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Abstract
Conventional word embedding models do not
leverage information from document meta-
data, and they do not model uncertainty.
We address these concerns with a model
that incorporates document covariates to es-
timate conditional word embedding distribu-
tions. Our model allows for (a) hypothesis
tests about the meanings of terms, (b) assess-
ments as to whether a word is near or far from
another conditioned on different covariate val-
ues, and (c) assessments as to whether esti-
mated differences are statistically significant.

1 Introduction

Whether a word’s meaning varies across contexts
has become a major focus of NLP, linguistics, and
social science research in recent years. For exam-
ple, since the early 20th century, the word “gay”
has evolved from describing an emotion to be-
ing more aligned with sexual orientation (Hamil-
ton et al., 2016b). Popular word embedding tech-
niques (e.g., Mikolov et al., 2013a; Pennington
et al., 2014) have proven useful for analyzing lan-
guage evolution. But to use these models for such
research, scholars often divide a corpus into dis-
tinct training sets (e.g., train independent language
models on different decades of text) and compare
model output across specifications in an ad hoc
way (Garg et al., 2018). Such splitting inhibits
many within- and across-word comparisons, since
embeddings are only comparable within a given
model. Additionally, most methods ignore the
variance of words, mechanically treating words
equally regardless of the volatility, or uncertainty,
in their meanings. If one inspects semantics with
only point estimates of embeddings, it is hard
to tell whether embeddings represent meaningful
traits or are simply noise in the data.

We address these concerns in three ways. First,
we estimate a vector for each distinct value of the

document covariates, using a multilayer percep-
tron (MLP) with a non-linear activation function.
Second, we parametrize the covariance matrix of
each embedding vector explicitly in the model,
adopting the Bayes-by-Backprop algorithm (Blun-
dell et al., 2015). Third, we utilize Hotelling T 2

statistics (Hotelling, 1931) to assess whether esti-
mated differences in word vectors are statistically
differentiable under a null χ2 distribution (Ito,
1956). To our knowledge, no prior work evaluates
word embeddings with this statistical framework.

2 Related Work

Drift Analysis using Word Embeddings There
are several ways to measure drifts in word mean-
ings. Hamilton et al. (2016c) propose the use of
cosine similarities of words in different contexts
to detect changes. Hamilton et al. (2016b) pro-
vide an alternative measure based on the distance
of words from their nearest neighbors. Rudolph
and Blei (2018) analyze absolute drift of words
using Euclidean distance in (two discrete) slices
of data. All of these methods compute the word
distance based only on the point (i.e., mean) esti-
mates of the word embeddings.

Conditional Word Embedding Rudolph and
Blei (2018) estimate dynamic Bernoulli embed-
dings (DBE), extending the exponential family
embedding (Rudolph et al., 2016) generalization
of Mikolov et al. (2013a), to learn conditional
word embeddings over time. Their amortized
approach builds a separate neural network that
transforms a global word vector into a covariate-
specific vector, and is closely related to our ap-
proach in this paper. However, a noticeable omis-
sion in their model is that they do not explicitly
model parameter covariance or uncertainty.

Word Embedding with Uncertainty Vilnis and
McCallum (2017) earlier proposed an energy-
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based learning framework in which each word is
represented as a multivariate Gaussian distribu-
tion with a diagonal covariance. The energy func-
tion is defined by the divergence (e.g., KL) be-
tween two Gaussian embeddings, and the mar-
gin ranking loss (Weston et al., 2011) is mini-
mized. A related model is the Bayesian skip-gram
in Brazinskas et al. (2017), which posits a genera-
tive model where words are associated with multi-
variate Gaussian latent variables that generate con-
text words. The parameters of those prior distri-
butions over the multivariate Gaussian latent vari-
ables are estimated by maximizing the variational
lowerbound, and act as word embeddings.

These works replace mean estimates of embed-
dings with Gaussian distributions, similar to our
proposal here. However, they arrive at this dif-
ferently; Vilnis and McCallum (2017) from the
energy-based learning (LeCun et al., 2006), and
Brazinskas et al. (2017) from generative modeling.
We provide yet another angle: via (approximate)
Bayesian neural networks.

3 Conditional Word Embedding
Adopting Bayes-by-Backprop for Estimation
Given a tuple of a word v, a covariate x and a
context word vc, we define the conditional log-
probability as

log p(vc|v, x) = θ>v|xθ
c
vc − log

∑
v′c∈V

exp
(
θ>v|xθ

c
v′c

)
,

where θv|x and θcvc are the conditional word em-
bedding of v given x and the context embedding of
vc, respectively. V is the vocabulary of all unique
words. To avoid the expensive computation of
the partition function, we use negative sampling
(Mikolov et al., 2013b), which stochastically ap-
proximates the log-probability above by:

log p(vc|v, x) ≈ log σ(θ>v|xθ
c
vc) (1)

+
1

M

M∑
m=1

log(1− σ(θ>v|xθ
c
vmc

)),

where vmc ∈ V is the m-th negative sample drawn
from a unigram distribution estimated from D.

We define a prior distribution over each param-
eter θ to be a scaled mixture of two Gaussians, as
suggested by Blundell et al. (2015):

log p(θi) = log
(
uN (θi|0, σ21) (2)

+(1− u)N (θi|0, σ22)
)
,

where σ1, σ2 and u are the hyperparameters.
As exactly marginalizing out the parameters θ·

and θc· is not scalable, we maximize the vari-
ational lowerbound of the marginal probability.
To do so, we introduce a variational posterior
q(θ|φ) parametrized by its own parameter set φ.
Then, the variational lowerbound is defined as
−F(θ,D) = Eq [log p(D|θ)] − KL(q(θ)‖p(θ)),
where log p(D|θ) =

∑
(v,x,vc)∈D log p(vc|v, x) in

our case. This is stochastically approximated by

−F(θ,D) ≈ 1

M

M∑
m=1

log p(D|θ(m)) (3)

− log q(θ(m)|φ) + log p(θ(m)),

where θ(m) is them-th sample from the variational
posterior q (Blundell et al., 2015) via the Gaussian
reparametrization in Kingma and Welling (2013).
We formulate the variational posterior as a multi-
variate Gaussian with diagonal covariance.

We use stochastic gradient descent (SGD) to
minimize F with respect to the variational param-
eters φ. At each SGD step, we compute the gra-
dient of the following per-example cost given an
example (v, vc, x) ∈ D:

f(θ, (v,vc, x)) ≈ − log p(vc|v, x) + log q(θ̃v|x|φ)
+ log q(θ̃cvc) + log q(θ̃cv′c)− log p(θ̃),

where θ̃ is a single sample from the approximate
posterior, and log p(vc|v, x) and log p(θ̃) are from
Eqs. (1)–(2). We then estimate the (approximate)
posterior distribution of each conditional word
embedding θv|x rather than its point estimate, by
minimizing F . See Sec. A of the supplementary
material for the detailed steps for computing the
per-example cost.

Parametrized Conditional Word Embedding
An issue with the approach described so far is the
number of parameters grows linearly in the size of
the vocabulary and in the number of covariate par-
titions, i.e., O(|V | × |C|), where C is the set of all
partitions. This effectively excludes any potential
sharing of structures underlying words across dif-
ferent covariate values and decreases the number
of examples per parameter. To avoid this issue, we
use a single parametrized function to compute the
variational parameters φ of each conditional word
embedding θv|x.

For each covariate-word v|x, there are two vari-
ational parameters µv|x and σv|x. We use an MLP
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without any hidden layer and tanh output layer,
i.e., the affine transformation followed by point-
wise tanh, that takes as input both a global word
vector µ(v)v and a covariate vector µ(x)x and outputs
µv|x, i.e., µv|x = fψ(

[
µ
(v)
v ;µ

(x)
x

]
), where ψ is the

parameters of this mean-transformation network.
The diagonal covariance σv|x is parametrized as
σv|x = log(1 + exp(ρv)), where ρv is a pa-
rameter shared across all covariate configurations.
We then minimize F w.r.t. these parameters ψ,{
µ
(v)
v , ρv

}
v∈V

and
{
µ
(x)
x

}
x∈C

.

This approach of parametrized conditional word
embeddings significantly reduces the number of
parameters from O(|V | × |C|) to O(|V | + |C|),
while maintaining posterior uncertainty of the es-
timated conditional word embedding θv|x.

4 Divergences for Word Embeddings
As we estimate the approximate posterior uncer-
tainty of conditional word vectors, we can estimate
richer relations between vectors (e.g., KL) in addi-
tion to more common comparisons (e.g., cosine or
Euclidean distance). Moreover, we can explicitly
test for whether two vectors are (un)likely to have
the same mean in the population. Below, we intro-
duce how Hotelling’s T 2 may be used for word-
drift or across-word hypothesis testing.

Hotelling’s T 2 Statistic We use the estimated
posterior mean vector µv|x and the diagonal co-
variance vector σv|x of two word-covariate pairs
v|xi and v|xj to compute the T 2 statistic, as if
they were estimates from two sets of samples:
T 2 = (µi − µj)>diag(s)−1(µi − µj). The pooled
(diagonal) covariance s of word pairs is computed

by s =
(ni−1)·σ2

i +(nj−1)·σ2
j

ni+nj−2 , where ni and nj are
the numbers of occurrences of v|xi and v|xj in D,
respectively.1 Unlike other divergence measures,
this T 2 statistic explicitly takes into account the
frequencies of the word-covariate pairs.

Under general conditions, e.g., D is large, the
sampling distribution of T 2 converges to a χ2

d dis-
tribution (Ito, 1956) with d equal to the embedding
dimensionality. This allows us to statistically test
such a null hypothesis as Diff(vi|x, vj |x) = 0 and
Diff(v|xi, v|xj) = 0.

5 Application: Political Speech in UK
Data We use U.K. Parliament speech records
from 1935-2012 as our training data (Rheault

1 T 2 is valid only when ni > 1 and nj > 1.

Figure 1: The ranks of “sterling” (solid line) and
“pound” (dotted line) w.r.t. “currency” across the
decades according to KL divergence.

et al., 2016). Our conditioning variable of interest
is the decade in which a speech occurred. More
details are in Sec. B of the supplementary file.

Model and Learning For each word in the cor-
pus, we consider six surrounding words as its con-
text. The size of embedding is set to 100. We
use six negative samples to compute Eq. (1). We
use Adagrad (Duchi et al., 2011) with the initial
learning rate 0.05 for learning.2 For other hyper-
parameters, see the supplementary material. We
refer to our approach by BBP. For comparison, we
also train analogous DBE embeddings using code
from the authors.

6 Result and Analysis
Impact of Covariates To demonstrate how doc-
ument covariates influence conditional word em-
beddings, we compare the vector for “currency”
against “sterling” and “pound” according to the
KL divergence in each decade, which is shown in
Fig. 1. In each time period we report the ranking of
each w.r.t “currency”. Here, we observe that piv-
otal points for both “sterling” and “pound” occur
in the 1970s, which coincides with the moment the
UK began to abandon the ‘sterling area’ (Part III
in Schenk, 2010). As such, this financial policy
appears to have encouraged semantic drift of the
word “pound” towards “currency”. See Sec. D in
the supplementary material for more details.

We also show a few more examples in Figure 2
and Figure 3 from the Dictionary Induction section
below.

Dictionary Induction As a quantitative com-
parison between the proposed approach and the
DBE, we take a dictionary of (British) political
terms by Laver and Garry (2000) and look at the

2https://github.com/rhan1207/ConditionalEmbeddings
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Figure 2: The ranks between “market” and
“money” across the decades according to KL di-
vergence.

Figure 3: The ranks between “benefit” and “chil-
dren” across the decades according to KL diver-
gence.

average pair-wise, directional rank in each cate-
gory (“pro-state”, “con-state” and “neutral-state”).
We only consider the 2,000 most frequent words in
the vocabulary and embeddings with the covari-
ate (decade) set to 2000s. We observed that the
proposed model using KL divergence has signif-
icantly smaller average pair-wise ranks in “pro-
state” (4052 vs. 5047) and “con-state” (2578 vs.
3758) while performs slightly worse than DBE in
“neutral-state” category (5414 vs. 5031) suggest-
ing that the proposal approach can cluster words
from similar semantic group into closer neighbors
than DBE.

Furthermore, we pick 5 most frequent words
from “pro-state” and “con-state” and show their
average pair-wise rankings and percentile in Table
1. Out of 25K words, our proposed model is able
to rank most chosen words within top 10% per-
centile.

Statistical Word Drift Analysis Our BBP ap-
proach permits meaningful downstream hypothe-
sis tests of word drift, i.e, Diff(v|xi, v|xj) = 0,
and across-word similarity, i.e., Diff(vi, vj) = 0.
Among the 2,000 most frequent words in our sam-

Pro-state Con-state
Words Ranks Pctl Words Ranks Pctl
benefit 1437 5.7 market 1783 7.1

children 2432 9.8 money 1623 6.5
education 716 2.9 own 2852 11.4

health 996 4.0 private 1670 6.7
transport 4247 17.0 value 1693 6.8

Table 1: Average pair-wise rankings of most fre-
quent words in “pro-state” and “con-state” from a
British political dictionary.

DBE No Covariance Covariance
Words Ranks L2 cosine KL T 2

uk 1 1.60 0.81 61.4 99.7
eu 2 1.58 0.84 44.6 89.2

war 6 1.52 0.85 48.4 96.8
council 8 1.66 0.84 71.0 142.0∗∗

labour 15 1.63 0.82 62.4 124.8∗

Table 2: Top word drifts selected based on DBE
model and estimated by BBP. * and ** indicate
p-value ≤ 0.05 and 0.01, respectively.

ple, we perform hypothesis tests of word drifts,
comparing vectors from the 1940s against those
from the 2000s. We compare results from BBP
against the top-100 estimated drifts via DBE. We
first observe that most of the top-ranked words by
L2 distance in the DBE model are not statistically
significant. With the p-value threshold of α = 0.1,
only eleven words were deemed to have had sig-
nificant drift, including “council”, “labour”, “eu-
ropean” and “defence”. Sec. E of the supplement
includes entire lists of this drift analysis.

In Table 1, we show results from five illustra-
tive tests, drawn from the top-100 word drifts es-
timated by the DBE model. We report words’
drift ranks in DBE against their corresponding
L2 distance, cosine similarity, KL divergence and
Hotelling T 2 using the embeddings estimated in
our BBP model. Based on the distance metrics that
ignore the covariance matrix, these words do not
appear to change much over time as their cosine
similarities are fairly large and their L2 distances
are relatively small with little variation across the
five words. This suggests their mean vectors
are projected into close space between 1940s and
2000s. However, by taking into account their un-
certainty, we observe greater variation in both KL
divergence and T 2 statistic. For example, “coun-
cil” has the eighth largest drift in DBE by L2, but
shows the largest T 2 statistic among the five words
and is statistically significant at α = 0.01. So too,
the largest DBE drift (“uk”) is insignificant once
you take into account the covariance structure.



4894

Figure 4: Semantic Graphs with KLD vs. Cosine Similarity

Cosine Similarity vs. KL Divergence In con-
trast to cosine distance, our proposed method al-
lows computation of the KLD between two vec-
tors that takes into account their covariance. Fig-
ure 2 presents semantic graphs estimated in the
spirit of Hamilton et al. (2016a). The set of words
is given by the union set of the 10 nearest neigh-
bors, measured by cosine similarity and KLD,
for the five seed words: “currency”, “british”,
“health”, “trade” and “labour”. This results in
130 unique words including the seed words and
we compute their pair-wise KLD matrix, WKL

and pairwise cosine similarity matrix, Wcos. We
convert WKL to a symmetric matrix as W ′KL =
(WKL +W T

KL)/2. Both WKL and Wcos have di-
mensions of 130× 130.

Edge weights in Figures 2.A and 2.B are
computed by taking a sigmoid transfor-
mation of normalized entries in W ′KL, i.e.,
σ(normalize(w′KLi,j

)). Edge weights in 2.C and
2.D are computed by arccos(wcosi,j ), following
Hamilton et al. (2016a). Edges with weights
below 90th percentiles are dropped for visual
clarity. Note that with the same number of
edges being eliminated, the KLD charts appear
more clustered around seed words, implying that
incorporating covariance matrix creates useful
segregation of words within local contexts; graphs
constructed via cosine similarity seem to disperse
edge weights in a more diffuse manner.

T 2-based Significance In the context of
uncertainty-aware word embeddings, we can use
the T 2 statistic to filter out additional words from
a nearest neighbor set. For instance, in Figure
2.B and 2.D, we drop edges for word pairs that
fall below the 90th percentile of computed T 2

statistics. Filtering with Hotelling T 2 results in
more sparse semantic graphs.

7 Conclusion
We proposed an uncertainty-aware conditional
word embedding model that combines two ideas;
(1) variational Bayesian learning for estimating
parameter uncertainty, and (2) structured embed-
dings conditioned on covariates. This provides a
principled direction to investigate hypothesis tests
of word vectors in various forms. We evaluated
various aspects of the proposed approach on U.K.
Parliament speech records from 1935-2012. We
believe the proposed approach will serve as a more
rigorous tool in social science and other domains.
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