When data permutations are pathological:
the case of neural natural language inference

Natalie Schluter and Daniel Varab
Department of Computer Science
IT University
Copenhagen, Denmark

{natschluter,

Abstract

Consider two competitive machine learn-
ing models, one of which was considered
state-of-the art, and the other a competi-
tive baseline. Suppose that by just permut-
ing the examples of the training set, say by
reversing the original order, by shuffling,
or by mini-batching, you could report sub-
stantially better/worst performance for the
system of your choice, by multiple per-
centage points. In this paper, we illustrate
this scenario for a trending NLP task: Nat-
ural Language Inference (NLI). We show
that for the two central NLI corpora to-
day, the learning process of neural systems
is far too sensitive to permutations of the
data. In doing so we reopen the question
of how to judge a good neural architecture
for NLI, given the available dataset and
perhaps, further, the soundness of the NLI
task itself in its current state.

1 Introduction

There is increased interest today in the detection of
information quality: whether a statement is true or
false, or equivalently, whether one statement (the
premise) is entailed by, contradicts or has no rela-
tion to another statement (the hypothesis). This is
the Natural Language Inference task. The timely
development of the Stanford Natural Language
Inference (SNLI) corpus (Bowman et al., 2015)
and more recently the Multi-Genre NLI (MULTI-
NLI) corpus (Williams et al., 2017) has lead to
a steady increase in contributions to research on
NLI. Recent research, however, indicates these
central datasets to be trivially annotated to a large
degree (Gururangan et al., 2018). In this paper, we
give evidence of an unrelated problem.

Deep neural network approaches provide the

djam}@itu.dk

state-of-the-art today for the tasks. We show a
pathological sensitivity of these systems to permu-
tations of the training set. This calls into question
the soundness of the task in its current state and
corresponding development and benchmarking of
NLI neural systems.

Given the approximate iterative optimisation
methods required to induce models, a common
practice for statistical learning is to first randomly
shuffle the training set. This serves to offset
unwanted bias due to accidental ordering of the
examples (for example, with respect to time or
class). Probably because of this, there is very lit-
tle literature or understanding of the effect of order
among the training examples—strict ordering of ex-
amples has simply been known to be undesirable.
However, as neural network approaches increas-
ingly dominate in performance across many NLP
tasks, the notion of random shuffling has become
overshadowed by that of computational efficiency.
This seems to lead back to experiment parameters
from Sutskever et al. (2014)’s work, which demon-
strates that grouping examples of similar sentence
length into batches results in a halved training
time. But what is the effect on accuracy? Indeed,
a curiosity of neural network models induced over
the NLI datasets is the ease in acquiring rather in-
stable results as a result of simple example order
permutations of the training set.

In this paper, we present an investigation into
these questions. In particular, we consider two
simple but competitive neural network topologies
in order to investigate the effect of training ex-
ample order from these datasets on performance.
One of these achieves close to state-of-art results
over SNLI and state-of-the-art for MULTI-NLI (for
simple systems, Cf. Section 4.1), while the other
is a simpler variant of the first, characterised by
fewer parameters. Out of the standard deep learn-
ing, standard machine learning and other plausi-

4935

Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 4935-4939
Brussels, Belgium, October 31 - November 4, 2018. (©2018 Association for Computational Linguistics

ble orderings of the dataset, we show that only the
original ordering of the training examples leads
to state-of-the-art model induction. We also show
that the gap in performance between the two neu-
ral architectures described here generally drops
over all other permutations.

2 NLI task and datasets

The NLI task input is two sentences, a =
(a1,...,a;,) and b = (by,...,by,) of lengths [,
and [, respectively. Each a; (resp. b;) for i € [l,]
(resp. j € [lp]) corresponds to the word em-
bedding with dimension d for the ith (resp. jth)
word. The task dataset consists of labeled pairs
of sentences, {a(™ b y(“)}nNzl, where y(™ e
{entailment, contradiction, neutral} is the class.

We use two central datasets for our study here:
SNLI and MULTI-NLI (Bowman et al., 2015;
Williams et al., 2017), containing over 570K and
433K sentence pairs respectively.

3 Our neural network architectures

For the research presented in this paper, we
choose two related and relatively simple neural
network architectures corresponding roughly to
Parikh et al. (2016) and a simplified version of
Chen et al. (2017) consisting of five components. '
Note that we also downloaded Chen et al. (2017)’s
code? and ran it over the datasets; since it did
not perform with the same accuracy reported in
the paper for our run (87.77% instead of the re-
ported 88%), and since it took several hours longer
than our implementation to run (+7 hours longer),
we concentrated on our own implementation. We
also attempted to run Gong et al. (2017)’s system?;
for our runs, the system halted without comple-
tion after several hours. Moreover, there are re-
ports on the difficulty in getting the architecture
to achieve the accuracy score of 88% reported in
the original paper, Mirakyan et al. (2018) reporting
that their re-implementation could only achieve
86.38%. This is significantly worst-performing
than our best system, which we present now.

(1) Pre-projection. To compensate approxi-
mately for not updating the original embeddings

during learning, we first carry out a preliminary
'We make the systems publicly available
https://github.com/natschluter/
nli-data-permutations.
https://github.com/lukecql231/nli
*https://github.com/YichenGong/
Densely-Interactive-Inference-Network

projection of the embeddings, to the same dimen-
sions using a feed-forward network.

(2) Embedding projection. We further project
embeddings via either a simple feed-forward (FF)
with a ReL.U activation function or a bidirectional
LSTM (BiLSTM) layer. The result is then sent
to the attention component. This corresponds pre-
cisely therefore to Parikh et al. (2016)’s computa-
tionally efficient approximation of the vector prod-
uct before soft-alignment.

(3) Attention. The attention mechanism, first in-
troduced by Bahdanau et al. (2015), is based on a
matrix of all-pairs scores between the elements of
two sequences a; and bj:*

eij == F'(a;, bj) := F(a;) F(bj)
We follow (Parikh et al., 2016) and later attention-
based models for NLI, by representing the impor-
tance of a; with respect to b as the normalised sum

B = i exp(ei;)

' j=1 Zéﬁbzl e:cp(e,-k) !
The result is concatenated with a;, to create [a;, ;]
which is then projected down to original embed-
ding dimension. The same is done for b; with re-
spect to a.

(4) Aggregation. Following the attention mech-
anism we aggregate over words for a sentence rep-
resentation. Either we sum over the attended word
vectors Parikh et al. (2016) or use the final state of
a single LSTM layer (Chen et al., 2017)°.

(5) Prediction. Finally we feed a vector con-
catenation of both sentence vectors as input to a
component consisting of three feed-forward lay-
ers with dropout and regularisation, followed by a
linear softmax layer for prediction.

Instantiated architectures. The two topologies
we adopt for this study consist of the above com-
ponents with embedding projection and aggrega-
tion as follows:

e FF/SUM corresponding to the embedding pro-
jection instantiated with a feed-forward network
and the aggregation carried out through vector
summation, and

*Note that we also experimented with e;; := F’(aj, bj)
where F’ was a component-wise multiplication and F’ a
feed-forward network with ReLU activations. However, we
observed no benefits to doing so performance-wise, and sub-
stantial loss in computational efficiency.

SFor Chen et al. (2017), aggregation consists of several
layers of BiLSTMS as opposed to our single LSTM layer.

4936

https://github.com/natschluter/nli-data-permutations
https://github.com/natschluter/nli-data-permutations
https://github.com/lukecq1231/nli
https://github.com/YichenGong/Densely-Interactive-Inference-Network
https://github.com/YichenGong/Densely-Interactive-Inference-Network

e Bi/LSTM corresponding to the embedding pro-
jection instantiated with a BILSTM and the ag-
gregation carried out via an LSTM.

Other hyperparameters. We use 300 dimen-
sional GloVe embeddings trained on the Com-
mon Crawl 840B tokens dataset (Pennington et al.,
2014), which remain fixed during training. Out of
vocabulary (OOV) words are represented as zero
vectors.® We use a 0.2 dropout rate and L2 regular-
isation, applied in all feed-forward layers. We op-
timise the network using categorical cross-entropy
loss and employ the RMSprop optimizer with p
set to 0.9, a 0.001 learning rate, with a batch size
of 512 and use early stopping over the develop-
ment set after no improvement in accuracy after 4
epochs.

State-of-the-art for simple systems. The mod-
els are simple in that no information above word
embeddings is taken as input, for example, no
POS-tags or syntactic relations (See Section 4.1).
Our Bi/LSTM system also currently sets the state-
of-the-art for simple systems on the MULTI-NLI
dataset (See Section 4.1).

Proj- SNLI MULTI-NLI
Agg split accuracy accuracy
FF/ test 85.72 71.58
SUM test-mis - 70.63
dev 85.64 72.29
dev-mis - 72.80
Bi/ test 87.12 75.58
LSTM (+1.4) (+4.0)
test-mis - 74.33
- +3.7)
dev 87.53 76.43
(+1.89) (+4.14)
dev-mis - 76.04
- (+3.24)

Table 1: Performance in accuracy of networks, by
projection (Proj-) and aggregation (Agg) compo-
nents.

4 Related work

Previous work is related either in terms of the neu-
ral architectures for NLI (Section 4.1), or in terms
of work on training data permutations in learning
(Section 4.2).

4.1 State-of-the-art NLI

There are different types of neural network sys-

tems in the literature with respect to the simplic-
SWe experimented with alternative OOV representations,

such as the the mean vector of most frequent words and ran-
dom vectors, with insignificant effects.

ity of input data required for modeling and in-
terdependence of the internal modules. In this
work, we only consider simple system approaches
that use only word embeddings (no character rep-
resentations, POS-tags, word-position, syntactic
tree, external resources, etc.) and consist only
of interdependent modules (not ensembles). We
make no claims regarding linguistic or ensemble-
complex systems, but make the straightforward
hypothesis that the conclusions presented here
can be extended to cover more complex frame-
works as well, especially given that our systems
are strongly competitive or even better perform-
ing than two highly complex state-of-the-art neu-
ral systems (Cf. Section 3).

For simple systems, the state-of-the-art is cur-
rently set by Sha et al. (2016) at 87.5%, on SNLI.
They use a standard BiLSTM to read the premise,
and propose a Bi-rLSTM to read the hypothesis.
Their proposed rLSTM-“re-read” LSTM unit—
takes the attention vector of one sentence as an
inner state while reading the other sentence. The
output of the standard BiLSTM is also taken as the
general input of the bidirectional tLSTM. The cur-
rently published next best performing simple sys-
tem, Parikh et al. (2016) at 86.3% accuracy, intro-
duced use of the attention mechanism for the NLI
task, the way it is generally being used today.”

4.2 Example permutation in learning

Morishita et al. (2017) explored the effect of mini-
batching on the learning of Neural Machine Trans-
lation models, carrying out their experiments on
two datasets (two language-pairs). In particular,
they studied the strategies of (1) sorting by length
of the source sentence, (2) target sentence, or (3)
both, among other things. They empirically com-
pare their efficiency on two translation tasks and
find that some strategies in wide use are not neces-
sarily optimal for accuracy and convergence-wise.
In contrast to the work described here however,
one of the sorting strategies produced best results,
though no comparison was made with the original
ordering of examples. By contrast, we show that
it is by making non-canonical (semi-non-random)
orderings of the data that best results are achieved
in NLI, for the two available datasets.

"Parikh et al. (2016) also have a result with intra-
sentential attention that performs with 86.8% accuracy. How-
ever this attention model is dependent on word positional in-
formation.

4937

SNLI MULTI-NLI
permutation FF/SUM BILSTM diff FF/SUM BiLSTM diff
orig 85.64 87.53 1.89 72.29 76.43 4.14
orig-r 82.48 8392 143 6671 6971 30
shuffle-once (5 runs) 82.88 84.15 1.27 72.39 75.86 347
(0 =019) (0=0.18) (0 =0.08) (o=0.18)
shuffle-epoch 83.09 84.69 1.60 72.15 75.65 3.50
conf 83.35 8396 061 67.12 6929 217
conf-r 81.4 8395 255 6693 6925 2.3
prem 83.0 8374 074 6756 7011 255
prem-r 82.68 8349 081 666 69.7 3.1
hypo 82.61 8382 122 6771 7003 231
hypo-r 82.42 8368 126 6697 69.77 28
lengths 82.74 8360 096 67.11 7004 292
lengths-r 82.65 8355 09 6693 6993 3.0l

Table 2: Performance of the FF/SUM and Bi/LSTM neural networks for the training example permuta-
tions, evaluated over the development set, along with the difference (diff) in performance between the

two architectures.

5 Experiments

Data permutations. We consider the following
original and sorted orderings of the training set ex-
amples to learn our models.

orig: The original order in which the dataset is
currently distributed.

prem: Sorting by increasing premise length.

hypo: Sorting by increasing hypothesis length.

lengths: Sorting by increasing premise + hypo-
thesis length.

conf: Sorting by increasing score, where the
scores for each example are generating in training
Bi/LSTM over orig.

shuffle-once: Randomly shuffle once before
training, averaged over 5 runs.

shuffle-epoch: Randomly shuffle on each
epoch during training, for a single run.

In addition to each of these, we consider the rever-
sal of the order (indicated by the suffix -r.)

In order to not exhaust the test set, we generate
the results over data permutations on the develop-
ment set. These are given in Table 2.

Discussion. For both datasets, we observe that
all other training example permutations result in a
substantial drop in performance, by approximately
3-4% on SNLI and 1-6% on MULTI-NLI. Even
a simple reversal of the original order leads to a
substantial drop in performance. Shuffling con-
sistently the data provides the strongest alternative
training conditions to the original ordering.
Moreover, the difference in performance of the
two separate architectures is generally much lower

on all other permutations of the training data, call-
ing into question the significance of the more com-
plex components. These observations apply to
both randomly shuffling (as advised in statistical
learning practise) and ordering the data by length
(as advised in deep learning for NLP practise).

For an analysis of the sorting permutations, we
looked into whether hypothesis sentence lengths
differed by class to such an extent that the dataset
became sorted by class label. We cannot include
the results here due to space constraints. How-
ever, we observed that ordering by class results in
small (and quite interesting) drops in performance,
so long as the original order is preserved. If we
first randomly shuffle the examples before order-
ing them by class, similar drops in performance
result to those in Table 2.

6 Conclusions

We have shown that models induced over the
SNLI and MULTI-NLI datasets are greatly af-
fected by the permutation of the training data in-
stances at hand: recommended statistical learning
or deep learning engineering strategies for order-
ing the training examples result in significantly
and even substantially worse performance over
these datasets. Our models are simple (no infor-
mation over word embedding representations of
sentences and no ensembles), but strongly compet-
itive with (or better performing than) both SOTA
(re-)implementations of much more complex neu-
ral systems. We make the straightforward hypoth-
esise that these observations will extend to more
complex models; we leave this to be verified by
future work.

4938

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
ICLR.

Samuel R. Bowman, Jon Gauthier, Abhinav Ras-
togi, Raghav Gupta, Christopher D. Manning, and
Christopher Potts. 2015. A large annotated corpus
for learning natural language inference .

Qian Chen, Xiaodan Zhu, Zhenhua Ling, Si Wei, Hui
Jiang, and Diana Inkpen. 2017. Enhanced Istm for
natural language inference. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (ACL 2017). ACL, Vancouver,
BC, Canada.

Yichen Gong, Heng Luo, and Jian Zhange. 2017. Natu-
ral language inference over interaction space. Tech-
nical report. ArXiv:1709.04348 [cs.CL].

Suchin Gururangan, Swabha Swayamdipta, Omer
Levy, Roy Schwartz, Samuel R. Bowman, and
Noah A. Smith. 2018. Annotation artifacts in natural
language inference data. In The 16th Annual Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies. ACL, New Orleans, Louisiana,
USA.

Martin Mirakyan, Karen Hambardzumyan, and Hrant
Khachatrian. 2018. Natural Language Inference
over Interaction Space: ICLR 2018 Reproducibility
Report. ArXiv e-prints .

Makoto Morishita, Yusuke Oda, Graham Neubig,
Koichiro Yoshino, Katsuhito Sudoh, and Satoshi
Nakamura. 2017. An empirical study of mini-batch
creation strategies for neural machine translation. In
The First Workshop on Neural Machine Translation
(NMT). Vancouver, Canada.

Ankur P. Parikh, Oscar Tédckstrom, Dipanjan Das, and
Jakob Uszkoreit. 2016. A decomposable attention
model for natural language inference. In Proc of
EMNLP. Austin, Texas, USA.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computa-
tional Linguistics, Doha, Qatar, pages 1532—-1543.
http://www.aclweb.org/anthology/D14-1162.

Lei Sha, Baobao Chang, Zhifang Sui, and Sujian Li.
2016. Reading and thinking: Re-read Istm unit for
textual entailment recognition. In Proceedings of
COLING 2016, the 26th International Conference
on Computational Linguistics: Technical Papers.
The COLING 2016 Organizing Committee, Osaka,
Japan, pages 2870-2879.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In Proceedings of the 28th Annual Con-
ference on Neural Information Processing Systems
(NIPS).

A. Williams, N. Nangia, and S. R. Bowman. 2017. A
Broad-Coverage Challenge Corpus for Sentence Un-
derstanding through Inference. ArXiv e-prints .

4939

http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162

