Similar but not the Same: Word Sense Disambiguation
Improves Event Detection via Neural Representation Matching

Weiyi Lu’ and Thien Huu Nguyen? ¥
T Computer Science Department, New York University, USA
# Montreal Institute for Learning Algorithms, University of Montreal, Canada
! Department of Computer and Information Science, University of Oregon, USA

weiyi.lu@nyu.edu,thien@cs.uoregon.edu

Abstract

Event detection (ED) and word sense disam-
biguation (WSD) are two similar tasks in that
they both involve identifying the classes (i.e.
event types or word senses) of some word in a
given sentence. It is thus possible to extract the
knowledge hidden in the data for WSD, and
utilize it to improve the performance on ED. In
this work, we propose a method to transfer the
knowledge learned on WSD to ED by match-
ing the neural representations learned for the
two tasks. Our experiments on two widely
used datasets for ED demonstrate the effec-
tiveness of the proposed method.

1 Introduction

An important aspect of natural language process-
ing involves understanding events mentioned in
text. Towards this end, event detection (ED) is
the task of locating event triggers (usually verbs
or nouns) within a given text, and classifying them
among a given set of event types. This task re-
mains challenging due to the inherent ambiguity
and flexibility of natural languages. The current
state-of-the-art methods for ED have involved ap-
plying deep learning (DL) models to automatically
extract feature representations of the text, and then
treating the task as a classification problem (Chen
et al., 2015; Nguyen and Grishman, 2015b).

The major intuition in this paper is that the task
of ED is closely related to the task of word sense
disambiguation (WSD) whose datasets can help
to improve the performance of the DL models for
ED. This is due to the goal of WSD to determine
the sense of a word within a particular context,
given a set of possible senses that the word can
take on. Our intuition is based on the two follow-
ing aspects:

(i) Similar Context Modeling: Given a word in a
context/sentence, both ED and WSD models need

to select/predict a correct label in a list of candi-
date labels for the word. For WSD, the candi-
date labels are the possible senses (e.g, sense ids
in WordNet) that the word of interest can have,
while for ED, they are the set of predetermined
event types (e.g, the event subtypes in the ACE
2005 dataset!). Consider the word “fired” in the
following sentence as an example:

The boss fired his secretary today.

For WSD, there are 12 possible senses for the
verb “fire” in WordNet in which the correct la-
bel for the word “fired” in this case is the sense
id “fire%2:41:00::” (i.e, “terminate the employ-
ment of’). The ED task in the ACE 2005 dataset,
on the other hand, involves 33 possible event sub-
types with “End-Position” as the correct event sub-
type/label for the word “fired” in our example.

In order to make such label predictions, both ED
and WSD need to model the word itself and its
context (i.e, the words “fired”, “boss”, and “secre-
tary” in the example). This similar modeling al-
lows the same DL model to be adopted for both
ED and WSD, facilitating the use of WSD data to
improve the feature representations for ED via pa-
rameter/representation tying.

(ii) Close Semantic Consideration: As there are
some overlaps between the semantic differentia-
tion in WSD and ED, the knowledge/information
from WSD about a particular word in a context
can help to make a better prediction for that word
in ED. For instance, in the example above, the
knowledge from WSD that the word “fired” is
referring to a termination of employment would
clearly help ED to identify “End-Position” as the
correct event type (rather than the incorrect event
type “Attack”) for “fired” in this case.

How can we exploit this intuition to improve the
performance of the DL models for ED with WSD

1
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data? In this work, we propose a novel method
based on representation matching to transfer the
knowledge learned from the WSD data to the DL
models for ED. In particular, two separate deep
learning models are employed to model the con-
text for WSD and ED. The two models share the
network architecture, but involve different param-
eters that are specific to the tasks. We then trans-
fer the knowledge from the WSD network to the
ED network by ensuring that the feature represen-
tations learned by the two networks on the same
contexts are similar to each other.

We demonstrate the effectiveness of the pro-
posed method on two widely used datasets for ED.
To the best of our knowledge, this is the first work
to study the transfer learning/multi-task learning
methods for WSD and ED with DL.

2 Model

We consider the typical setting where we have two
separate datasets DWs? = {Wwsd pwsd qwsdy
for WSD and D*? = {W#? ped 44} for ED.
Here, Wfd is the i-the sentence of D¢?, pfd is
the index of the word of interest for event type
prediction in Wied, and yfd is the corresponding
event type label. The same conventions apply for
Wwsd pwsd gwsd — Also, let Y and Y°¢ be
the label sets for WSD and ED respectively (i.e,
ywsd € Ywsd and y¢? € Yd). Our goal is to trans-
fer the knowledge learned from the D*5? dataset
to improve the performance of the ED models
trained on the D dataset (multi-task learning).
In the following, we will first describe the deep
learning architectures to transform the sentences
W in the datasets D**? and D*? into representa-
tion vectors. We only focus on the deep learning
architectures proposed for ED in the literature to
achieve compatible comparisons for ED. The pro-
posed multi-task learning method for ED with the

WSD dataset will follow.

2.1 Computing the Feature Representations

Consider a sentence W in the datasets D"*% or
D*? that is represented as a sequence of tokens
W = [wo,wi,...,w]. Let p be the index of
the word of interest in this sentence. The con-
text for wy, in W is constructed by taking the word
itself, the n preceding words, and the n follow-
ing words (padding or truncating when necessary).
The tokens in the context are re-indexed to form

an instance V' = [vg, U1, ..., Un, -, V2n—1, V2],

where v,, corresponds to wj, in W.

Encoding

The first step to prepare the instance V' for the
deep learning models is to map each token v; in V'
into two real-valued vectors, which are then con-
catenated to form a vector representation x; for v;
(Nguyen and Grishman, 2015b; Chen et al., 2015):

1. The word embedding of v; obtained by look-
ing up the token v; in the pre-trained word embed-
ding table (Mikolov et al., 2013a).

2. The position embedding vector for v;: ob-
tained by looking up the relative distance j — n of
v; with respect to the token of interest v;, in a posi-
tion embedding table (randomly initialized) (Chen
et al., 2015; Nguyen and Grishman, 2015a).

It is important to note that, different from the
prior works (Nguyen and Grishman, 2015b; Liu
et al., 2017), we do not include the entity type la-
bel of each token into its representation. This is
a more realistic setting for our work as the golden
entity mentions do not always exist in practice, es-
pecially for the datasets in WSD.

Once each token wv; 1is converted into
the representation vector x;, the in-
stance V' becomes a sequence of vectors
X = [xo,%1,...,Tpn,y. .., Ton—1, T2p] that would
be fed into the one of the following deep learning
models to learn a feature representation R for V.

Typical Deep Learning Models for ED

1. CNN: This is the convolutional neural net-
works in(Nguyen and Grishman, 2015b;
Chen et al., 2015). It features convolution op-
erations that are performed over the %k consec-
utive vectors (k-grams) in X and followed by
a max-pooling layer to generate the represen-
tation vector R for V. Multiple window val-
ues k are used to enhance the coverage of the
model over the hidden k-grams in the con-
text.

2. NCNN (Nguyen and Grishman, 2016d): This
model is similar to CNN. The only differ-
ence is instead of running the convolution
over the k consecutive vectors, NCNN con-
volutes over the k arbitrarily non-consecutive
k vectors in V. This helps NCNN to explic-
itly model the non-consecutive words in the
context to improve ED.

3. BiRNN: This is the bidirectional recurrent
neural network (RNN) for event extraction
in (Nguyen et al., 2016a). The model is
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composed of two recurrent neural networks
(RNN), where one runs forward and the other
runs backward through the input sequence V.
The hidden vectors produced by the two net-
works are then concatenated at each position
in the context. The vector at the position of n
for the word of interest is used as the repre-
sentation vector R for V. Due to the property
of RNN, R encodes the information over the
whole input V' with a greater focus on v,,.

4. CNN+BiRNN: In this model (Feng et al.,
2016), X is passed through both a CNN and
a BiRNN whose results are concatenated to
produce the hidden representation R for ED.
The expectation is to take advantage of the
modeling abilities from both the CNN and
BiRNN architectures for ED.

In practice, the representation vector R (ob-
tained from one of the deep learning models
above) is also concatenated with the word embed-
dings of the tokens surrounding the token of inter-
est w, to improve its expressiveness (Chen et al.,
2015; Nguyen and Grishman, 2016d). We would
use this extended version when we refer to R in
the following.

In the final step, the representation vector R is
fed into a feed-forward neural network followed
by a softmax layer to perform predictions for ED
and WSD.

For convenience, we denote the whole process
that a DL model M is used to compute the repre-
sentation vector R for the input sentence W with
the token index p of interest as: R = M (W, p).

2.2 Multi-task Learning Models

The previous section has described the deep learn-
ing methods that can be employed to train the
models for ED and WSD separately. This sec-
tion presents our proposed method to transfer the
knowledge from the WSD dataset to improve the
performance for ED.

A typical method for transfer learning/multi-
task learning in NLP is to alternate the training
process for the parameter-shared models of the re-
lated tasks (possibly with different datasets) (Guo
et al., 2016; Li et al., 2015; Liu et al., 2016). For
instance, in (Guo et al., 2016), the authors use the
same deep learning model to learn the feature rep-
resentations for the text inputs of two related tasks.
This is then followed by task-specific output lay-
ers to perform the corresponding tasks. Note that

the two tasks in (Guo et al., 2016) are provided
with two different datasets of different text inputs,
thereby being similar to the setting we consider
in this work. In order to learn the parameters for
this model, in each iteration, (Guo et al., 2016) se-
lect one of the tasks with some probabilities, sam-
ple a mini-batch of examples in the dataset of the
chosen task, and update the model parameters us-
ing the objective function specific to the chosen
task. Consequently, the model parameters for fea-
ture representation learning are updated at every
iteration while only the model parameters in the
output layer for the chosen task are updated at the
current iteration.

It has been demonstrated in (Guo et al., 2016)
that the alternating method (called ALT) is more
effective than pre-training the network on a related
task and fine-tuning it on the expected task. We
thereby consider ALT as the baseline for multi-
task learning in our work. However, we argue
that this baseline is not effective enough to trans-
fer the knowledge from the WSD dataset to ED
in our case. This stems from its employment of
a single DL model to induce the representations
for the text inputs in both tasks. In our case of
WSD and ED, although there are some overlap be-
tween the semantic differentiation of the two tasks,
the labels in the WSD datasets (i.e, the sense ids)
tend to be more fine-grained and exhaustive than
those in ED. For instance, for the word “fire”, there
might be 12 WSD labels for it in WordNet while
the number of possible event types for “fire” in the
ACE 2005 dataset is only 2 (i.e, “End-Position”
and “Attack”). Eventually, if a single DL model
is used to compute the representations for the text
inputs in both WSD and ED, the model would suf-
fer from a confusion to distinguish such subtlety
in the semantic differentiation.

In order to overcome this issue, we propose to
employ two versions M ™ and M of the same
DL model (with different model parameters) to
compute the feature representations for WSD and
ED respectively. We then transfer the knowledge
from M™*? to M¢? by encouraging the represen-
tations generated by the two versions M **? and
M¢? on the same text inputs to be similar. For-
mally, let (W*¢, pt,y*) be an example in the D*5?
or D° dataset (t € {wsd,ed}). Also, let RV
and R°! be the representations for (W?,pt) in-
duced by M™5% and M respectively:

Rwsd — Mde(Wt,pt), Red — MEd(Wt,pt)

4824



Such representation vectors are then followed by
a task-specific output layer F* (i.e, feed-forward
neural networks followed by a softmax layer) to
compute the probability distribution over the pos-
sible labels for (Wt p'): PYY!RY) = FYRY)
where Y'! is the label set for the t task.

If the two models M™*¢ and M were trained
separately, the objective function for the ¢ task for
the current example would be the negative log-
likelihood: C*(W*, pt, y') = —log P!(y'|R!). In
this work, instead of just optimizing this objective,
we optimize the joint function:

C'W*p',y") = —log P'(y'|R")
dr

+ Ale ; (re* — )"

where ) is a trade-off parameter and dp, is the di-
mension of the representation vectors.

The second term in the joint objective function
enforces that the feature representations learned
by M™% and M®? on the same input context
(W, pt) are close to each other (t € {wsd, ed}).
One the one hand, this representation matching
schema helps the two models to communicate to
each other so the knowledge from one model can
be passed to the other one. On the other hand, the
use of two separate models leaves a flexibility for
the models to induce the task-specific structures.

Presumably, the objective function (2.2) can si-
multaneously improve the performance for both
tasks of consideration. However, in our case of
ED and WSD, it turns out this mechanism actu-
ally worsen the performance of the WSD models
that were trained separately. We attribute this to
the fact that the semantic differentiation in ED is
more coarse-grained that that of WSD, causing the
ineffectiveness of the datasets for ED to improve
WSD performance. Eventually, we will just focus
on the ED performance in the experiments.

3 Experiments

3.1 Parameters and Datasets

We use the Semcor dataset (Miller et al., 1994) as
the dataset for WSD in this work. This dataset was
extracted from the Brown Corpus, and manually
annotated with WordNet senses. We evaluate the
models on two different datasets for ED:

1. ACE 2005: This dataset has 33 event sub-
types. We use the same data split with

the prior work (Chen et al., 2015; Nguyen
and Grishman, 2015b). In particular, 40
newswire documents are used for testing, 30
other documents are reserved for validation,
and the 529 remaining documents form the
training data.

2. TAC 2015: This dataset was released in the
Event Nugget Detection Evaluation of the
2015 Text Analysis Conference (TAC) (Mi-
tamura et al., 2015). It comes with 38 event
subtypes. We follow the data split in the of-
ficial evaluation to achieve compatible com-
parison. As TAC 2015 does not have a devel-
opment set, we use the best parameters tuned
on ACE 2005 for the experiments with TAC
2015.

We use the pre-trained word embeddings pro-
vided by (Nguyen and Grishman, 2016d). For
CNN, NCNN and CNN+BiRNN, we employ filter
sizes of {2,3,4,5} with 300 filters for each size
as in (Nguyen and Grishman, 2015b), while Gated
Recurrent Units (Cho et al., 2014) with 300 hid-
den units are applied in BiIRNN and CNN+BiRNN
(as do (Nguyen and Grishman, 2016d)). For
the other parameters, the best values suggested
by the development data include: a dropout rate
of 0.5, a feed-forward neural network with one
hidden layer of 1200 hidden units for the out-
put layers, and the penalty rate A of 0.01 for
both CNN and BiRNN, 0.6 for NCNN, and 0.7
for CNN+BiRNN in the proposed transfer learn-
ing method (called MATCHING). For simplicity,
the same hyper-parameters are used for the two
versions of the same network architecture in the
MATCHING method. We utilize Adadelta (Zeiler,
2012) with back-propagation to train the models
in this work.

3.2 Experiments

In this section, we compare the proposed MATCH-
ING method with the transfer learning baseline
ALT in (Guo et al., 2016) and the separate training
mechanism for ED (called SEPARATE) employed
in the previous work for ED (Chen et al., 2015;
Nguyen and Grishman, 2015b). Note that in the
SEPARATE method, the models are only trained
on the datasets for ED without utilizing any trans-
fer learning techniques with external datasets. We
report the performance when each of the DL meth-
ods in Section 2.1 is used as the network to learn
the feature representations for ED and WSD.
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Tables 1 and 2 present the performance (i.e,
F1 scores) of the models on the ACE 2005 and
TAC 2015 datasets respectively. The first observa-
tion is that the proposed transfer learning method
MATCHING is consistently better than the base-
line method ALT across different deep learning
models and datasets with large performance gap.
This is significantly with p < 0.05 and confirms
our hypothesis in Section 2.2 about the advantage
of the proposed MATCHING over the alternating
training method ALT for ED and WSD. In fact,
the performance of the ALT method is even worse
than the traditional SEPARATE method also over
different network architectures and datasets. Con-
sequently, training a single deep learning model on
a combination of ED and WSD data (as in ALT)
does not automatically enable the model to learn
to exploit the similar structures of the two tasks.
In contrast, it hinders the model’s ability to effec-
tively extract hidden representations for ED.

Comparing MATCHING and SEPARATE, we
see that MATCHING helps to improve SEPARATE
with respect to difference choices of the DL. mod-
els. The performance improvement is significant
for CNN and BiRNN on ACE 2005 and for all the
models on TAC 2015. Such results demonstrate
the effectiveness of the WSD dataset for ED and
the ability of the proposed method MATCHING
to promote knowledge transferring between WSD
and ED to improve ED performance.

Regarding the best reported performance, our
best performance on ACE (i.e, 71.2% with CNN)
is comparable with the recent state-of-the-art per-
formance (i.e, Table 1). However, we note that
such work heavily relies on the manual anno-
tation of the entity mentions in the documents.
Our current work do not employ such informa-
tion to better reflect the realistic setting. For the
TAC 2015 dataset, our best performance is 60.7%
with CNN+BiRNN although the performance of
the other models is also very close. This perfor-
mance is better than the best performance that has
been reported on the TAC 2015 (i.e, Table 2).

4 Related Work

Prior works on ED include statistical models with
manual feature engineering(Ahn, 2006; Ji and Gr-
ishman, 2008; Hong et al., 2011; Li et al., 2013;
Venugopal et al., 2014; Li et al., 2015), followed
by neural network models, such as CNNs (Nguyen
and Grishman, 2015b; Chen et al., 2015; Nguyen

Method CNN | BiRNN | NCNN | CNN+BiRNN
SEPARATE | 67.6 67.6 69.3 68.1
ALT 65.1 66.4 65.0 65.2
MATCHING | 71.2 69.0 69.6 68.3
(Nguyen and Grishman, 2016d) 71.3%

(Liu et al., 2017) 71.9*

(Liu et al., 2018) 72.4%
(Nguyen and Grishman, 2018a) 73.1%

Table 1: Performance on the ACE 2005 dataset. * indi-
cates the use of entity mention annotation.

Method CNN | BiRNN | NCNN | CNN+BiRNN
SEPARATE | 57.6 59.4 58.3 58.0
ALT 57.6 54.9 48.5 57.5
MATCHING | 60.0 60.4 60.0 60.7
TAC TOP (Mitamura et al., 2015) 58.4*
(Nguyen and Grishman, 2018a) 58.8*

Table 2: Performance on the TAC 2015 dataset. * indi-
cates the use of entity mention annotation.

etal., 2016b,e; Chen et al., 2017), RNNs (Nguyen
et al., 2016a; Jagannatha and Yu, 2016), and
attention-based methods (Liu et al., 2017; Nguyen
and Nguyen, 2018b).

A similar trend exists in methods proposed for
WSD, with feature based methods (Miller et al.,
1994; Zhong and Ng, 2010; Taghipour and Ng,
2015) succeeded recently by deep learning meth-
ods (Yuan et al., 2016; Raganato et al., 2017).

For multi-task learning in NLP, methods have
been proposed for jointly modeling structured
prediction tasks (Hatori et al., 2012; Li et al.,
2011; Bohnet and Nivre, 2012; Henderson et al.,
2013; Lluis et al., 2013; Duong et al., 2015), and
for sequence-to-sequence problems (Dong et al.,
2015; Luong et al., 2015; Liu et al., 2016; Klerke
etal., 2016). The prior work to solve multiple NLP
tasks using an unified architecture includes (Col-
lobert and Weston, 2008; Guo et al., 2016).

5 Conclusion

We present a method that improves the perfor-
mance of deep learning models for ED by training
two different versions of the same network archi-
tecture for ED and WSD, while encouraging the
knowledge transfer between the two versions via
representation matching. The proposed method
produces better results across a variety of deep
learning models.
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