4 AlignDet Model

To revive fine-grained translation error detection,
we propose AlignDet, a supervised feature-based
solution using TransErr to set the benchmark for
this task. We discuss our Alignment Triangle ob-
servation and briefly list the features we used. In
the subsequent discussions, we denote s;, t; and
as the ¢th, jth and kth word in a source sequence
S, MT hypothesis 7" and reference R separately.

4.1 Alignment Triangle Observation

In translation, adequacy can be simply defined as
all contents in the source are reproduced correctly



Ex.3 ... qianshu huobi huhuan xieyi .

T ... sign currency ement .
R ... sign currency agreement .

Ex. 4 ... meiguo yanhucheng canjiren  dongji aoyunhui ...

T IR
... the Winter Paralympic held in Salt Lake City , .
... the Salt Lake City Winter Olympic Games of the disabled ...

Ex.5 ... fandui waiguo jundui jinzhu .

S . X ANE ZFERA
T ... opposition to foreign troops .
R ... opposition against f foreign troops ...

Ex.6 xin lai de erwu ren ...
s BT R H25 .
T The 25 new
R The 25 new

Figure 2: Four samples from TransErr. For each exam-
ple, we show the source (S), MT hypothesis (T), refer-
ence (R).

in the MT hypothesis. As long as the MT hypoth-
esis and the reference are semantically equivalent,
such reproduction may not require the MT hypoth-
esis and the reference to be exactly identical. This
motivates us to analyze the translation ¢; in 7" and
i, in R for the same s; in S°, in the following er-
ror detection scenarios. We refer ¢; and r, for the
same s; as translation correspondence.
Patternl: s; has translation correspondence ¢;
and 7. It should be labeled as OK if ¢; and 7y, are
semantically equivalent; otherwise, it should be la-
beled as W. For example, in (Ex. 3) from Figure 2,
the two words, swap and exchange, are equivalent
in the given context, which should be marked as
OK. However, compared to (Ex. 6), students and
comers are not equivalent in the given context, al-
though they may be equivalent in higher abstrac-
tion, hence it is annotated as W.
Pattern2: s; does not have translation corre-
spondence ;. Assuming R does not have any
adequacy issue, this would imply that s; does not
need to be explicitly translated. In this case, the
omission of ¢; is an OK translation. However, if
it is explicitly translated in T as t;, we will still
accept it as an OK translation though it may cause
minor redundancy issue and we assume that it will
not harm adequacy. For example, either explicitly
translation meiguo to USA or not in (Ex. 4) should
be fine.
Pattern3: s; has translation correspondence 7
but not ¢;. This implies that translation of s; is
missing and should be translated. A M label will
SGenerally, tj, ri and s; can be multi-word expression.

For the ease of explanation for our feature extraction method,
we describe each of them as a single word.
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be given in this case. (Ex. 5) shows an example
of this. jinzhu does not have ¢; but it is necessary
for it to be translated as the translation correspon-
dence is presence in R as 7.

The same rationale also applies to terminolo-
gies, except that they are marked with MT or WT
and have to be unerringly translated for them to be
marked as OK. For the other cases not illustrated
above, we assume that they are either not happen-
ing or do not affect the adequacy of the translation.

4.2 Features and Model

To capture the above observation, we build two
sets of features, one for finding t he correspond-

ing translation ¢; and ry, for each s;, the other for
checking the equivalence of ¢; and r;. Here, we
only briefly list the features adopted in our model
as they are all commonly used standard features.
We give detailed description of all features in Ap-
pendix A.1.

Giza++ (Och and Ney, 2000) is used to find the
corresponding translation ¢; and ry for each s;.
However, as Giza++ generates noisy alignments
especially for low-frequency words, we propose
a set of features to complement Giza++ results.
The same features are applied on 7" and R, hence
we only describe the feature for the alignment be-
tween .S and 7T'. Suppose that s; is aligned to tj6.
These features are: s;’s POS tag; a binary feature
of whether NER tags of s; and ¢; are the same; the
corpus frequency and Giza++ translation probabil-
ity of s; and ¢;; the similarity between ¢; and s;’s
most frequent translation; the number of aligned-
pairs among words linking to s; and ¢; in depen-
dency tree.

We leverage on the state-of-the-art monolingual
alignment tool Sultan et al. (2014) to check the
equivalence of ¢; and r;. The tool leverages on
paraphrase lexicon (Pavlick et al., 2015) and de-
pendency relations to find e quivalent expression
between two sentences in the same language. The
following features are used: a binary feature indi-
cating whether ¢; and 7, are aligned by tool pro-
posed by (Sultan et al., 2014); A binary feature
indicating whether the NER tag of ¢; and 7, are
the same.

While this error detection problem can be mod-
eled as sequential labelling task, we choose simple
classification model as the benchmark. Therefore,

SFollowing Hu et al. (2018), we make adjustment by pe-
nalizing the frequency of both words.



we use an Mutilayer Perceptron (MLP) as the de-
tection model which takes all above features in for
each source word s; to choose one of the labels in
{OK, W, WT, M, MT} as the prediction.

5 Experiments

We conduct empirical experiments to evaluate the
effectiveness of our error detection model, per-
form error analysis and discuss the challenges
of this task. We split our TransErr dataset into
training and developing sets in a ratio of 9:1 and
adopt the whole WMT DA dataset as the testing
set. Error detection results are reported in single-
class F1. All Chinese sentences are tokenized
by THULAC (Li and Sun, 2009).The rest of the
pre-processings like POS, NER, parsing for both
English and Chinese are performed by Stanford
Corenlp (Manning et al., 2014).

5.1 Baselines

We build a naive baseline, random model, to test
the worst performance. It randomly assigns a label
to each source word according to the distribution
of each class in the training set. We then evalu-
ate the performance of our proposed MLP model
(AlignDet) and two recent models under WMT
word-level QE shared-task:

- CEQE (Hu et al., 2018) Using a three-part neural
network model, which encodes semantic factors,
local context and global context successively.

- SHEF-bRNN (Ive et al., 2018) Adopting bi-
directional recurrent neural network to learn a rep-
resentation for <source, MT hypothesis> sen-
tence pairs.

We replicate these two models utilizing origi-

nal implementations but modify them to work in
our 5-label setting.” We also analyze our proposed
model and its variant by ablating or substituting its
components
- Raw alignment Using only the raw results from
the monolingual and bilingual alignment systems
and NER on the source to examine the effect of
alignment on the model.
- No reference We remove all features derived
from the reference, for example, bilingual align-
ment features between .S and R, and monolingual
alignment features between 7" and R. This is to
test the efficacy of using only source information
for translation performance evaluation.

"We also tried QEBrain (Fan et al., 2018; Wang et al.,

2018) using the released code. However, it did not converge
to any meaningful predictions.
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5.2 Error Detection Results

Table 3 shows our error detection results on the
developing set and test set. Our random baseline
(Row (1)) provides a preliminary insight for this
error detection problem, with extremely low F1
scores (nearly 0) except for the OK class. It is be-
cause errors are scarcely distributed (see Table 1).
In addition, the QE models (Row 2, 3) do not per-
form well in error classification. This is reason-
able because they are not designed for error detec-
tion in our setting. The overall better performance
of our AlignDet model supports that our Alignment
Triangle Observation and its contribution to the er-
ror detection task.

However, with raw alignment (Row 4 vs Row
5), the performance of AlignDet drops sharply.
It is because the alignment model, especially
Giza++, generates noisy results. This demon-
strates the efficacy of other features in rectifying
Giza++ results. The comparison between Row (4)
and Row (6) also demonstrates the importance of
reference, especially for detecting W label. It is be-
cause wrong translation is also likely to get aligned
with the source as it can be the translation of the
source words in some other contexts. However,
reference gives us a pointer to the correct word
choice in the given context, hence helping deter-
mining W label. Without reference, we may need
to rely on more contextual modeling effort to de-
tect a wrong translation.

5.3 Error Analysis

Ex.7

ta zhunbei luewei tigao  xunlian giangdu ...
s f HER B 1RE I
T He prepares to increase his slig
R He prepares to slightly increase training
Ex. 8 ... naxie yong jiashuai laoqu haochu de qiuyvan .
S . ek P EESEECHIE B .
T use diving to fish for benefits .
R that gain advantages by pretending fall-overs .

... chengban jianchaguan huangmouxin ...
N i
T Prosecutor Huang Moﬁ'x_in .
R The procurator [ifill&Egg Huang Mouxin ...

Figure 3: Representative examples of the confusion
cases for AlignDet.

To get more insight into the difficulty of this
task, we perform error analysis on AlignDet. We
only examine the confusion matrix on test set due
to the limitation of space in Table 4. It shows that
the significant problems are: (a) Predict W as OK



Developing Testing
OK \ WwT MT OK w WT M MT
(1) Random baseline | 0.959 | 0.009 | 0.013 | 0.020 | 0.027 | 0.947 | 0.025 | 0.029 | 0.041 | 0.017
(2) CEQE 0.944 | 0.134 | 0.180 | 0.245 | 0.161 | 0.914 | 0.161 | 0.147 | 0.206 | 0.094
(3) SHEF-bRNN 0.916 | 0.140 | 0.212 | 0.127 | 0.262 | 0.884 | 0.153 | 0.123 | 0.098 | 0.114
(4) AlignDet 0.973 | 0.275 | 0.480 | 0.416 | 0.365 | 0.964 | 0.212 | 0.293 | 0.400 | 0.429
(5) Raw alignment 0.762 | 0.051 | 0.049 | 0.168 | 0.114 | 0.781 | 0.131 | 0.131 | 0.263 | 0.328
(6) No reference 0.977 | 0.040 | 0.448 | 0.289 | 0.289 | 0.962 | 0.075 | 0.213 | 0.360 | 0.378

Table 3: F1 score for each class produced by different error detection models.

Pred.
Gold OK W | WT | M | MT
OK 12635 | 203 | 68 | 106 | 13
w 279 83 3 40 5
WT 109 28 | 54 9 6
M 121 54 12 | 122 | 11
MT 26 12 31 16 44

Table 4: Confusion matrix on test set.

(b) Predict OK as M (c) Predict M as OK. We illus-
trate the wrong prediction in Figure 3.

(Ex. 7) demonstrates a case for “W as OK”.
Both strength (the wrong translation in T) and
efforts (the correct translation in R) are aligned
to the source word giangdu by Giza++. Though
both of them are possible translations for giangdu,
they are not semantically equivalent in this con-
text. Unfortunately, monolingual alignment tool
aligns them as a pair, hence a more contextual
and semantically-sensitive monolingual alignment
is required. (Ex. 8) demonstrates a case for “OK
as M”. In T, giuyuan is translated to those and
is not detected by our bilingual alignment. This
leads the model to treat it as not been translated.
This example demonstrates the constraint of bilin-
gual alignment in finding the translation corre-
spondence, which would require contextual-level
understanding. (Ex. 9) demonstrates a case for “M
as OK”. Similar to (Ex. 8), the mis-prediction is
caused by the failure of bilingual alignment (be-
tween chengban in S and in charge in R). Our
model regards chengban as omittable as bilingual
alignment fails to align it to in charge in R. As a
result, though chengban is translated in R but not
translated in T, we classify it as OK instead of M.
This example again demonstrates the important of
alignment in error detection task.

Our qualitative error analyses highlight the bot-
tleneck of AlignDet model on the proposed align-
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ment features. In a broader context, both bilin-
gual alignment and monolingual alignment are
still having open issues in the realm of NLP (Sul-
tan et al., 2014). An intuitive solution is turning to
soft alignment (e.g., attention) using neural tech-
niques (Liu and Sun, 2015; Tamura et al., 2014).
This raises interesting and challenging questions
on how to leverage on such approaches to capture
our observations in finding corresponding transla-
tions ¢; and 7y for each s; and comparing their
equivalence? Neural models usually require large
data and how to leverage on limited error anno-
tation data (say, 15000 sentence pairs) and large
parallel corpus for such purpose?

6 Discussion: How Does Error Class
Affect Existing MT Evaluation
Metrics?

This paper proposes an adequacy translation error
detection model with the aim to study its contri-
bution to MT. We presume that fine grained MT
evaluation is useful for assessing different proper-
ties of MT models. Hence, we go one step further
to discuss how fine-grained error detection bene-
fits existing MT evaluation metrics using DA as
the base for our evaluation.

To explore further, we define a Weight Ade-
quacy Error Rate (WAER) following TER (Snover
et al., 2006):

W1 HW + W #WT + w3 F#M + waF#MT
Len(S)

WAER = (1
where #W, #WT, #M, #MT are the number of wrong
words, wrong terminologies, missing words, miss-
ing terminologies respectively; wy, wa, w3, w4 are
corresponding weight for each error class, indicat-
ing its importance. Len(S) is the source sentence
length.

With only missing and wrong error class, WAER
is not sufficient to serve as an independent eval-



Base | + pred. | + gold.
BLEU 0482 | 0.524 | 0.541
METEOR 0.638 | 0.673 | 0.709
ROUGE-L 0.582 | 0.645 | 0.699
BEER 0.582 | 0.640 | 0.681
CUNI-TreeAggreg | 0.535 | 0.625 | 0.670
MEANT_2.0 0.639 | 0.641 | 0.680
MEANT_2.0-nosrl | 0.630 | 0.633 | 0.672
UHH_TSKM 0.477 | 0.600 | 0.657
BLEU2VEC _sep 0.526 | 0.588 | 0.620
CHRF 0.591 | 0.641 | 0.685
CHRF++ 0.593 | 0.644 | 0.690
NGRAM2VEC 0.520 | 0.576 | 0.607
Ave 0.573 | 0.622 | 0.662

Table 5: Segment-level Pearson correlation of various
metrics and their enhancements with our W AE R mea-
sure through (Eq. 2). + pred./+gold means W AFER is
calculated by our error detection model predicted re-
sults/gold standard as per se.

uation metric. As a common practice in BLEU
and METEOR, we view WAER as a penalty to base
metrics, which we refer as Score, and calculate
the penalized score as follow:

Score = Score * (1 — WAER) 2)

To determine wq, ws, ws, Wy, wWe build a de-
velopment set of 300 instances, sampled from our
TransErr, with overall translation quality scored
by multiple judges who are professional at both
English and Chinese. To avoid bias, our error an-
notators of TransErr are excluded from this scor-
ing. We adjust wi, wa, w3, wy in this development
set based on our gold annotation, such that the en-
hanced metrics achieves highest correlation with
the average human score.

We examine three benchmark metrics (BLEU,
METEOR, ROUGE) and the recent metrics sub-
mitted to WMTI17: BEER (Stanojevi¢ and
Sima’an, 2015), CUNI-TreeAggreg (Marecek
et al.,, 2017), MEANT_2.0, MEANT_2.0-nosrl
(Lo, 2017), UHH_TSKM (Duma and Menzel,
2017), NGRAM2VEC, BLEU2VEC_sep (Tittar
and Fishel, 2017), CHRF (Popovié, 2015),
CHRF++ (Popovié, 2017). We test their perfor-
mance on WMT 17 DA dataset. The results are in
Table 5. WAER is calculated by both system pre-
diction results and the gold standard. We observe
that, with our error prediction, WAER is able to en-
hance almost all metrics substantially (+0.049 on
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average). When calculating WAER using the gold
standard, the performance is even higher (+0.089
on average). This demonstrates the efficacy of er-
ror detection for enhancing existing direct assess-
ment metrics. Note that, we do not conclude that
our WAER (Eq. 1) and the way of enhancing exist-
ing Score (Eq. 2) is optimal in terms of achiev-
ing better correlations with human judgment. We
also want to find out which error class affects the
overall translation quality more. Therefore, we
study how the enhanced metrics correlate to hu-
man judgment when the weight of a single class
of error changes. The trend is shown in Fig-
ure 4 where y-axis is the average correlation of
all metrics enhanced by WAER on gold standard.
X-axis is the weight of the observed error class.
To eliminate the contribution made by other error
classes, weights of other error classes are set to
0. From Figure 4, one can observe that wrong
related error (W and WT) can help existing met-
rics achieve higher correlation to human judgment
than missing-related error (M and MT ). This sug-
gests wrong translation is more severe than miss-
ing word. This provides valuable feedback on the
advancement of evaluation metric towards human
evaluation. Similarly, one can also observe that
adequacy issue on terminologies is more severe
than normal words and term-related errors need
higher weights to achieve highest correlation. Ac-
curate translation of terminology is an issue in
neural machine translation if its occurrence is low
in the training data. Accurate translation of termi-
nology may be an area that warrens more work.

0.61
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Figure 4: Correlation with respect to each error class.

7 Conclusion

In this paper, we revive the problem of error de-
tection task for fine-grained machine translation



evaluation purpose. We contribute a high-quality
dataset TransErr with Missing and Wrong trans-
lation manually annotated by professional trans-
lators to enable the development of supervised
methods. Based on TransErr, we benchmark this
task by proposing a strong baseline, i.e., Align-
Det model, based on our Alignment Triangle ob-
servation. We also conduct various discussions
about this task such as the challenges of unsuper-
vised methods for error annotation, the bottleneck
of AlignDet model and the potential benefits of
the error detection task for existing MT evaluation
metrics task.

This work represents the preliminary work for
more multi-faceted machine translation evalua-
tion, focusing on multiple aspects instead of only
a score or ranking, with the goal of push MT tech-
niques to a higher standard. However, there are
areas for further exploration. In the future, we will
explore more advanced techniques such as neural
networks for error detection. We will also inves-
tigate how to make better evaluation metrics with
the help of error detection. We will also study how
to improve machine translation model through er-
ror detection. For example, how to improve MT
models according to different class of errors.
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