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Abstract

Previous studies on the domain adaptation
for neural machine translation (NMT) mainly
focus on the one-pass transferring out-of-
domain translation knowledge to in-domain
NMT model. In this paper, we argue that such
a strategy fails to fully extract the domain-
shared translation knowledge, and repeatedly
utilizing corpora of different domains can lead
to better distillation of domain-shared trans-
lation knowledge. To this end, we propose
an iterative dual domain adaptation frame-
work for NMT. Specifically, we first pre-
train in-domain and out-of-domain NMT mod-
els using their own training corpora respec-
tively, and then iteratively perform bidirec-
tional translation knowledge transfer (from in-
domain to out-of-domain and then vice versa)
based on knowledge distillation until the in-
domain NMT model convergences. Further-
more, we extend the proposed framework to
the scenario of multiple out-of-domain train-
ing corpora, where the above-mentioned trans-
fer is performed sequentially between the in-
domain and each out-of-domain NMT models
in the ascending order of their domain similari-
ties. Empirical results on Chinese-English and
English-German translation tasks demonstrate
the effectiveness of our framework.

1 Introduction

Currently, neural machine translation (NMT) has
become dominant in the community of machine
translation due to its excellent performance (Bah-
danau et al., 2015; Wu et al., 2016; Vaswani et al.,
2017). With the development of NMT, prevail-
ing NMT models become more and more com-
plex with large numbers of parameters, which of-
ten require abundant corpora for effective train-
ing. However, for translation tasks in most do-
mains, domain-specific parallel sentences are of-
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ten scarce. If we only use domain-specific data
to train the NMT model for such a domain, the
performance of resulting model is usually unsatis-
fying. Therefore, NMT for low-resource domains
becomes a challenge in its research and applica-
tions.

To deal with this issue, many researchers have
conducted studies on the domain adaptation for
NMT, which can be classified into two general
categories. One is to transfer the rich-resource
domain (out-of-domain) translation knowledge to
benefit the low-resource (in-domain) NMT model.
The other is to use the mixed-domain training cor-
pus to construct a unified NMT model for all do-
mains. Here, we mainly focus on the first type of
research, of which typical methods include fine-
tuning (Luong and Manning, 2015; Zoph et al.,
2016; Servan et al., 2016), mixed fine-tuning (Chu
et al., 2017), cost weighting (Chen et al., 2017),
data selection (Wang et al., 2017a,b; Zhang et al.,
2019a) and so on. The underlying assumption
of these approaches is that in-domain and out-of-
domain NMT models share the same parameter
space or prior distributions, and the useful out-of-
domain translation knowledge can be completely
transferred to in-domain NMT model in a one-
pass manner. However, it is difficult to achieve this
goal due to domain differences. Particularly, when
the domain difference is significant, such conven-
tional brute-force transfer may be unsuccessful,
facing the similar issue as the domain adaptation
for other tasks (Pan and Yang, 2010).

In this paper, to tackle the above problem, we
argue that corpora of different domains should be
repeatedly utilized to fully distill domain-shared
translation knowledge. To this end, we pro-
pose a novel Iterative Dual Domain Adaptation
(IDDA) framework for NMT. Under this frame-
work, we first train in-domain and out-of-domain
NMT models using their own training corpora re-
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spectively, and then iteratively perform bidirec-
tional translation knowledge transfer (from in-
domain to out-of-domain and then vice versa). In
this way, both in-domain and out-of-domain NMT
models are expected to constantly reinforce each
other, which is likely to achieve better NMT do-
main adaptation. Particularly, we employ a knowl-
edge distillation (Hinton et al., 2015; Kim and
Rush, 2016) based approach to transfer transla-
tion knowledge. During this process, the target-
domain NMT model is first initialized with the
source-domain NMT model, and then trained to
fit its own training data and match the output of
its previous best model simultaneously. By doing
so, the previously transferred translation knowl-
edge can be effectively retained for better NMT
domain adaptation. Finally, we further extend the
proposed framework to the scenario of multiple
out-of-domain training corpora, where the above-
mentioned bidirectional knowledge transfer is per-
formed sequentially between the in-domain and
each out-of-domain NMT models in the ascending
order of their domain similarities.

The contributions of this work are summarized
as follows:

• We propose an iterative dual domain adapta-
tion framework for NMT, which is applica-
ble to many conventional domain transfer ap-
proaches, such as fine-tune, mixed fine-tune.
Compared with previous approaches, our
framework is able to better exploit domain-
shared translation knowledge for NMT do-
main adaptation.

• We extend our framework to the setting
of multiple out-of-domain training corpora,
which is rarely studied in machine transla-
tion. Moreover, we explicitly differentiate
the contributions of different out-of-domain
training corpora based on the domain-level
similarity with in-domain training corpus.

• We provide empirical evaluations of the
proposed framework on Chinese-English,
German-English datasets for NMT domain
adaptation. Experimental results demonstrate
the effectiveness of our framework. More-
over, we deeply analyze impacts of various
factors on our framework1.

1We release code and results at
https://github.com/DeepLearnXMU/IDDA.

2 Related Work

Our work is obviously related to the research on
transferring the out-of-domain translation knowl-
edge into the in-domain NMT model. In this
aspect, fine-tuning (Luong and Manning, 2015;
Zoph et al., 2016; Servan et al., 2016) is the
most popular approach, where the NMT model is
first trained using the out-of-domain training cor-
pus, and then fine-tuned on the in-domain train-
ing corpus. To avoid overfitting, Chu et al. (2017)
blended in-domain with out-of-domain corpora to
fine-tune the pre-trained model, and Freitag and
Al-Onaizan (2016) combined the fine-tuned model
with the baseline via ensemble method. Mean-
while, applying data weighting into NMT domain
adaptation has attracted much attention. Wang
et al. (2017a) and Wang et al. (2017b) proposed
several sentence and domain weighting methods
with a dynamic weight learning strategy. Zhang
et al. (2019a) ranked unlabeled domain training
samples based on their similarity to in-domain
data, and then adopts a probabilistic curriculum
learning strategy during training. Chen et al.
(2017) applied the sentence-level cost weighting
to refine the training of NMT model. Recently, Vi-
lar (2018) introduced a weight to each hidden unit
of out-of-domain model. Chu and Wang (2018)
gave a comprehensive survey of the dominant do-
main adaptation techniques for NMT. Gu et al.
(2019) not only maintained a private encoder and
a private decoder for each domain, but also intro-
duced a common encoder and a common decoder
shared by all domains.

Significantly different from the above methods,
along with the studies of dual learning for NMT
(He et al., 2016; Wang et al., 2018; Zhang et al.,
2019b), we iteratively perform bidirectional trans-
lation knowledge transfer between in-domain and
out-of-domain training corpora. To the best of our
knowledge, our work is the first attempt to ex-
plore such a dual learning based framework for
NMT domain adaptation. Furthermore, we ex-
tend our framework to the scenario of multiple
out-of-domain corpora. Particularly, we introduce
knowledge distillation into the domain adaptation
for NMT and experimental results demonstrate its
effectiveness, echoing its successful applications
on many tasks, such as speech recognition (Hin-
ton et al., 2015) and natural language processing
(Kim and Rush, 2016; Tan et al., 2019).

Besides, our work is also related to the studies
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(a) Non-iterative Domain Adaptation (b) Iterative Dual Domain Adaptation
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Figure 1: Traditional approach vs IDDA framework for one-to-one NMT domain adaptation. Dout: out-of-domain
training corpus, Din: in-domain training corpus, θout: out-of-domain NMT model, θin: in-domain NMT model,
K denotes the iteration number.

Algorithm 1 Iterative Dual Domain Adaptation for NMT

1: Input: Training corpora {Din, Dout}, development sets {Dv
in, D

v
out}, and the maximal iteration

number K.
2: Output: In-domain NMT model θ∗in.
3: θ

(0)
in ← TrainModel(Din), θ

(0)
out← TrainModel(Dout)

4: θ∗in← θ
(0)
in , θ∗out← θ

(0)
out

5: for k = 1, 2, ...,K do
6: θ

(k)
out← TransferModel(θ(k−1)in , Dout, θ∗out)

7: if EvalModel(Dv
out, θ

(k)
out) > EvalModel(Dv

out, θ
∗
out)

8: θ∗out ← θ
(k)
out

9: end if
10: θ

(k)
in ← TransferModel(θ(k)out, Din, θ∗in)

11: if EvalModel(Dv
in, θ(k)in ) > EvalModel(Dv

in, θ∗in)
12: θ∗in← θ

(k)
in

13: end if
14: end for

of multi-domain NMT, which focus on building a
unified NMT model trained on the mixed-domain
training corpus for translation tasks in all domains
(Kobus et al., 2016; Tars and Fishel, 2018; Fara-
jian et al., 2017; Pryzant et al., 2017; Sajjad et al.,
2017; Zeng et al., 2018; Bapna and Firat, 2019).
Although our framework is also able to refine out-
of-domain NMT model, it is still significantly dif-
ferent from multi-domain NMT, since only the
performance of in-domain NMT model is consid-
ered.

Finally, note that similar to our work, Tan et al.
(2019) introduced knowledge distillation into mul-
tilingual NMT. However, our work is still different
from (Tan et al., 2019) in the following aspects:
(1) Tan et al. (2019) mainly focused on construct-
ing a unified NMT model for multi-lingual transla-
tion task, while we aim at how to effectively trans-
fer out-of-domain translation knowledge to in-
domain NMT model; (2) Our translation knowl-
edge transfer is bidirectional, while the procedure
of knowledge distillation in (Tan et al., 2019) is
unidirectional; (3) When using knowledge distil-

lation under our framework, we iteratively update
teacher models for better domain adaptation. In
contrast, all language-specific teacher NMT mod-
els in (Tan et al., 2019) remain fixed.

3 Iterative Dual Domain Adaptation
Framework

In this section, we first detailedly describe our
proposed framework for conventional one-to-one
NMT domain adaptation, and then extend this
framework to the scenario of multiple out-of-
domain corpora (many-to-one).

3.1 One-to-one Domain Adaptation

As shown in Figure 1(a), previous studies mainly
focus on the one-pass translation knowledge trans-
fer from one out-of-domain NMT model to the
in-domain NMT model. Unlike these studies, we
propose to conduct iterative dual domain adapta-
tion for NMT, of which framework is illustrated in
Figure 1(b).

To better describe our framework, we sum-
marize the training procedure of our framework
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Figure 2: Traditional approach vs IDDA framework for many-to-one NMT domain adaptation. Dmix: a mixed
out-of-domain training corpus.

in Algorithm 1. Specifically, we first individu-
ally train the initial in-domain and out-of-domain
NMT models, respectively denoted by θ

(0)
in and

θ
(0)
out, via minimizing the negative likelihood of

their own training corpora Din and Dout (Line 3):

L(0)in =
∑

(x,y)∈Din

−logP (y|x; θ(0)in ), (1)

L(0)out =
∑

(x,y)∈Dout

−logP (y|x; θ(0)out). (2)

Then, we iteratively perform bidirectional transla-
tion knowledge transfer to update both in-domain
and out-of-domain NMT models, until the maxi-
mal iteration number K is reached (Lines 5-14).
More specifically, at the k-th iteration, we first
transfer the translation knowledge of the previ-
ous in-domain NMT model θ(k−1)in to the out-of-
domain NMT model θ(k)out trained onDout (Line 6),
and then reversely transfer the translation knowl-
edge encoded by θ

(k)
out to the in-domain NMT

model θ(k)in trained on Din (Line 10). During this
process, we evaluate the new models θ(k)in and θ(k)out

on their corresponding development sets, and then
record the best model parameters as θ∗in and θ∗out
(Lines 7-9, 11-13).

Obviously, during the above procedure, one of
important steps is how to transfer the translation
knowledge from one domain-specific NMT model
to the other one. However, if we directly employ
conventional domain transfer approaches, such as
fine-tuning, as the iterative dual domain adapta-
tion proceeds, the previously learned translation
knowledge tends to be ignored. To deal with this
issue, we introduce knowledge distillation (Kim

and Rush, 2016) to conduct the translation knowl-
edge transfer. Specifically, during the transfer pro-
cess from θ

(k)
out to θ(k)in , we first initialize θ(k)in with

parameters of θ(k)out, and then train θ(k)in not only to
match the references of Din, but also to be consis-
tent with probability outputs of the previous best
in-domain NMT model θ∗in, which is considered
as the teacher model. To this end, we define the
loss function as

L(k)in =
∑

(x,y)∈Din

[−(1− λ) · logP (y|x; θ(k)in )+

λ · KL(P (y|x; θ(k)in )||P (y|x; θ∗in))], (3)

where λ is the coefficient used to trade off these
two loss terms, and it can be tuned on the devel-
opment set. Notably, when λ=0, only the term of
likelihood function affects the model training, and
thus our transfer approach degenerate into fine-
tuning at each iteration.

In this way, we enable in-domain NMT model
θ
(k)
in to not only retain the previously learned ef-

fective translation knowledge, but also fully ab-
sorb the useful translation knowledge from out-of-
domain NMT model θ(k)out. Similarly, we employ
the above method to transfer translation knowl-
edge from θ

(k−1)
in to θ(k)out using out-of-domain cor-

pus Dout and the previous best out-of-domain
model θ∗out. Due to the space limitation, we omit
the specific description of this procedure.

3.2 Many-to-one Domain Adaptation
Usually, in practical applications, there exist mul-
tiple available out-of-domain training corpora si-
multaneously. As shown in Figure 2(a), previous
studies usually mix them into one out-of-domain
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corpus, which is applicable for the conventional
one-to-one NMT domain adaptation. However,
various out-of-domain corpora are semantically
related to in-domain corpus to different degrees,
and thus intuitively, it is difficult to adequately
play their roles without distinguishing them.

To address this issue, we extend the proposed
framework to many-to-one NMT domain adapta-
tion. Our extended framework is illustrated in
Figure 2(b). Given an in-domain corpus and N
out-of-domain corpora, we first measure the se-
mantic distance between each out-of-domain cor-
pus and the in-domain corpus using the proxy A-
distance d̂A=2(1−2ε) (Ganin et al., 2015; Pryzant
et al., 2017), where the ε is the generalization er-
ror of a linear bag-of-words SVM classifier trained
to discriminate between the two domains. Then,
we determine the transfer order of these out-of-
domain NMT models as {θout1 , θout2 , ...θoutN } ,
according to distances of their own training cor-
pora to the in-domain corpus in a decreasing or-
der. The reason behind this step is the transla-
tion knowledge of previously transferred out-of-
domain NMT models will be partially forgotten
during the continuous transfer. By setting trans-
fer order according to their d̂A values in a decreas-
ing order, we enable the in-domain NMT model
to fully preserve the translation knowledge trans-
ferred from the most relevant out-of-domain NMT
model. Finally, we sequentially perform bidirec-
tional knowledge transfer between the in-domain
and each out-of-domain models, where this pro-
cess will be repeated for K iterations.

4 Experiments

To verify the effectiveness of our framework, we
first conducted one-to-one domain adaptation ex-
periments on Chinese-English translation, where
we further investigated impacts of various factors
on our framework. Then, we carried out two-to-
one domain adaptation experiments on English-
German translation, so as to demonstrate the gen-
erality of our framework on different language
pairs and multiple out-of-domain corpora.

4.1 Setup

Datasets. In the Chinese-English translation task,
our in-domain training corpus is from IWSLT2015
dataset consisting of 210K TED Talk sentence
pairs, and the out-of-domain training corpus con-
tains 1.12M LDC sentence pairs related to News

domain. For these two domains, we chose IWSLT
dev2010 and NIST 2002 dataset as development
sets. Finally, we used IWSLT tst2010, tst2011
and tst2012 as in-domain test sets. Particularly,
in order to verify whether our framework can
enable NMT models of two domains to benefit
each other, we also tested the performance of out-
domain NMT model on NIST 2003, 2004, 2005,
2006 datasets.

For the English-German translation task, our
training corpora totally include one in-domain
dataset: 200K TED Talk sentence pairs provided
by IWSLT2015, and two out-of-domain datasets:
500K sentence pairs (News topic) extracted from
WMT2014 corpus, and 500K sentence pairs (Med-
ical topic) that are sampled from OPUS EMEA
corpus2. As for development sets, we chose
IWSLT tst2012, WMT tst2012 and 1K sampled
sentence pairs of OPUS EMEA corpus, respec-
tively. In addition, IWSLT tst2013, tst2014 were
used as in-domain test sets, WMT news-test2014
(News topic) and 1K sampled sentence pairs of
OPUS EMEA corpus were used as two out-of-
domain test sets.

We first employed Stanford Segmenter3 to con-
duct word segmentation on Chinese sentences and
MOSES script4 to tokenize English and German
sentences. Then, we limited the length of sen-
tences to 50 words in the training stage. Be-
sides, we employed Byte Pair Encoding (Sen-
nrich et al., 2016) to split words into subwords
and set the vocabulary size for both Chinese-
English and English-German as 32,000. We
evaluated the translation quality with BLEU
scores (Papineni et al., 2002) as calculated by
multi-bleu.perl script .
Settings. We chose Transformer (Vaswani et al.,
2017) as our NMT model, which exhibits excel-
lent performance due to its flexibility in parallel
computation and long-range dependency model-
ing. We followed Vaswani et al. (2017) to set
the configurations. The dimensionality of all in-
put and output layers is 512, and that of FFN layer
is 2048. We employed 8 parallel attention heads
in both encoder and decoder. Parameter optimiza-
tion was performed using stochastic gradient de-
scent, where Adam (Kingma and Ba, 2015) was
used to automatically adjust the learning rate of

2http://opus.nlpl.eu/
3https://nlp.stanford.edu/
4http://www.statmt.org/moses/
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each parameter. We batched sentence pairs by ap-
proximated length, and limited input and output
tokens per batch to 25000 tokens. As for decod-
ing we employed beam search algorithm and set
the beam size as 4. Besides, we set the distillation
coefficient λ as 0.4.
Contrast Models. We compared our framework
with the following models, namely:

• Single A reimplemented Transformer only
trained on a single domain-specific (in/out)
training corpus.

• Mix A reimplemented Transformer trained
on the mix of in-domain and out-of-domain
training corpora.

• Fine-tuning (FT) (Luong and Manning,
2015). It first trains the NMT model on out-
of-domain training corpus and then fine-tunes
it using in-domain training corpus.

• Mixed Fine-tuning (MFT) (Chu et al.,
2017). It also first trains the NMT model on
out-of-domain training corpus, and then fine-
tunes it using both out-of-domain and over-
sampling in-domain training corpora.

• Knowledge Distillation (KD) (Kim and
Rush, 2016). Using this method, we first
train a out-of-domain and an in-domain NMT
models using their own training corpus, re-
spectively. Then, we use the in-domain train-
ing corpus to fine-tune the out-of-domain
NMT model, supervised by the in-domain
NMT model.

Besides, we reported the performance of some
recently proposed multi-domain NMT models.

• Domain Control (DC) (Kobus et al., 2016).
It is also based on the mix-domain NMT
model. However, it adds an additional do-
main tag to each source sentence, incorporat-
ing domain information into source annota-
tions.

• Discriminative Mixing (DM) (Pryzant et al.,
2017). It jointly trains NMT with domain
classification via multitask learning. Please
note that it performs the best among three ap-
proaches proposed by Pryzant et al., (2017).

• Word-level Domain Context Discrimina-
tion (WDCD) (Zeng et al., 2018). It discrim-
inates the source-side word-level domain spe-
cific and domain-shared contexts for multi-

13
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Figure 3: Effect of iteration number (K) on the
Chinese-English in-domain development set.

domain NMT by jointly modeling NMT and
domain classifications.

4.2 Results on Chinese-English Translation

4.2.1 Effect of Iteration Number K
The iteration number K is a crucial hyper-
parameter that directly determines the amount of
the transferred translation knowledge under our
framework. Therefore, we first inspected its im-
pacts on the development sets. To this end, we
varied K from 0 to 7 with an increment of 1 in
each step, where our framework degrades to Sin-
gle when K=0.

Figure 3 provides the experimental results us-
ing different Ks. We can observe that both
IDDA(λ=0) and IDDA achieve the best perfor-
mance at the 3-th iteration, respectively. There-
fore, we directly used K=3 in all subsequent ex-
periments.

4.2.2 Overall Performance
Table 1 shows the overall experimental results.
On all test sets, our framework significantly out-
performs other contrast models. Furthermore, we
reach the following conclusions:

First, on the in-domain test sets, both
IDDA(λ=0) and IDDA surpass Single, Mix, FT,
MFT and KD, most of which are commonly used
in the domain adaptation for NMT. This confirms
the difficulty in completely one-pass transferring
the useful out-of-domain translation knowledge to
the in-domain NMT model. Moreover, the in-
domain NMT model benefits from multiple-pass
knowledge transfers under our framework.

Second, compared with DC, DM and WDCD
that are proposed for multi-domain NMT, both
IDDA(λ=0) and IDDA still exhibit better perfor-
mance on the in-domain test sets. The underlying
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Model TED Talk (In-domain) News (Out-of-domain)
Tst10 Tst11 Tst12 Tst13 AVE. Nist03 Nist04 Nist05 Nist06 AVE.

Cross-domain Transfer Methods
Single 15.82 20.80 17.77 18.33 18.18 45.38 45.93 42.80 42.70 44.20
Mix 16.46 20.85 19.13 19.87 19.08 44.87 45.71 42.24 42.02 43.71
FT 16.77 21.16 19.31 20.53 19.44 — — — — —
MFT 17.19 22.02 20.09 21.05 20.08 — — — — —
KD 17.62 21.88 19.97 20.43 19.98 — — — — —

Multi-domain NMT Methods
DC 17.23 22.10 19.68 20.58 19.90 46.03 46.62 44.39 43.82 45.21
DM 16.45 21.35 18.77 20.27 19.21 45.12 45.83 42.77 42.59 44.08
WDCD 17.32 22.23 20.02 21.10 20.17 46.33 46.36 44.62 43.80 45.27

IDDA Framework
IDDA(λ=0) 18.00 22.71 20.36 21.82 20.72 45.91 45.84 43.61 42.17 44.46
IDDA 18.36 23.14 20.78 21.79 21.02† 47.17 47.44 45.38 44.04 46.01†

Table 1: Experimental results on the Chinese-English translation task. † indicates statistically significantly better
than (ρ <0.01) the result of WDCD.

reason is that these multi-domain models discrimi-
nate domain-specific and domain-shared informa-
tion in encoder, however, their shared decoder are
inadequate to effectively preserve domain-related
text style and idioms. In contrast, our framework
is adept at preserving these information since we
construct an individual NMT model for each do-
main.

Third, IDDA achieves better performance than
IDDA(λ=0), demonstrating the importance of
retaining previously learned translation knowl-
edge. Surprisingly, IDDA significantly outper-
forms IDDA(λ=0) on out-of-domain data sets. We
conjecture that during the process of knowledge
distillation, by assigning non-zero probabilities to
multiple words, the output distribution of teacher
model is more smooth, leading to smaller variance
in gradients (Hinton et al., 2015). Consequently,
the out-of-domain NMT model becomes more ro-
bust by iteratively absorbing the translation knowl-
edge from the best out-of-domain model.

Finally, note that even on the out-of-domain
test sets, IDDA still has better performance than
all listed contrast models in the subsequent ex-
perimental analyses. This result demonstrates the
advantage of dual domain adaptation under our
framework.

According to the reported performance of our
framework shown in Table 1, we only considered
IDDA in all subsequent experiments. Besides, we
only chose MFT, KD, and WDCD as typical con-
trast models. This is because KD is the basic do-
main adaption approach of our framework, MFT
and WDCD are the best domain adaptation method
and multi-domain NMT model for comparison, re-
spectively.

14
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MFT

Figure 4: BLEU scores on different IWSLT test sets
divided according to source sentence lengths.

4.2.3 Results on Source Sentences with
Different Lengths

Following previous work (Bahdanau et al., 2015),
we divided IWSLT test sets into different groups
based on the lengths of source sentences and then
investigated the performance of various models.

Figure 4 illustrates the results. We observe that
our framework also achieves the best performance
in all groups, although the performances of all
models degrade with the increase of the length of
source sentences.

4.2.4 Effect of Out-of-domain Corpus Size
In this group of experiments, we investigated the
impacts of out-of-domain corpus size on our pro-
posed framework. Specifically, we inspected the
results of our framework using different sizes of
out-of-domain corpora: 50K, 200K and 1.12M, re-
spectively

Figure 5 shows the comparison results on the
average BLEU scores of all IWSLT test sets.
No matter how large out-of-domain data is used,
IDDA always achieves better performance than
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Figure 5: Experimental results with different sizes of
out-of-domain corpora.

Model AVE.
IDDA-unidir 20.43
IDDA-fixTea 20.60

IDDA 21.02

Table 2: Experimental results of comparing IDDA
with its two variants.

other contrast models, demonstrating the effec-
tiveness and generality of our framework. Spe-
cially, IDDA with 200K out-of-domain corpus is
comparable to KD with 1.12M corpus. From this
result, we confirm again that our framework is able
to better exploit the complementary information
between domains than KD.

4.2.5 Effects of Dual Domain Adaptation and
Updating Teacher Models

Two highlights of our framework consist of the us-
age of bidirectional translation knowledge trans-
fer and continuous updating teacher models θ∗out
and θ∗in (See Line 6, 10 of Algorithm 1). To in-
spect their effects on our framework, we compared
our framework with its two variants: (1) IDDA-
unidir, where we only iteratively transfer out-of-
domain translation knowledge to the in-domain
NMT model; (2) IDDA-fixTea, where teacher
models are fixed as the initial out-of-domain and
in-domain NMT models, respectively.

The results are displayed in Table 2. We can see
that our framework exhibits better performance
than its two variants, which demonstrates that dual
domain adaptation enables NMT models of two
domains to benefit from each other, and updat-
ing teacher models is more helpful to retain useful
translation knowledge.

4.2.6 Case Study
Table 3 displays the 1-best translations of a sam-
pled test sentence generated by MFT, KD, WDCD,
and IDDA at different iterations. Inspecting this

Model Translation

Src
这(zhè)是(shı̀)第(dı̀)一(yī)种(zhǒng)
直立(zhı́lı̀)行走(xı́ngzǒu)的(de)
灵长类(lı́ngzhǎnglèi)动物(dòngwù)

Ref that was the first upright primate
MFT this is the first animal to walk upright
KD this is the first growing primate

WDCD this is the first primate walking around
IDDA-1 this is the first upright - walking primate
IDDA-2 this is the first upright - walking primate
IDDA-3 this is the first primates walking upright
IDDA-4 this is the first upright primate
IDDA-5 this is the first upright primate
IDDA-6 this is the first upright primate
IDDA-7 this is the first upright primate

Table 3: Translation examples of different NMT mod-
els. Src: source sentence and Ref: target reference.
IDDA-k represents the in-domain NMT model at the
k-th iteration using our framework.

example provides the insight into the advantage of
our proposed framework to some extent. Specif-
ically, we observe that MFT, KD, WDCD are un-
able to correctly understand the meaning of “zhı́lı̀
xı́ngzǒu de lı́ngzhǎnglèi dòngwù” and thus gen-
erate incorrect or incomplete translations, while
IDDA successfully corrects these errors by grad-
ually absorbing transferred translation knowledge.

4.3 Results on English-German Translation

4.3.1 Overall Performance
We first calculated the distance between the in-
domain and each out-of-domain corpora: d̂A(Ted
Talk, News) = 0.92 and d̂A(Ted Talk, Medical) =
1.92. Obviously, the News domain is more rele-
vant to TED Talk domain than Medical domain,
and thus we determined the final transfer order as
{θoutmedical

, θoutnews} for this task. Then, as im-
plemented in the previous Chinese-English exper-
iments, we determined the optimalK=2 on the de-
velopment set.

Table 4 shows experimental results. Simi-
lar to the previously reported experiment results,
our framework still obtains the best performance
among all models, which verifies the effectiveness
of our framework on many-to-one domain adapta-
tion for NMT.

As described above, we have two careful de-
signs for many-to-one NMT domain adaptation:
(1) We distinguish different out-of-domain cor-
pora, and then iteratively perform bidirectional
translation knowledge transfer between in-domain
and each out-of-domain NMT models. (2) We de-
termine the transfer order according to the seman-
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Model
In-domain Out-of-domain1 Out-of-domain2
TED Talk News Medical

IWSLT2013 IWSLT2014 AVE. WMT14 EMEA
Cross-domain Transfer Methods

Single 29.76 25.99 27.88 20.54 51.11
Mix 31.45 27.03 29.24 21.17 50.60
FT 30.54 27.02 28.78 — —
MFT 31.86 27.49 29.67 — —
KD 31.33 27.96 29.64 — —

Multi-domain NMT Methods
DC 31.13 28.02 29.57 21.61 52.25
DM 31.57 27.60 29.58 21.75 52.60
WDCD 31.87 27.82 29.84 21.86 52.84

IDDA Framework
IDDA(λ=0) 32.11 28.10 30.11 22.01 52.07
IDDA 32.93 28.88 30.91† 22.17∗ 53.39†

Table 4: Experimental results of the English-German translation task. * indicates statistically significantly better
than (ρ <0.05) the result of WDCD.

Model Transfer Order AVE.
IDDA-mix —— 30.17

IDDA {θoutnews , θoutmedical} 30.51
IDDA {θoutmedical , θoutnews} 30.91

Table 5: Experimental results of IDDA using different
configurations.

tic distance between each out-of-domain and in-
domain training corpora. Here, we carried out two
groups of experiments to investigate their impacts
on our framework. In the first group of experi-
ments, we first combined all out-of-domain train-
ing corpora into a mixed corpus, and then applied
our framework to establish the in-domain NMT
model. In the second group of experiments, we
employed our framework in different transfer or-
ders to perform domain adaptation.

Table 5 shows the final experimental results,
which are in line with our expectations and verify
the validity of our designs.

5 Conclusion

In this paper, we have proposed an iterative dual
domain adaptation framework for NMT, which
continuously fully exploits the mutual comple-
mentarity between in-domain and out-domain cor-
pora for translation knowledge transfer. Experi-
mental results and in-depth analyses on translation
tasks of two language pairs strongly demonstrate
the effectiveness of our framework.

In the future, we plan to extend our framework
to multi-domain NMT. Besides, how to leverage
monolingual sentences of different domains to re-
fine our proposed framework. Finally, we will ap-
ply our framework into other translation models

(Bahdanau et al., 2015; Su et al., 2018; Song et al.,
2019), so as to verify the generality of our frame-
work.
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