APLenty: annotation tool for creating high-quality datasets
using active and proactive learning

Minh-Quoc Nghiem, Sophia Ananiadou
National Centre for Text Mining
School of Computer Science, The University of Manchester, United Kingdom
{minh-quoc.nghiem, sophia.ananiadou}@manchester.ac.uk

Abstract

In this paper, we present APLenty, an anno-
tation tool for creating high-quality sequence
labeling datasets using active and proactive
learning. A major innovation of our tool is the
integration of automatic annotation with active
learning and proactive learning. This makes
the task of creating labeled datasets easier, less
time-consuming and requiring less human ef-
fort. APLenty is highly flexible and can be
adapted to various other tasks.

1 Introduction

Labeled data play a critical role in many machine
learning problems. Obtaining such data is dif-
ficult, time-consuming, and require a lot of hu-
man effort. Many researchers have utilized active
learning or proactive learning, in which a learn-
ing algorithm is allowed to choose the data from
which it learns (Settles, 2009). The annotators, in
this scenario, only have to annotate a reasonable-
size set of representative and informative data. It
helps reduce the human labeling effort and at the
same time reduces the cost of training the machine
learning models.

In recent years, there has been an increas-
ing amount of libraries and systems that focus
on active learning, such as the JCLAL (Reyes
et al., 2016), the Active-Learning-Scala (Santos
and Carvalho, 2014), or the LibAct (Yang et al.,
2017) libraries. They implement several state-
of-the-art active learning strategies in single-label
and multi-label learning paradigms. These li-
braries, however, have not treated sequence label-
ing tasks (part-of-speech tagging, information ex-
traction, ...) in much detail. Due to the nature
of sequence labeling tasks, the learning algorithm
usually gets not a single label but a sequence of
labels from the annotators. Besides, to the best
of our knowledge, no system offers support for
proactive learning.

108

Up to now, far too little attention has been paid
to the interaction between the annotators and the
active learning algorithm. The main point of ac-
tive learning is that a learning algorithm must be
able to interactively query the annotators to obtain
the desired outputs at new data points. The avail-
able systems fail to deliver this by providing over-
simplified user-interfaces for the annotators (i.e.,
showing the feature vector of an instance and ask-
ing for the label). Such user-interfaces are not suit-
able for the task since the annotators need to know
the context of every instance to provide accurate
annotations. Some tools provide excellent visu-
alization front end, such as brat (Stenetorp et al.,
2012), PubAnnotation (Kim and Wang, 2012) or
WebAnno (Yimam et al., 2013), but unfortunately
these tools provide no support for active learning.

To compensate for the lack of learning en-
vironment in the well-known annotation tool,
we develop APLenty (Active Proactive Learning
System), a web-based system for creating anno-
tated data using active/proactive learning. The
main innovation of APLenty is the combination
of a well-known annotation tool (brat) with ac-
tive/proactive learning. Specifically:

1. Proactive learning integration: APLenty
makes annotation easy, time-efficient, and re-
quire less human effort by offering automatic
and proactive learning.

An easy-to-use interface for annotators:
APLenty adapts the interface of the brat rapid
annotation tool, making annotation intuitive
and easy to use.

. Suitable for sequence labeling: APLenty is
best used for sequence labeling tasks, al-
though it can be used for other classification
problems.

Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (System Demonstrations), pages 108-113

Brussels, Belgium, October 31-November 4, 2018. (©2018 Association for Computational Linguistics

The remainder of this paper is organized as
follows. Section 2 provides a brief overview of
the related work. Section 3 presents details of
APLenty. Section 4 describes a case study of using
APLenty for named-entity recognition task. Sec-
tion 5 concludes the paper and points to avenues
for future work.

2 Related work

There are many tools available for active learn-
ing, such as the JCLAL (Reyes et al., 2016),
the Active-Learning-Scala (Santos and Carvalho,
2014), or the LibAct (Yang et al., 2017) libraries.
Among those, JCLAL includes the most state-of-
the-art strategies for active learning. Other tools
such as Vowpal Wabbit! or TexNLP (Baldridge
and Palmer, 2009) also include some active learn-
ing methods. These tools, however, do not focus
on the interaction with the annotators (the user-
interface).

BRAT (Stenetorp et al., 2012) is one of the
most well-known annotation tools that offer easy-
to-use user-interfaces. BRAT has been developed
for rich structured annotation and uses a vector
graphics-based visualization component for ren-
dering. BRAT can, at the same time, display
many annotation layers. WebAnno (Yimam et al.,
2013) improves the annotation interface of BRAT
by letting the annotators choose the annotation
layer(s) for rendering. WebAnno offers a purely
web-based generic annotation tool and supports
distributed annotation. PubAnnotation (Kim and
Wang, 2012) also offers a web-based annotation
interface but its main focus is to improve the
reusability of corpora and annotations. These tools
do not support active/proactive learning.

DUALIST (Settles, 2011; Settles and Zhu,
2012) and Prodigy” are most closely related to
APLenty. DUALIST is an active learning anno-
tation paradigm that offers annotation interface for
semi-supervised active learning. Prodigy is a com-
mercial product which provides an annotation tool
powered by active learning. Unfortunately, both
DUALIST and Prodigy do not support proactive
learning.

3 APLenty

APLenty is a web-based tool implemented in
Java using Apache Wicket web framework and

'"http://hunch.net/~vw/
https://prodi.gy/

109

Labelled
Set

train

annotate

query

5

Figure 1: System architecture

JavaScript. The overall architecture of APLenty
is depicted in Figure 1. The user interface consists
of a project management page and an annotation
page. Below, this section describes APLenty in
detail.

3.1 Project management

In APLenty system, we have two main types of
user: annotator and project manager. The annota-
tors can only annotate text assigned to them while
a project manager can create and customize anno-
tation projects. The interface lets the project man-
ager to:

1. create a project

2. upload the training, test, and unlabelled data

to the web server

3. define the tagset

4. assign annotators to a project

5. choose the active/proactive learning strategy.

The system predefines some common tags, but the
manager can override these by uploading a tagset
file.

There are three types of data that the project
manager can upload. The first one is the train-
ing data, which will be used to train the machine
learning model. The second one is the testing data,
which will be used to test the performance of the
system after each annotation step. The last one is

http://hunch.net/~vw/
https://prodi.gy/

the unlabelled data, on which the annotators will
work. Training and testing data is not required,
but unlabelled data is mandatory. When there is
no training data, the active learning algorithm will
choose the longest sentences for annotation.

APLenty currently supports data using CoNLL-
2003 format and XML Metadata Interchange
(XMI) format. Since APLenty is based on the
Apache Unstructured Information Management
Architecture (UIMA) framework®, new formats
can be supported easily. UIMA enables the appli-
cation to be decomposed into components. Out of
which, a collection reader component is respon-
sible for reading documents in a specific format.
By swapping the collection reader component, one
can allow APLenty to support data in different for-
mat.

The test set is optionally used to evaluate the
annotation process. By providing the test set, the
project manager can see the learning curve of the
active learning method. This evaluation step is
skipped if there is no test set.

3.2 Annotation interface

For annotation and visualization of annotated doc-
uments, we adapted the WebAnno annotation in-
terface, which in turn, adapted the brat rapid anno-
tation tool. Since the initial purpose of APLenty is
sequence labeling, the smallest unit we consider is
a sentence. The annotation interface only displays
one sentence to the annotator at a time. It helps the
annotator to focus on the current sentence. Fig-
ure 2 shows the annotation interface.

When working on APLenty, the annotator se-
lects a span of text on the displayed sentence and
chooses a tag for that span. The annotator does
not need to save the annotation since every an-
notation is automatically sent to the web server
(via Ajax using JSON format). The annotator has
the possibility to skip annotating a sentence. By
choosing skip, the algorithm marks the sentence as
“skipped” and does not consider that sentence in
the next annotation round for this specific annota-
tor. When the annotator completed an active learn-
ing iteration step, APLenty will trigger the training
process with newly annotated data and update the
sentences for the next annotation batch.

The annotation ends when stopping criteria are
met. A project manager can have several ways to
define the stopping criteria: the algorithm reaches

*https://uima.apache.org/

110

a predefined number of iteration, or the dataset
reaches a predefined number of instances, or the
result on the test set reaches a predefined amount.
The learning process has been completed when the
stopping criteria are met. The annotators, how-
ever, can stop anytime they want and resume the
process later.

The project manager can increase the annota-
tion speed by turning on automation. APLenty, in
this case, automatically annotates certain spans of
text (based on the model available from the pre-
vious active learning iteration round). The anno-
tators are then required to label only uncertain se-
quences. This approach was proved to reduce the
number of tokens to be manually annotated about
60% compared to its fully supervised counterpart,
and over 80% compared to a totally passive learn-
ing (Tomanek and Hahn, 2009). The project man-
ager can set a threshold 6 for automatic annotation.
If the probability of an output sequence from the
machine learning model is larger than 6, the out-
put sequence is accepted as valid annotation and is
used as a training instance for later active learning
iterations.

3.3 Active learning

Depending on the project manager’s settings, the
system will choose a query strategy for active
learning. Generally, a machine learning algorithm
uses the instances in the labeled set (training set) to
train a model. The system then uses the model to
label the instances in the unlabeled set. Every in-
stance now has a score indicating how informative
or representative it is. Finally, the system aggre-
gates these scores to get the score of the whole sen-
tence. The system sends the most informative sen-
tences to the annotators, based on the sentences’
scores. When the system receives the annotations,
a new iteration round starts.

Active learning for sequence labeling can use
different query strategies. Most common query
strategies are Least Confidence (Culotta and Mc-
Callum, 2005), Margin Sampling (Scheffer et al.,
2001), Entropy Sampling (Mann and McCal-
lum, 2007), Vote Entropy (Dagan and Engelson,
1995), Kullback Leibler Divergence (Settles and
Craven, 2008), Expected Gradient Length (Set-
tles et al., 2008), Information Density (Settles and
Craven, 2008) strategies. Among which, no query
strategy is completely outperformed other strate-
gies (Settles and Craven, 2008). APLenty cur-

https://uima.apache.org/

DELETE SKIP NEXT

—_———

The NBH

trade data is based on cash flow ,

(ORG)
—_——

MIT data on customs statistics .

Figure 2: Annotation interface

rently employs the least confidence uncertainty-
based strategy for sequence models based on the
sequence outputs from a Conditional Random
Fields model (Okazaki, 2007).

3.4 Proactive learning

Active learning assumes that annotators have sim-
ilar level of expertise and nobody is fallible. But
in reality, different annotators have different levels
of expertize in a specific domain. Proactive learn-
ing has been proposed to model many types of an-
notators (Donmez and Carbonell, 2010; Li et al.,
2017). Proactive learning assumes that there is at
least one expert and one inexperienced annotator
(fallible). The expert always provides correct an-
notations while the fallible annotator might pro-
vide incorrect annotations in certain cases.

At each iteration step, the proactive learning al-
gorithm selects the sentences for the annotators
based on the probabilities that the annotator will
provide correct labels for a sequence in a sen-
tence. A recent study by Li et al. (2017) esti-
mated the performance of each annotator based on
a benchmark dataset. The system calculates the
probability that an annotator provides a correct la-
bel when annotating a sentence by combining the
class probability and the likelihood that the anno-
tator provides a correct label for the tokens in the
sentence.

In the real-time annotation scenario where
speed is one of the most important factors,
APLenty uses a simple threshold p to distribute
sentences to annotators. If the probability of an
output sequence from the machine learning model
is smaller than o, APLenty considers the sentence
a hard case and sends it to the expert annotator.
Otherwise, the sentence is sent to the fallible an-
notator. This reduces the cost of annotation since
the time of the expert is more expensive than the
time of the fallible annotator.

111

4 Case study

One use case that describes the best use of
APLenty is the named entities annotation. This
is a multiple span annotation task.

We used the English CoNLL-2003 named entity
dataset (Tjong Kim Sang and De Meulder, 2003)
for the case study. The dataset contains newswire
articles annotated with four entities: LOC (loca-
tions), MISC (miscellaneous names), ORG (or-
ganizations), and PER (persons). In the experi-
ment, we used 1,200 sentences as the initial train-
ing data, 3,622 sentences as test data, and the rest
for unlabelled data. @ is set to 0.8, p is set to 0.2,
batch size is set to 100.

We compare four settings in this case study. The
first one is Random Sampling: the system ran-
domly chooses the next sentences for annotation.
The second one is Active Learning: the system
uses the output of CRF model to assign sentences
to an expert. The third one is Proactive Learning:
same as Active Learning, but we have two anno-
tators, one expert, and one fallible annotator. The
last one is Active Learning with Automation: the
system automatically assigns labels for sequences
based on the threshold 6.

Figure 3 shows the learning curves of the four
settings. In all cases, active/proactive learning set-
ting outperformed Random Sampling setting. It
can be seen that the last three settings achieved
peak performance when we reached 50th iteration.
Combining active learning and automation lead to
best performance. This result may be explained by
the fact that the system got more reliable data for
training after every iteration.

5 Conclusion and future work

We introduced APLenty, a web-based open en-
vironment for constructing annotated datasets us-
ing active and proactive learning while leveraging
the functionalities of the popular annotation edi-

0.8

0.75

e
N

F1 score on test data

0.65

|
40 60 100

Iterations

80

----Random Sampling
Active Learning
—— Proactive Learning
- -~ Active Learning + Automation

Figure 3: Learning curve

tor brat. APLenty can support the quick develop-
ment of high-quality labeled data needed to train
and evaluate text mining tools for different appli-
cations. Existing annotation editors do not provide
such an integrated environment which can quickly
produce labeled data while at the same time taking
into account different levels of expertise of anno-
tators.

A key feature of APLenty is how it supports the
automation for sequences with high confidence to
be included (certain sequences), thus allowing the
annotators to focus only on the uncertain ones. We
have demonstrated that this feature enables anno-
tators to create high-quality labeled datasets in less
time than other settings.

Considerably more work will need to be
done to: 1. extend our work for link annota-
tion; 2. further enhance APLenty to work with
other active/proactive learning criteria; 3. evaluate
APLenty in a complete data creation; 4. enhance
centralize repository of annotation such as PubAn-
notation.

Acknowledgments

This research has been carried out with funding
from BBSRC BB/P025684/1 and BB/M006891/1.
We would like to thank the anonymous reviewers
for their helpful comments.

112

References

Jason Baldridge and Alexis Palmer. 2009. How well
does active learning actually work?: Time-based
evaluation of cost-reduction strategies for language
documentation. In Proceedings of the 2009 Con-
ference on Empirical Methods in Natural Language
Processing: Volume I1-Volume 1, pages 296-305.
Association for Computational Linguistics.

Aron Culotta and Andrew McCallum. 2005. Reduc-
ing labeling effort for structured prediction tasks. In
AAAI volume 5, pages 746-751.

Ido Dagan and Sean P Engelson. 1995. Committee-
based sampling for training probabilistic classifiers.
In Machine Learning Proceedings 1995, pages 150—
157. Elsevier.

Pinar Donmez and Jaime G Carbonell. 2010. From ac-
tive to proactive learning methods. In Advances in
Machine Learning I, pages 97-120. Springer.

Jin-Dong Kim and Yue Wang. 2012. Pubannota-
tion: a persistent and sharable corpus and annota-
tion repository. In Proceedings of the 2012 Work-
shop on Biomedical Natural Language Processing,
pages 202-205. Association for Computational Lin-
guistics.

Maolin Li, Nhung Nguyen, and Sophia Ananiadou.
2017. Proactive learning for named entity recogni-
tion. BioNLP 2017, pages 117-125.

Gideon S Mann and Andrew McCallum. 2007. Ef-
ficient computation of entropy gradient for semi-
supervised conditional random fields. In Human
Language Technologies 2007: The Conference of
the North American Chapter of the Association
for Computational Linguistics;, Companion Volume,
Short Papers, pages 109-112. Association for Com-
putational Linguistics.

Naoaki Okazaki. 2007. CRFsuite: a fast implementa-
tion of Conditional Random Fields (CRFs).

Oscar Reyes, Eduardo Pérez, Maria Del Carmen
Rodriguez-Hernandez, Habib M Fardoun, and Se-
bastian Ventura. 2016. JCLAL: a Java framework
for active learning. The Journal of Machine Learn-
ing Research, 17(1):3271-3275.

Davi P Santos and André CPLF Carvalho. 2014. Com-
parison of active learning strategies and proposal
of a multiclass hypothesis space search. In Hy-
brid Artificial Intelligence Systems, pages 618—629.
Springer.

Tobias Scheffer, Christian Decomain, and Stefan Wro-
bel. 2001. Active hidden Markov models for infor-
mation extraction. In International Symposium on
Intelligent Data Analysis, pages 309-318. Springer.

Burr Settles. 2009. Active learning literature survey.
Computer Sciences Technical Report 1648, Univer-
sity of Wisconsin—Madison.

Burr Settles. 2011. Closing the loop: Fast, interac-
tive semi-supervised annotation with queries on fea-
tures and instances. In Proceedings of the confer-
ence on empirical methods in natural language pro-
cessing, pages 1467-1478. Association for Compu-
tational Linguistics.

Burr Settles and Mark Craven. 2008. An analysis of ac-
tive learning strategies for sequence labeling tasks.
In Proceedings of the conference on empirical meth-
ods in natural language processing, pages 1070—
1079. Association for Computational Linguistics.

Burr Settles, Mark Craven, and Soumya Ray. 2008.
Multiple-instance active learning. In Advances in

neural information processing systems, pages 1289—
1296.

Burr Settles and Xiaojin Zhu. 2012. Behavioral fac-
tors in interactive training of text classifiers. In Pro-
ceedings of the 2012 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
563-567. Association for Computational Linguis-
tics.

Pontus Stenetorp, Sampo Pyysalo, Goran Topic,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. BRAT: a web-based tool for NLP-assisted
text annotation. In Proceedings of the Demonstra-
tions at the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 102—107. Association for Computational Lin-
guistics.

Erik F Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the seventh conference on Natural
language learning at HLT-NAACL 2003-Volume 4,
pages 142—147. Association for Computational Lin-
guistics.

Katrin Tomanek and Udo Hahn. 2009. Semi-
supervised active learning for sequence labeling. In
Proceedings of the Joint Conference of the 47th An-
nual Meeting of the ACL and the 4th International
Joint Conference on Natural Language Processing
of the AFNLP: Volume 2-Volume 2, pages 1039—
1047. Association for Computational Linguistics.

Yao-Yuan Yang, Shao-Chuan Lee, Yu-An Chung,
Tung-En Wu, Si-An Chen, and Hsuan-Tien Lin.
2017. libact: Pool-based active learning in
Python. Technical report, National Taiwan Uni-
versity. Available as arXiv preprint https://
arxiv.org/abs/1710.003709.

Seid Muhie Yimam, Iryna Gurevych, Richard Eckart
de Castilho, and Chris Biemann. 2013. WebAnno:
A flexible, web-based and visually supported system
for distributed annotations. In Proceedings of the
51st Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations, pages
1-6.

113

https://arxiv.org/abs/1710.00379
https://arxiv.org/abs/1710.00379

