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Abstract

In Neural Machine Translation (NMT), the
decoder can capture the features of the en-
tire prediction history with neural connections
and representations. This means that partial
hypotheses with different prefixes will be re-
garded differently no matter how similar they
are. However, this might be inefficient since
some partial hypotheses can contain only local
differences that will not influence future pre-
dictions. In this work, we introduce recom-
bination in NMT decoding based on the con-
cept of the “equivalence” of partial hypothe-
ses. Heuristically, we use a simple n-gram
suffix based equivalence function and adapt it
into beam search decoding. Through exper-
iments on large-scale Chinese-to-English and
English-to-Germen translation tasks, we show
that the proposed method can obtain similar
translation quality with a smaller beam size,
making NMT decoding more efficient.

1 Introduction

Recently, end-to-end Neural Machine Translation
(NMT) models (Sutskever et al., 2014; Bahdanau
et al., 2015) have achieved notable success. A
remarkable characteristic of NMT is that the de-
coder, which is typically implemented using Re-
current Neural Network (RNN), can capture the
features of the entire decoding history. This model
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Table 1: Example of similar partial hypotheses in beam
search. The hidden layers of the partial hypotheses ending
with “cities” correspond to the nodes [boxled in Figure 1 (only
three hypotheses are listed for brevity). The negative log
probabilities calculated by the model for the words predicted
after “cities” are given in parentheses.
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Figure 1: t-SNE visualization (Maaten and Hinton, 2008) of
the recurrent hidden layer vectors for partial hypotheses for
the example in Table 1. Reference and prediction hypothe-
ses are presented as red and blue nodes, respectively. The
nodes inside the represent the hidden features of partial
hypotheses ending with “cities”.

does not depend on any independence assump-
tions and treats sequences with different prefixes
as totally different hypotheses. However, many of
the NMT output sequences are quite similar and
they typically contain only local differences that
do not influence future decoding significantly.
Table 1 and Figure 1 present an example of such
pattern of local differences in NMT decoding. As
shown in Table 1, the three partial hypotheses that
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Algorithm 1 Merging for Beam Search.

Require: list of sorted candidates C'; beam size k;
equivalence function Eq.
Ensure: list of candidates surviving in the beam: C’.
1. ¢'=1[]
2: # Scan according to the sorted order.
3: forcin C:
4 merge_flag = False
5 # Check previous surviving states for merging.
6: for sin C':
7 # Check with candidate merger states.
8 for s’ in sequence(s):
9 if Eq(c, s') and score(c)<score(s’):

10: merge_flag = True
11: # Pruning by the merger.
12: if not merge_flag:

13: C'.append(c)

14: # Pruning by the beam size.
15: if len(C") >= k:

16: break

17: return C’

end with “cities” share similar patterns. Firstly, as
shown in Figure 1, their hidden layer features are
close in the latent space. Moreover, for future pre-
dictions, the model predicts identical sequences
and gives similar scores for them. Although go-
ing through different paths, these partial hypothe-
ses appear to be similar or likely equivalent.

Intuitively, for efficiency, we do not need to ex-
pand all of these partial hypotheses (states) since
they have similar future predictions. In fact, this
corresponds to the idea of hypothesis recombi-
nation (also known as state merging, which will
be used interchangeably) from traditional Phrase-
Based Statistical Machine Translation (PBSMT)
(Koehn et al., 2003). Given a method to find
mergeable states, we can employ recombination in
NMT decoding as well.

In this paper, we adopt the mechanism of
recombination in NMT decoding based on the
definition of “equivalence” of partial hypothe-
ses. Heuristically, we try a simple n-gram suf-
fix based equivalence function and apply it to
beam search without adding any neural computa-
tion cost. Through experiments on two large-scale
translation tasks, we show that it can help to make
the decoding more efficient.

Most recent NMT studies have focused on
model improvement (Luong et al., 2015; Tu et al.,
2016b; Gehring et al., 2017; Vaswani et al., 2017),
and only a few have studied the search problem di-
rectly. For example, Khayrallah et al. (2017) and
Stahlberg et al. (2016) explored searching on lat-
tices generated by traditional Statistical Machine
Translation (SMT). In addition, Freitag and Al-

Onaizan (2017) investigated different beam search
pruning strategies; however, they primarily fo-
cused on pruning candidates locally. (Niehues
et al,, 2017) analyzed the effects of modeling
and searching, but focused on re-ranking analy-
sis. Rather than considering candidates from other
model’s k-best lists, we focus on the own explo-
ration space of a single NMT model and provide a
method for more efficient searching.

2 Method

For state merging, “equivalence” should be de-
fined from the aspect of future predictions: states
with the same predictions in the future decoding
process can be regarded as equivalent. We use an
equivalence function Eq(s1, s2) to denote that the
two states s1 and so can be regarded as equivalent.
With the concept of equivalence, we can build
the method of recombination over it. There are
mainly two problems to solve:
1. How to merge states given function Fq? (§2.1)
2. How to obtain this equivalence function? (§2.2)

2.1 Search with Merging

To adopt an equivalence function Eq(si,s2) to
merge states in a search process, we need to spec-
ify the logic of the merging mechanism. Here,
without loss of generality, we specifically focus on
the typical beam search.

We adopt merging in NMT beam search with
a simple method: retaining the word-level search
process and adding a state merger when pruning
the beam at each time step. Algorithm 1 shows the
proposed merging-enhanced pruning method.

Ordinary beam search only prunes candidates
based on beam size (Lines 15-16), while the pro-
posed method adds a merger to prune extra equiv-
alent states (Lines 6-10). To manage the merging
process, candidate list C' are ordered' by model
score and considered in turn. When checking
equivalence for one candidate state c, we con-
sider all current-step surviving states and their
previous-step antecedences. We include previous-
step states, because equivalent states may have dif-
ferent sequence lengths and thus not be in the same
beam-search step. In Line 8, we define “sequence”
as a function of obtaining the possible states that

'In plain beam search, the candidates may not need to be
sorted. We use a local selector to make the sorting efficient:
a local k-best selector is first applied on each previous-step
candidate states, making the size of the candidate list at most
k * k rather than k  |V'|, where |V/| is the vocabulary size.
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can merge the current candidate c. If a candidate
state c is not merged with any higher-ranked state,
it is added to the surviving list C’ (Line 13) and
can possibly merge the lower-ranked ones later.

When deciding whether to merge, we also con-
sider a criterion on model scores: we only merge
state ¢ when its score is lower than s’. Since we
also consider previous-step states with different
sequence lengths, a length reward )\ is added for
this comparison of partial hypotheses: score(s) =
> yes A +1ogp(y). We also attempted length nor-
malization, but found it performed slightly worse.

The merged partial hypotheses can be stored,
and by assuming that their future predictions will
be the same as their mergers, a lattice-like trans-
lation graph can be obtained. We can further ex-
tract k-best list from this structure using another
beam-search on the lattice (also with length re-
ward when comparing partial hypotheses). Note
that this beam search process can be fast, since we
reuse the model scores from previous search and
no extra neural computations will be included.

2.2 Equivalence Function

Finding an exact equivalence function for NMT is
difficult, because future predictions relies on the
features from the entire previous sequence and any
different sequences are not the same according to
the NMT model. Here, we consider a n-gram suf-
fix based heuristic approximation for this problem.

We adopt an approximate equivalence function:

Eq'(s1,82) = si.suffiz(n) = so.suf fiz(n)
A |s1.length — so.length| < r

Here, suf fiz(n) represents the n-gram suffix of
the sequence of a state, and 7 is the threshold for
the length different of the two states.

This definition of equivalence only considers a
subset of state features, which are inspired by PB-
SMT. In PBSMT, different sequences could lead
to states with identical features based on n-gram
suffix, and these states are exactly equivalent. Al-
though this is not the case for NMT, the subset
may encodes important and relevant features.

Although this function is simple and brings ex-
tra approximation, it has the merit of efficiency.
In Algorithm 1, we can store the n-gram features
of the surviving states in a hash-map and replace
the for-loop checking (Line 6-10) with hashing,
making the extra time-complexity O(1) for each
state. During experiments, we found the extra cost

brought by feature matching is far less than the
cost of original neural computation.

3 Experiments and Analysis

The proposed method was evaluated on two trans-
lation tasks: NIST Chinese-English (Zh-En) and
WMT English-German (En-De). For Zh-En, the
training set comprised 1.4M sentences pairs from
LDC corpora. NIST 02 was selected as the devel-
opment set and NIST 03 to 06 were used for test-
ing. For En-De, 4.5M WMT training data were
utilized, the concatenation of newstest 2012 and
2013 was adopted as the development set, and
newstest 2014 to 2016 were adopted as the test set.

We implemented®> an attentional RNN-based
NMT model and its decoder in Python with the
DyNet toolkit (Neubig et al., 2017). All the ex-
periments were carried out on one P100 GPU. For
Zh-En, we set the vocabulary size of both sides to
30K, and for En-De, we adopted SOK BPE opera-
tions (Sennrich et al., 2016). The evaluation met-
ric was tokenized BLEU (Papineni et al., 2002)
calculatedby multi-bleu.perl. Detailed set-
tings can be found in the supplementary material.

We added a local threshold pruner to exclude
unlikely words whose probabilities were less than
10% of the highest and adopted length normaliza-
tion for final hypotheses ranking. For comparing
partial hypotheses, the length reward A was set to
1.0 and 0.4 for Zh-En and En-De, respectively. For
the equivalence function, we utilized a suffix of 4-
gram and a length difference threshold r of 2.

These hyper-parameters were set by prelim-
inary experiments. For the length difference
threshold r, we found that relatively small r like
1 or 2 was better than larger ones, which is rea-
sonable since if the merged hypotheses differs too
much in length, there are higher chances that they
covered different information. For n-gram suffix,
we found smaller n-grams made more bad merges
and 4-gram is a reasonably good choice, slightly
larger ones gave slightly worse results and also
less chances of recombination.

3.1 Results

Figure 2 show the results of various beam sizes on
the concatenation of all test sets. Separate results
are given in the supplementary material.

As shown by the speed curves, merging adds
little extra cost (less than 10%) to decoding at

*https://github.com/zzsfornlp/znmt-merge
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Figure 2: Translation quality and speed of Zh-En and En-De test sets (5453 sentences by concatenating NIST 03 to 06 and
8171 sentences by concatenating newstest 2014 to 2016, respectively).

the same beam size. Moreover, since bringing no
extra neural computations, the proposed merging
mechanism is transparent to neural architectures
and easy to adopt. In our experiments, we used
batched decoding on GPU and merging did not in-
fluence the efficiency of this implementation.

For translation quality, the results indicate that
the proposed methods can yield improvements at
various beam sizes for Zh-En and small beam sizes
for En-De. Moreover, in some way, merging can
make the search more efficient. For example,
in both datasets, merge-enhanced searchers with
beam-size 6 can obtain comparable or better re-
sults compared to those of ordinary searchers with
beam-size 12 (on BLEU, 37.17 vs. 37.11 for Zh-
En, 24.64 vs. 24.67 for En-De). As for decoding
speed, the one of beam-size 6 can be more than
twice of the one of beam-size 12 (over 200 to-
kens/second vs. around 100 tokens/second). That
is to say, with merging, we can achieve similar
translation quality with a smaller beam size, which
leads to higher decoding speed.

The results show that for large beam sizes, ex-
panding explored search space by increasing beam
size or adopting merging helps more in Zh-En
than En-De. A possible explanation for this is
that in NIST Zh-En dataset, each source sentences
has four references for evaluation, which encour-
ages the diversity brought by expanding reached
search space. In Table 2, we compare the BLEU
scores with multiple and single references on sev-
eral beam sizes, and the single-reference results
does not always increase along the beam size like
the multiple ones. The En-De dataset also has only
one reference and is similar to this case.

The results also show that expanding explored
search space does not always bring improvements.
This concerns more on modeling than searching
and corresponds with previous findings on the re-
lations between NMT searching and modeling (Tu
et al., 2016a; Niehues et al., 2017; Li et al., 2018).

Ref \ Beam 10 16 30 50
Multi-Ref ~ 37.07 37.17 37.19 3732
Single-Ref 1823 1829 18.23 18.26

Table 2: Comparisons of multi- and single-reference BLEU
scores of NIST 03-06 with “w/o merging”. “Multi-Ref” uses
all four references, and “Single-Ref”” only uses the second
one, whose evaluations disagree most with “Multi-ref”.

The potential of the proposed method might be
better realized with improved NMT models.

3.2 Analysis

We further analyzed the merge-enhanced search
process. For these analyses, we mainly checked
decoding with a beam size of 10 on Zh-En dataset.

Frequency of Merging First, we investigated
how often recombination occurs and how much it
expands the explored output space. For a beam
size of 10, with influences from the local pruner
and the proposed merger, the average expanding
size is 7.60 for each step, and the average num-
ber of merger-pruned partial hypotheses is 0.61
per step (22.5 per sentence). This indicates that
a partial hypothesis is recombined in every two
steps. The output translation graph can hold much
more output space than the original k-best list, and
we found that on average the possible output se-
quences were averagely 200 times the beam size.
Figure 3 shows an example of the output transla-
tion graph.

Merging and Similarity of Hidden States It is
nearly impossible to explore such a large space
with an exact NMT model; thus, we depend on the
assumption that merged hypotheses have nearly
the same features. To evaluate this assumption,
we calculated the similarity between the hidden
layers of the merged partial hypotheses. Among
the 122772 merge points in 5453 Zh-En sentences,
the average cosine similarity (in range [—1, 1])
was 0.986, which indicates that the recombina-
tions are reasonable. In addition, we tried adding
simple cosine similarity constraints (using another
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Figure 3: An example output translation graph. The red nodes and dashed arrows indicate merge points.

Beam w/ merge w/o merge

1 1.6% / 90.6% 1.6% / 90.6%
4 8.0% /51.3% 5.2% I 54.8%
10 29.1% 1 15.7% -

16 44.5% 1 11.8% 28.2% 1 5.6%
30 64.6% / 20.3% 56.4% / 20.2%

Table 3: Comparisons of prediction model scores between
different searching settings and a basic setting, which is
“Beam=10, w/o merge”. The pattern “a% / b%” means that
compared with the basic setting, a% of the sentences get
higher model scores and 6% get lower ones. For the rest (1-
a%-b%), they give identical predictions.

threshold) in the equivalence function, however,
we found that this does not bring obvious addi-
tional benefits.

Effects of Merging We further conducted com-
parisons between the predictions of ordinary and
merge-enhanced beam search. First, we investi-
gated the model scores of their predictions. As
shown in Table 3, we selected “Beam=10, no
merge” as the basic setting, and compared the pre-
dictions of other settings with it. Overall, the
merge-enhanced searcher can obtain higher model
score predictions, which suggests its stronger
search ability, because the goal of searching is to
return hypotheses with higher model scores.

Moreover, we tried a re-ranking experiment on
100-best lists with 4-checkpoint-model-ensemble,
and only found similar slight improvements for
plain and merge-enhanced search. Nevertheless,
since merge-enhanced search can obtain a output
translation graph, we expect that the graph can
contain more diverse hypotheses.

To verify this, we compared the oracle BLEU
scores within the reached space. To extract or-

acle hypotheses from the translation graphs, we
simply adopted approximate Partial BLEU Ora-
cle (Dreyer et al., 2007; Sokolov et al., 2012).
Merge-based searcher could obtain an oracle score
of 47.83, while ordinary beam searcher could only
get 42.57. Only by increasing the beam size up
to 100 could the ordinary beam searcher achieve a
better result of 48.74. This indicates that recombi-
nation helps to touch more output space.

4 Conclusion and Discussion

In this work, 1) we show that decoding with
heuristic recombination can obtain similar trans-
lation qualities with smaller beam sizes, thus in-
creasing efficiency, and, 2) we empirically explore
the decoding process and analyze the influences of
recombination from various aspects.

Although the improvements brought by recom-
bination depend on careful refinements of the
model, this concerns more on modeling, since the
goal of decoding is to find hypotheses with higher
model scores. The potential of recombination may
be further realized by improving how the output
sequences are modeled. Another interesting topic
will be the combination with SMT or extra larger
language models (Wang et al., 2013, 2014).

For the equivalence function, there can also be
extensions. For example, a model-based equiva-
lence function can be trained by using the neural
features (hidden layers in RNN). However, model-
based equivalence functions may bring extra neu-
ral computation cost and be harder to efficiently
implemented. In this work, we focus on the merg-
ing mechanism and leave the study of equivalence
function for future work.
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