Effective Use of Transformer Networks for Entity Tracking

Aditya Gupta and Greg Durrett

Department of Computer Science

The University of Texas at Austin
{agupta, gdurrett}@cs.utexas.edu

Abstract

Tracking entities in procedural language re-
quires understanding the transformations aris-
ing from actions on entities as well as those en-
tities’ interactions. While self-attention-based
pre-trained language encoders like GPT and
BERT have been successfully applied across a
range of natural language understanding tasks,
their ability to handle the nuances of proce-
dural texts is still untested. In this paper, we
explore the use of pre-trained transformer net-
works for entity tracking tasks in procedural
text. First, we test standard lightweight ap-
proaches for prediction with pre-trained trans-
formers, and find that these approaches under-
perform even simple baselines. We show that
much stronger results can be attained by re-
structuring the input to guide the transformer
model to focus on a particular entity. Sec-
ond, we assess the degree to which transformer
networks capture the process dynamics, inves-
tigating such factors as merged entities and
oblique entity references. On two different
tasks, ingredient detection in recipes and QA
over scientific processes, we achieve state-of-
the-art results, but our models still largely at-
tend to shallow context clues and do not form
complex representations of intermediate entity
or process state.!

1 Introduction

Transformer based pre-trained language models
(Devlin et al., 2019; Radford et al., 2018, 2019;
Joshi et al., 2019; Yang et al., 2019) have been
shown to perform remarkably well on a range of
tasks, including entity-related tasks like corefer-
ence resolution (Kantor and Globerson, 2019) and
named entity recognition (Devlin et al., 2019).
This performance has been generally attributed to

'Code to reproduce experiments in this paper is
available at https://github.com/aditya2211/
transformer—-entity-tracking

759

the robust transfer of lexical semantics to down-
stream tasks. However, these models are still bet-
ter at capturing syntax than they are at more entity-
focused aspects like coreference (Tenney et al.,
2019a,b); moreover, existing state-of-the-art ar-
chitectures for such tasks often perform well look-
ing at only local entity mentions (Wiseman et al.,
2016; Lee et al., 2017; Peters et al., 2017) rather
than forming truly global entity representations
(Rahman and Ng, 2009; Lee et al., 2018). Thus,
performance on these tasks does not form suffi-
cient evidence that these representations strongly
capture entity semantics. Better understanding the
models’ capabilities requires testing them in do-
mains involving complex entity interactions over
longer texts. One such domain is that of pro-
cedural language, which is strongly focused on
tracking the entities involved and their interactions
(Mori et al., 2014; Dalvi et al., 2018; Bosselut
et al., 2018).

This paper investigates the question of how
transformer-based models form entity representa-
tions and what these representations capture. We
expect that after fine-tuning on a target task, a
transformer’s output representations should some-
how capture relevant entity properties, in the sense
that these properties can be extracted by shal-
low classification either from entity tokens or
from marker tokens. However, we observe that
such “post-conditioning” approaches don’t per-
form significantly better than rule-based baselines
on the tasks we study. We address this by propos-
ing entity-centric ways of structuring input to the
transformer networks, using the entity to guide the
intrinsic self-attention and form entity-centric rep-
resentations for all the tokens. We find that our
proposed methods lead to a significant improve-
ment in performance over baselines.

Although our entity-specific application of
transformers is more effective at the entity track-

Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing, pages 759-769,
Hong Kong, China, November 3-7, 2019. (©2019 Association for Computational Linguistics

https://github.com/aditya2211/transformer-entity-tracking
https://github.com/aditya2211/transformer-entity-tracking

a) Binary Classification Task for Ingredient Detection (Recipes Dataset)

Seq. of Steps sugar eggs flour

Combine sugar, oil, and vanilla 1 0 0

Add eggs one at a time 1 1 0

In a separate bowl, combine flour, soda, and salt. 0 0 1

Add to the sugar mixture alternately with milk 1 1 1

Stir remaining ingredients one at a time. 1 1 1
Tracking Global Tracking

Intermediate without Explicit

Entity Mentions

0 — Ingredient Absent
1 — Ingredient Present

Compositions

TIME

b) Structured Prediction Task for State Changes (ProPara Dataset)

Seq. of Steps water mixture sugar

Roots absorb water from soil. M (0] o
The water {lows to the leaf. M [0] o
Light from the sun and CO, enter the leaf. E [0] (0]
Light, water, and COz combine into mixture. D ((0]
Mixture forms sugar. (0] D (

C — Creation

E — Existence

M — Movement

D — Destruction

O — Outside Process

Structural
Constraints
C->M->D

requiring Global
Knowledge

Figure 1: Process Examples from (a) RECIPES as a binary classification task of ingredient detection, and (b)
PROPARA as a structured prediction task of identifying state change sequences. Both require cross-sentence rea-
soning, such as knowing what components are in a mixture and understanding verb semantics like combine.

ing tasks we study, we perform additional analy-
sis and find that these tasks still do not encourage
transformers to form truly deep entity representa-
tions. Our performance gain is largely from better
understanding of verb semantics in terms of asso-
ciating process actions with entity the paragraph is
conditioned on. The model also does not special-
ize in “tracking” composed entities per se, again
using surface clues like verbs to identify the com-
ponents involved in a new composition.

We evaluate our models on two datasets specif-
ically designed to invoke procedural understand-
ing: (i) RECIPES (Kiddon et al., 2016), and (i1)
PROPARA (Dalvi et al., 2018). For the RECIPES
dataset, we classify whether an ingredient was af-
fected in a certain step, which requires understand-
ing when ingredients are combined or the focus of
the recipe shifts away from them. The PROPARA
dataset involves answering a more complex set of
questions about physical state changes of compo-
nents in scientific processes. To handle this more
structured setting, our transformer produces po-
tentials consumed by a conditional random field
which predicts entity states over time. Using a
unidirectional GPT-based architecture, we achieve
state-of-the-art results on both the datasets; never-
theless, analysis shows that our approach still falls
short of capturing the full space of entity interac-
tions.

2 Background: Process Understanding

Procedural text is a domain of text involved with
understanding some kind of process, such as a
phenomenon arising in nature or a set of instruc-
tions to perform a task. Entity tracking is a core
component of understanding such texts.

760

Dalvi et al. (2018) introduced the PROPARA
dataset to probe understanding of scientific pro-
cesses. The goal is to track the sequence of physi-
cal state changes (creation, destruction, and move-
ment) entites undergo over long sequences of pro-
cess steps. Past work involves both modeling en-
tities across time (Das et al., 2019) and captur-
ing structural constraints inherent in the processes
(Tandon et al., 2018; Gupta and Durrett, 2019)
Figure 1b shows an example of the dataset posed
as a structured prediction task, as in (Gupta and
Durrett, 2019). For such a domain, it is crucial to
capture implicit event occurrences beyond explicit
entity mentions. For example, in fuel goes into the
generator. The generator converts mechanical en-
ergy into electrical energy”, the fuel is implicitly
destroyed in the process.

Bosselut et al. (2018) introduced the task of de-
tecting state changes in recipes in the RECIPES
dataset and proposed an entity-centric memory
network neural architecture for simulating action
dynamics. Figure 1a shows an example from the
RECIPES dataset with a grid showing ingredient
presence. We focus specifically on this core prob-
lem of ingredient detection; while only one of the
sub-tasks associated with their dataset, it reflects
some complex semantics involving understanding
the current state of the recipe. Tracking of ingre-
dients in the cooking domain is challenging owing
to the compositional nature of recipes whereby in-
gredients mix together and are aliased as interme-
diate compositions.

We pose both of these procedural understand-
ing tasks as classification problems, predicting the
state of the entity at each timestep from a set of
pre-defined classes. In Figure 1, these classes cor-

respond to either the presence (1) or absence (0)
or the sequence of state changes create (C), move
(M), destroy (D), exists (E), and none (O).

State-of-the-art approaches on these tasks are
inherently entity-centric. Separately, it has been
shown that entity-centric language modeling in a
continuous framework can lead to better perfor-
mance for LM related tasks (Clark et al., 2018; Ji
et al., 2017). Moreover, external data has shown
to be useful for modeling process understanding
tasks in prior work (Tandon et al., 2018; Bosselut
et al., 2018), suggesting that pre-trained models
may be effective.

With such tasks in place, a strong model will
ideally learn to form robust entity-centric repre-
sentation at each time step instead of solely rely-
ing on extracting information from the local en-
tity mentions. This expectation is primarily due to
the evolving nature of the process domain where
entities undergo complex interactions, form inter-
mediate compositions, and are often accompanied
by implicit state changes. We now investigate to
what extent this is true in a standard application of
transformer models to this problem.

3 Studying Basic Transformer
Representations for Entity Tracking

3.1 Post-conditioning Models

The most natural way to use the pre-trained trans-
former architectures for the entity tracking tasks
is to simply encode the text sequence and then
attempt to “read off” entity states from the con-
textual transformer representation. We call this
approach post-conditioning: the transformer runs
with no knowledge of which entity or entities we
are going to make predictions on, but we only
condition on the target entity after the transformer
stage.

Figure 3 depicts this model. Formally, for
a labelled pair ({s1,s2,...,5t},Yet), We encode
the tokenized sequence of steps up to the current
timestep (the sentences are separated by using a
special [SEP] token), independent of the entity.
We denote by X = [hq, ha, ..., hy] the contex-
tualized hidden representation of the m input to-
kens from the last layer, and by g.= > emb(e;)

ent toks
the entity representation for post conditioning. We

now use one of the following two ways to make an
entity-specific prediction:

761

General Purpose

Transformer Representation Post

Conditioning

Contcxluall h ‘ l h
vectors .

[1

| Transformer

|

Target Entity
Representation

rossnt [[0 (0] o] [0 [0
+ + + + +

Process

+
Tokens | roots ‘ |absorb‘ |wa1er‘ | from ‘ | soil ‘ |[CLS]‘

Figure 2: Post-conditioning entity tracking models.
Bottom: the process paragraph is encoded in an
entity-independent manner with transformer network
and a separate entity representation g,q¢er] for post-
conditioning. Top: the two variants for the condition-
ing: (i) GPT 441y, and (ii) GPTpqep-

Task Specific Input Token We append a
[CLS] token to the input sequence and use the
output representation of the [CLS] token denoted
by h(cLs; concatenated with the learned BPE em-
beddings of the entity as the representation c. ¢ for
our entity tracking system. We then use a linear
layer over it to get class probabilities:

Cet = [PrcLst; Gel
P(ye|st, st-1, ..., 51,e) = softmax(cetWiask)

The aim of the [CLS] token is to encode infor-
mation related to general entity related semantics
participating in the recipe (sentence priors). We
then use a single linear layer to learn sentence pri-
ors and entity priors independently, without strong
interaction. We call this model GPT;j, 4.

Entity Based Attention Second, we explore a
more fine-grained way of using the GPT model
outputs. Specifically, we use bilinear attention be-
tween g, and the transformer output for the pro-
cess tokens X to get a contextual representation
cet for a given entity. Finally, using a feed-
forward network followed by softmax layer gives
us the class probabilities:
a; = g * Weim * h;

a = softmax(a)
Cet = Z Q; * hi

P(ye|st, st—1,. .., 51,e) = softmax(cetWiask)

The bilinear attention over the contextual repre-
sentations of the process tokens allows the model
to fetch token content relevant to that particular
entity. We call this model GPTy,.

Variant

Template

Sentence, Entity First |

[START] Target Entity [SEP] Steps 1tot — 1 [SEP] Step ¢ [CLS]

Sentence, Entity Last |

[START]Steps 1tot — 1 [SEP] Stept [SEP] Target Entity [CLS]

Document, Entity First |

[START] Target Entity [SEP] Step 1 [CLS] Step2 [CLS] ... Step T’ [CLS]

Document, Entity Last \ [START] Step 1 [SEP] Target Entity [CLS] ... Step I’ [SEP] Target Entity [CLS]

Table 1: Templates for different proposed entity-centric modes of structuring input to the transformer networks.

3.2 Results and Observations

We evaluate the discussed post-conditioning mod-
els on the ingredient detection task of the RECIPES
dataset.” To benchmark the performance, we com-
pare to three rule-based baselines. This includes
(1) Majority Class, (ii) Exact Match of an ingredi-
ent e in recipe step s;, and (iii) First Occurrence,
where we predict the ingredient to be present in all
steps following the first exact match. These latter
two baselines capture natural modes of reasoning
about the dataset: an ingredient is used when it is
directly mentioned, or it is used in every step af-
ter it is mentioned, reflecting the assumption that
a recipe is about incrementally adding ingredients
to an ever-growing mixture. We also construct
a LSTM baseline to evaluate the performance of
ELMo embeddings (ELMoy,ke,, and ELMogey)
(Peters et al., 2018) compared to GPT.

Table 2 compares the performance of the dis-
cussed models against the baselines, evaluating
per-step entity prediction performance. Using the
ground truth about ingredient’s state, we also re-
port the uncombined (UR) and combined (CR)
recalls, which are per-timestep ingredient recall
distinguished by whether the ingredient is explic-
itly mentioned (uncombined) or part of a mixture
(combined). Note that Exact Match and First Occ
baselines represent high-precision and high-recall
regimes for this task, respectively.

As observed from the results, the post-
conditioning frameworks underperform compared
to the First Occ baseline. While the CR values
appear to be high, which would suggest that the
model is capturing the addition of ingredients to
the mixture, we note that this value is also lower
than the corresponding value for First Occ. This
result suggests that the model may be approxi-
mating the behavior of this baseline, but doing so
poorly. The unconditional self-attention mecha-

>We discuss training details more in Section 4.1, but
largely use a standard GPT training protocol (Radford et al.,
2018).

762

Model | P R n Acc | UR CR
Performance Benchmarks
Majority - - - 57.27 - -
Exact Match | 84.94 20.25 32.70 64.39 | 73.42 4.02
First Occ 6523 87.17 74.60 74.65 | 84.88 87.79
Models

GPT,ttn 63.94 71.72 67.60 70.63 | 54.30 77.04
GPTindep 67.05 69.07 68.04 72.28 |47.09 75.79
ELMo¢oken | 64.96 76.64 70.32 72.35|69.14 78.94
ELMosent 69.09 72.88 70.90 74.48 | 57.05 77.71

Table 2: Performance of the rule-based baselines and
the post conditioned models on the ingredient detection
task of the RECIPES dataset. These models all under-
perform First Occ.

nism of the transformers does not seem sufficient
to capture the entity details at each time step be-
yond simple presence or absence. Moreover, we
see that GPT;;,4¢, performs somewhat comparably
to GPT g, suggesting that consuming the trans-
former’s output with simple attention is not able to
really extract the right entity representation.

For PROPARA, we observe similar performance
trends where the post-conditioning model per-
formed below par with the state-of-the-art archi-
tectures.

4 Entity-Conditioned Models

The post-conditioning framework assumes that the
transformer network can form strong representa-
tions containing entity information accessible in a
shallow way based on the target entity. We now
propose a model architecture which more strongly
conditions on the entity as a part of the intrinsic
self-attention mechanism of the transformers.

Our approach consists of structuring input to
the transformer network to use and guide the self-
attention of the transformers, conditioning it on
the entity. Our main mode of encoding the in-
put, the entity-first method, is shown in Figure 3.
The input sequence begins with a [START] to-
ken, then the entity under consideration, then a
[SEP] token. After each sentence, a [CLS] to-

Target Entity Conditioned
Contextual Embedding

A O O O VO B

‘ — Transformer —

(RN TS I O O IO O O O A W
+ - + - +

+ + + +
[istarr)] [water | [1sEP] | [roots | [absorb | [water | [from | [soil] [rcLsi |

Process
Tokens

Target
Entity

Figure 3: Entity conditioning model for guiding self-
attention: the entity-first, sentence-level input variant
fed into a left-to-right unidirectional transformer archi-
tecture. Task predictions are made at [CLS] tokens
about the entity’s state after the prior sentence.

ken is used to anchor the prediction for that sen-
tence. In this model, the transformer can always
observe the entity it should be primarily “attend-
ing to” from the standpoint of building representa-
tions. We also have an entity-last variant where
the entity is primarily observed just before the
classification token to condition the [CLS] to-
ken’s self-attention accordingly. These variants
are naturally more computationally-intensive than
post-conditioned models, as we need to rerun the
transformer for each distinct entity we want to
make a prediction for.

Sentence Level vs. Document Level As an ad-
ditional variation, we can either run the trans-
former once per document with multiple [CLS]
tokens (a document-level model as shown in Fig-
ure 3) or specialize the prediction to a single
timestep (a sentence-level model). In a sentence
level model, we formulate each pair of entity e and
process step ¢ as a separate instance for our classi-
fication task. Thus, for a process with 7" steps and
m entities we get T X m input sequences for fine
tuning our classification task.

4.1 Training Details

In most experiments, we initialize the network
with the weights of the standard pre-trained GPT
model, then subsequently do either domain spe-
cific LM fine-tuning and supervised task specific
fine-tuning.

Domain Specific LM fine-tuning For some
procedural domains, we have access to additional
unlabeled data. To adapt the LM to capture do-
main intricacies, we fine-tune the transformer net-
work on this unlabeled corpus.

Supervised Task Fine-Tuning After the do-
main specific LM fine-tuning, we fine-tune our

763

network parameters for the end task of entity
tracking. For fine-tuning for the task, we have
a labelled dataset which we denote by C, the set
of labelled pairs ({s1, S2, ..., S}, Yet) for a given
process. The input is converted according to our
chosen entity conditioning procedure, then fed
through the pre-trained network.

In addition, we observed that adding the lan-
guage model loss during task specific fine-tuning
leads to better performance as well, possibly be-
cause it adapts the LM to our task-specific input
formulation. Thus,

['total = [ftask + A»Clm

4.2 Experiments: Ingredient Detection

We first evaluate the proposed entity conditioned
self-attention model on the RECIPES dataset
to compare the performance with the post-
conditioning variants.

4.2.1 Systems to Compare

We use the pre-trained GPT architecture in the
proposed entity conditioned framework with all its
variants. BERT mainly differs in that it is bidirec-
tional, though we also use the pre-trained [CLS]
and [SEP] tokens instead of introducing new to-
kens in the input vocabulary and training them
from scratch during fine-tuning. Owing to the
lengths of the processes, all our experiments are
performed on BERTp4sE.

Neural Process Networks The most significant
prior work on this dataset is the work of Bosselut
et al. (2018). However, their data condition dif-
fers significantly from ours: they train on a large
noisy training set and do not use any of the high-
quality labeled data, instead treating it as dev and
test data. Consequently, their model achieves low
performance, roughly 56 F} while ours achieves
82.5 F} (though these are not the exact same test
set). Moreover, theirs underperforms the first oc-
currence baseline, which calls into question the
value of that training data. Therefore, we do not
compare to this model directly. We use the small
set of human-annotated data for our probing task.
Our train/dev/test split consists of 600/100/175
recipes, respectively.

4.2.2 Results

Table 3 compares the overall performances of
our proposed models. Our best ETgpr model
achieves an F) score of 82.50. Comparing to

Model | P R Fi Acc | UR CR Model | P R I Acc | UR CR
Rule Based Benchmarks ETepr ©®®
Majority - - - 5727 - - w/oing. | 67.47 60.46 63.77 70.64 | 35.82 67.97
Exact 84.94 20.25 32770 64.39|73.42 4.02 w/ing. | 79.85 84.19 81.96 84.16 | 87.91 83.05
First 65.23 87.1.7. 7-4.60 74.65 | 84.88 87.79 ETerr O®
Post Conditioning Models wlo context | 67.88 7591 71.67 74.36 | 87.00 72.52
GPTattn 63.94 71.72 67.60 70.63 | 54.30 77.04 w/ context | 76.70 83.98 80.17 82.26 | 88.20 82.69
GPTconcat 67.05 69.07 68.04 72.28 |47.09 75.79
ELMotoken, | 64.96 76.64 7032 72.35|69.14 78.94 . . _
ELMov.n; | 69.09 7288 7090 7448|5705 7771 \0ie 4 Top: we compare how much the model de
grades when it conditions on no ingredient at all (w/o
Entity-Centric Models ing.), instead making a generic prediction. Bottom: we
ETgERT 72.49 80.09 76.10 78.50 | 84.30 78.82 compare how much using previous context beyond a
ETcpr ®@© | 75.27 83.85 79.33 81.32|87.28 82.81 single sentence impacts the model.
ETcpr ®® | 76.70 83.98 80.17 82.26 | 88.20 82.69
ETcpr ®®© | 79.19 83.82 81.44 83.67|88.11 82.51)
ETgpr ®® | 79.85 84.19 81.96 84.16 | 87.91 83.05 ent. Table 4 shows the results for these ablations.

Table 3: Performances of different baseline models dis-
cussed in Section 3, the ELMo baselines, and the pro-
posed entity-centric approaches with the (D)ocument
v (S)entence level variants formulated with both entity
(F)irst v. (L)ater. Our ET pr variants all substantially
outperform the baselines.

the baselines (Majority through First) and post-
conditioned models, we see that the early en-
tity conditioning is critical to achieve high perfor-
mance.

Although the First model still achieves the high-
est CR, due to operating in a high-recall regime,
we see that the ETgpr models all significantly
outperform the post-conditioning models on this
metric, indicating better modeling of these com-
positions. Both recall and precision are substan-
tially increaesd compared to these baseline mod-
els. Interestingly, the ELMo-based model under-
performs the first-occurrence baseline, indicating
that the LSTM model is not learning much in
terms of recognizing complex entity semantics
grounded in long term contexts.

Comparing the four variants of structuring input
in proposed architectures as discussed in Section
4, we observe that the document-level, entity-
first model is the best performing variant. Given
the left-to-right unidirectional transformer archi-
tecture, this model notably forms target-specific
representations for all process tokens, compared
to using the transformer self-attention only to ex-
tract entity specific information at the end of the
process.

4.2.3 Ablations

We perform ablations to evaluate the model’s de-
pendency on the context and on the target ingredi-

764

Ingredient Specificity In the “no ingredient”
baseline (w/o ing.), the model is not provided with
the specific ingredient information. Table 4 shows
that while not being a strong baseline, the model
achieves decent overall accuracy with the drop in
UR being higher compared to CR. This indicates
that there are some generic indicators (mixture)
that it can pick up to try to guess at overall ingre-
dient presence or absence.

Context Importance We compare with a “no
context” model (w/o context) which ignore the
previous context and only use the current recipe
step in determining the ingredient’s presence. Ta-
ble 4 shows that the such model is able to perform
surprisingly well, nearly as well as the first occur-
rence baseline.

This is because the model can often recognize
words like verbs (for example, add) or nouns (for
example, mixture) that indicate many ingredients
are being used, and can do well without really
tracking any specific entity as desired for the task.

4.3 State Change Detection (PROPARA)

Next, we now focus on a structured task to eval-
uate the performance of the entity tracking archi-
tecture in capturing the structural information in
the continuous self-attention framework. For this,
we use the PROPARA dataset and evaluate our pro-
posed model on the comprehension task.

Figure 1b shows an example of a short instance
from the PROPARA dataset. The task of identify-
ing state change follows a structure satisfying the
existence cycle; for example, an entity can not be
created after destruction. Our prior work (Gupta
and Durrett, 2019) proposed a structured model
for the task that achieved state-of-the-art perfor-

mance. We adapt our proposed entity tracking
transformer models to this structured prediction
framework, capturing creation, movement, exis-
tence (distinct from movement or creation), de-
struction, and non-existence.

We use the standard evaluation scheme of
the PROPARA dataset, which is framed as an-
swering the following categories of questions:
(Cat-1) Is e created (destroyed, moved) in the
process?, (Cat-2) When (step #) is e created
(destroyed, moved)?, (Cat-3) Where is e cre-
ated/destroyed/moved from/to)?

4.3.1 Systems to Compare

We compare our proposed models to the previ-
ous work on the PROPARA dataset. This includes
the entity specific MRC models, EntNet (Henaff
et al., 2017), QRN (Seo et al., 2017), and KG-
MRC (Das et al., 2019). Also, Dalvi et al. (2018)
proposed two task specific models, ProLocal and
ProGlobal, as baselines for the dataset. Finally,
we compare against our past neural CRF entity
tracking model (NCET) (Gupta and Durrett, 2019)
which uses ELMo embeddings in a neural CRF ar-
chitecture.

For the proposed GPT architecture, we use the
task specific [CLS] token to generate tag poten-
tials instead of class probabilities as we did pre-
viously. For BERT, we perform a similar modifi-
cation as described in the previous task to utilize
the pre-trained [CLS] token to generate tag po-
tentials. Finally, we perform a Viterbi decoding
at inference time to infer the most likely valid tag
sequence.

4.3.2 Results

Table 5 compares the performance of the pro-
posed entity tracking models on the sentence level
task. Since, we are considering the classification
aspect of the task, we compare our model per-
formance for Cat-1 and Cat-2. As shown, the
structured document level, entity first ETgpr and
ET ggrr models achieve state-of-the-art results.
We observe that the major source of performance
gain is attributed to the improvement in identify-
ing the exact step(s) for the state changes (Cat-
2). This shows that the model are able to better
track the entities by identifying the exact step of
state change (Cat-2) accurately rather than just de-
tecting the presence of such state changes (Cat-1).
This task is more highly structured and in some
ways more non-local than ingredient prediction;

765

Model | Cat-1 Cat-2 | Ma-Avg Mi-Avg
Baselines

EntNet 51.62 18.83 | 35.22 37.03

QRN 52.37 15.51 33.94 35.97

ProGlobal 62.95 36.39 | 49.67 51.13

Previous Work

KG-MRC 62.86 40.00 | 51.43 52.69

NCET 70.55 44.57 | 57.56 58.99

NCETELMo 73.68 47.09 | 60.38 61.85
This Work

ETgpr ®® | 73.52 5221 | 62.87 64.03

ETgerT 73.55 52.59 | 63.07 64.22

Table 5: Performance of the proposed models on the
PROPARA dataset. Our models outperform strong ap-
proaches from prior work across all metrics.

the high performance here shows that the ETgpr
model is able to capture document level struc-
tural information effectively. Further, the struc-
tural constraints from the CRF also aid in mak-
ing better predictions. For example, in the process
“higher pressure causes the sediment to heat up.
the heat causes chemical processes. the material
becomes a liquid. is known as oil.”, the material is
a by-product of the chemical process but there’s no
direct mention of it. However, the material ceases
to exist in the next step, and because the model
is able to predict this correctly, maintaining con-
sistency results in the model finally predicting the
entire state change correctly as well.

5 Challenging Task Phenomena

Based on the results in the previous section, our
models clearly achieve strong performance com-
pared to past approaches. We now revisit the chal-
lenging cases discussed in Section 2 to see if our
entity tracking approaches are modeling sophisti-
cated entity phenomena as advertised. For both
datasets and associated tasks, we isolate the spe-
cific set of challenging cases grounded in track-
ing (i) intermediate compositions formed as part of
combination of entities leading to no explicit men-
tion, and (ii) implicit events which change entities’
states without explicit mention of the affects.

5.1 Ingredient Detection

For RECIPES, we mainly want to investigate cases
of ingredients getting re-engaged in the recipe not
in a raw form but in a combined nature with other
ingredients and henceforth no explicit mention.
For example, eggs in step 4 of Figure la exem-

plifies this case. The performance in such cases
is indicative of how strongly the model can track
compositional entities. We also examine the per-
formance for cases where the ingredient is referred
by some other name.

Intermediate Compositions Formally, we pick
the set of examples where the ground truth is a
transition from 0 — 1 (not present to present) and
the 1 is a “combined” case. Table 6 shows the
model’s performance on this subset of cases, of
which there are 1049 in the test set. The model
achieves an accuracy of 51.1% on these bigrams,
which is relatively low given the overall model
performance. In the error cases, the model defaults
to the 1 — 1 pattern indicative of the First Occ
baseline.

|00 0—-1 1—-0 1—1
#ipreds | 179 526 43 301

Table 6: Model predictions from the document level
entity first GPT model in 1049 cases of intermediate
compositions. The model achieves only 51% accuracy
in these cases.

Hypernymy and Synonymy We observe the
model is able to capture ingredients based on
their hypernyms (nuts — pecans, salad — let-
tuce) and rough synonymy (bourbon — scotch).
This performance can be partially attributed to
the language model pre-training. We can isolate
these cases by filtering for uncombined ingredi-
ents when there is no matching ingredient token
in the step. Out of 552 such cases in the test set,
the model predicts 375 correctly giving a recall of
67.9. This is lower than overall UR; if pre-training
behaves as advertised, we expect little degradation
in this case, but instead we see performance signif-
icantly below the average on uncombined ingredi-
ents.

Impact of external data One question we can
ask of the model’s capabilities is to what extent
they arise from domain knowledge in the large
pre-trained data. We train transformer models
from scratch and additionally investigate using the
large corpus of unlabeled recipes for our LM pre-
training. As can be seen in Table 7, the incorpora-
tion of external data leads to major improvements
in the overall performance. This gain is largely
due to the increase in combined recall. One possi-
ble reason could be that external data leads to bet-

766

Model | P R Ia Acc | UR CR

No pre-training, 8 heads, 8§ layers, 512 embedding size

NoLM | 66.52 73.48 69.83 72.87 | 79.20 71.73
20k | 72.53 80.32 76.23 78.59|79.49 80.58
50k | 7440 81.80 77.92 80.19 | 81.90 81.77

Standard GPT pre-training

NoLM | 79.85 84.19 81.96 84.16 | 87.91 83.05

20k | 80.14 85.01 82.50 84.59 | 88.83 83.84

Table 7: Performance for using unsupervised data for
LM training.

ter understanding of verb semantics and in turn the
specific ingredients forming part of the intermedi-
ate compositions. Figure 4 shows that verbs are
a critical clue the model relies on to make predic-
tions. Performing LM fine-tuning on top of GPT
also gives gains.

5.2 State Change Detection

For PROPARA, Table 5 shows that the model does
not significantly outperform the SOTA models in
state change detection (Cat-1). However, for those
correctly detected events, the transformer model
outperforms the previous models for detecting the
exact step of state change (Cat-2), primarily based
on verb semantics. We do a finer-grained study in
Table 8 by breaking down the performance for the
three state changes: creation (C), movement (M),
and destruction (D), separately. Across the three
state changes, the model suffers a loss of perfor-
mance in the movement cases. This is owing to
the fact that the movement cases require a deeper
compositional and implicit event tracking. Also,
a majority of errors leading to false negatives are
due to the the formation of new sub-entities which
are then mentioned with other names. For exam-
ple, when talking about weak acid in “the water
becomes a weak acid. the water dissolves lime-
stone” the weak acid is also considered to move
to the limestone.

Model | Cat-1 | Cat-2

/' C M D | C M D
ETgprr | 78.51 61.60 71.50 | 76.68 54.12 58.62
ETgpr |79.82 5627 73.83|77.24 50.82 56.27

Table 8: Results for each state change type. Perfor-
mance on predicting creation and destruction are high-
est, partially due to the model’s ability to use verb se-
mantics for these tasks.

start butter _delimiter_ cut Bli@fllinto 6 portions |. beat chicken pieces between wax paper until they are thin cut lets
. put one portion of [l@Ellin the middle of each cut let . sprinkle each with green onion and salt and pepper . roll each
chicken piece into an envelope shape , tucking in the sides . put a bunch of flour in a bowl ; add salt and pepper to tast
. beat two eggs in another bowl . take each chicken roll and [ffi§@@&lit in flour . _delimiter_ then dip it into the egg and
then roll it in bread crumbs . _classify_

Figure 4: Gradient of the classification loss of the gold class with respect to inputs when predicting the status
of butter in the last sentence. We follow a similar approach as Jain and Wallace (2019) to compute associations.
Exact matches of the entity receive high weight, as does a seemingly unrelated verb dredge, which often indicates
that the butter has already been used and is therefore present.

6 Analysis

The model’s performance on these challenging
task cases suggests that even though it outper-
forms baselines, it may not be capturing deep rea-
soning about entities. To understand what the
model actually does, we perform analysis of the
model’s behavior with respect to the input to un-
derstand what cues it is picking up on.

Gradient based Analysis One way to analyze
the model is to compute model gradients with re-
spect to input features (Sundararajan et al., 2017;
Jain and Wallace, 2019). Figure 4 shows that in
this particular example, the most important model
inputs are verbs possibly associated with the entity
butter, in addition to the entity’s mentions them-
selves. It further shows that the model learns to
extract shallow clues of identifying actions exerted
upon only the entity being tracked, regardless of
other entities, by leveraging verb semantics.

In an ideal scenario, we would want the model
to track constituent entities by translating the “fo-
cus” to track their newly formed compositions
with other entities, often aliased by other names
like mixture, blend, paste etc. However, the low
performance on such cases shown in Section 5
gives further evidence that the model is not doing
this.

Input Ablations We can study which inputs are
important more directly by explicitly removing
specific certain words from the input process para-
graph and evaluating the performance of the re-
sulting input under the current model setup. We
mainly did experiments to examine the importance
of: (i) verbs, and (ii) other ingredients.

Table 9 presents these ablation studies. We only
observe a minor performance drop from 84.59 to
82.71 (accuracy) when other ingredients are re-
moved entirely. Removing verbs dropped the per-
formance to 79.08 and further omitting both leads
to 77.79. This shows the models dependence on

767

Input | Accuracy
Complete Process | 84.59
w/o Other Ingredients 82.71
w/o Verbs 79.08
w/o Verbs & Other Ingredients 77.79

Table 9: Model’s performance degradation with input
ablations. We see that the model’s major source of per-
formance is from verbs than compared to other ingre-
dient’s explicit mentions.

verb semantics over tracking the other ingredients.

7 Conclusion

In this paper, we examined the capabilities of
transformer networks for capturing entity state se-
mantics. First, we show that the conventional
framework of using the transformer networks is
not rich enough to capture entity semantics in
these cases. We then propose entity-centric ways
to formulate richer transformer encoding of the
process paragraph, guiding the self-attention in a
target entity oriented way. This approach leads
to significant performance improvements, but ex-
amining model performance more deeply, we con-
clude that these models still do not model the inter-
mediate compositional entities and perform well
by largely relying on surface entity mentions and
verb semantics.

Acknowledgments

This work was partially supported by NSF
Grant 1IS-1814522 and an equipment grant from
NVIDIA. The authors acknowledge the Texas Ad-
vanced Computing Center (TACC) at The Uni-
versity of Texas at Austin for providing HPC re-
sources used to conduct this research. Results
presented in this paper were obtained using the
Chameleon testbed supported by the National Sci-
ence Foundation. Thanks as well to the anony-
mous reviewers for their helpful comments.

References

Antoine Bosselut, Corin Ennis, Omer Levy, Ari Holtz-
man, Dieter Fox, and Yejin Choi. 2018. Simulating
Action Dynamics with Neural Process Networks.
In Proceedings of the International Conference on
Learning Representations (ICLR).

Elizabeth Clark, Yangfeng Ji, and Noah A. Smith.
2018. Neural Text Generation in Stories Using En-
tity Representations as Context. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics
(ACL): Human Language Technologies.

Bhavana Dalvi, Lifu Huang, Niket Tandon, Wen-tau
Yih, and Peter Clark. 2018. Tracking State Changes
in Procedural Text: a Challenge Dataset and Models
for Process Paragraph Comprehension. In Proceed-
ings of the Conference of the North American Chap-
ter of the Association for Computational Linguistics
(NAACL).

Rajarshi Das, Tsendsuren Munkhdalai, Xingdi Yuan,
Adam Trischler, and Andrew McCallum. 2019.
Building Dynamic Knowledge Graphs from Text us-
ing Machine Reading Comprehension. In Proceed-
ings of the International Conference on Learning
Representations (ICLR).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding.

Aditya Gupta and Greg Durrett. 2019. Tracking Dis-
crete and Continuous Entity State for Process Un-
derstanding. In Proceedings of the Conference of
the North American Chapter of the Association for
Computational Linguistics (NAACL) Workshop on
Structure Predictions for NLP.

Mikael Henaff, Jason Weston, Arthur Szlam, Antoine
Bordes, and Yann LeCun. 2017. Tracking the World
State with Recurrent Entity Networks. In Proceed-
ings of the International Conference on Learning
Representations (ICLR).

Sarthak Jain and Byron C. Wallace. 2019. Attention is
not Explanation. In Proceedings of the Conference
of the North American Chapter of the Association
for Computational Linguistics (NAACL).

Yangfeng Ji, Chenhao Tan, Sebastian Martschat, Yejin
Choi, and Noah A. Smith. 2017. Dynamic Entity
Representations in Neural Language Models. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S.
Weld, Luke Zettlemoyer, and Omer Levy. 2019.
SpanBERT: Improving Pre-training by Representing
and Predicting Spans.

Ben Kantor and Amir Globerson. 2019. Coreference
Resolution with Entity Equalization. In Proceedings

768

of the Annual Meeting of the Association for Com-
putational Linguistics (ACL).

Chloé Kiddon, Luke Zettlemoyer, and Yejin Choi.
2016. Globally Coherent Text Generation with Neu-
ral Checklist Models. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP).

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle-
moyer. 2017. End-to-end Neural Coreference Res-
olution. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP).

Kenton Lee, Luheng He, and Luke Zettlemoyer. 2018.
Higher-Order Coreference Resolution with Coarse-
to-Fine Inference. In Proceedings of the Conference
of the North American Chapter of the Association
for Computational Linguistics (NAACL).

Shinsuke Mori, Hirokuni Maeta, Yoko Yamakata, and
Tetsuro Sasada. 2014. Flow Graph Corpus from
Recipe Texts. In Proceedings of the Ninth Interna-

tional Conference on Language Resources and Eval-
uation (LREC).

Matthew Peters, Waleed Ammar, Chandra Bhagavat-
ula, and Russell Power. 2017. Semi-supervised se-
quence tagging with bidirectional language models.
In Proceedings of the Annual Meeting of the Associ-
ation for Computational Linguistics (ACL).

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep Contextualized Word Rep-
resentations. In Proceedings of the Conference of
the North American Chapter of the Association for
Computational Linguistics (NAACL).

Alec Radford, Karthik Narasimhan, Tim Salimans,
and Ilya Sutskever. 2018. Improving language
understanding by generative pre-training. URL
https://s3-us-west—-2.amazonaws.
com/openai-assets/research-covers/
languageunsupervised/
languageunderstandingpaper.pdf.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. URL
https://d4mucfpksywv.cloudfront.
net/better—language-models/
language—models.pdf.

Altaf Rahman and Vincent Ng. 2009. Supervised Mod-
els for Coreference Resolution. In Proceedings of
the Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Minjoon Seo, Sewon Min, Ali Farhadi, and Hannaneh
Hajishirzi. 2017. Query-Reduction Networks for
Question Answering. In Proceedings of the Inter-
national Conference on Learning Representations
(ICLR).

http://arxiv.org/abs/1907.10529
http://arxiv.org/abs/1907.10529
https://s3-us-west-2. amazonaws. com/openai-assets/research-covers/languageunsupervised/language understanding paper. pdf
https://s3-us-west-2. amazonaws. com/openai-assets/research-covers/languageunsupervised/language understanding paper. pdf
https://s3-us-west-2. amazonaws. com/openai-assets/research-covers/languageunsupervised/language understanding paper. pdf
https://s3-us-west-2. amazonaws. com/openai-assets/research-covers/languageunsupervised/language understanding paper. pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf

Mukund Sundararajan, Ankur Taly, and Qiqgi Yan.
2017. Axiomatic Attribution for Deep Networks. In
Proceedings of the International Conference on Ma-
chine Learning (ICML), pages 3319-3328.

Niket Tandon, Bhavana Dalvi, Joel Grus, Wen-tau Yih,
Antoine Bosselut, and Peter Clark. 2018. Reasoning
about Actions and State Changes by Injecting Com-
monsense Knowledge. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP).

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019a.
BERT Rediscovers the Classical NLP Pipeline. In
Proceedings of the Annual Meeting of the Associa-
tion for Computational Linguistics (ACL).

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang,
Adam Poliak, R Thomas McCoy, Najoung Kim,
Benjamin Van Durme, Sam Bowman, Dipanjan Das,
and Ellie Pavlick. 2019b. What do you learn from
context? Probing for sentence structure in contextu-
alized word representations. In Proceedings of the
International Conference on Learning Representa-
tions (ICLR).

Sam Wiseman, Alexander M. Rush, and Stuart M.
Shieber. 2016. Learning Global Features for Coref-
erence Resolution. In Proceedings of the Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics (NAACL).

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le.
2019. XLNet: Generalized Autoregressive Pretrain-
ing for Language Understanding.

769

https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
http://arxiv.org/abs/1906.08237
http://arxiv.org/abs/1906.08237

