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Abstract

Human language has evolved towards newer
forms of communication such as social me-
dia, where emojis (i.e., ideograms bearing a
visual meaning) play a key role. While there
is an increasing body of work aimed at the
computational modeling of emoji semantics,
there is currently little understanding about
what makes a computational model represent
or predict a given emoji in a certain way. In
this paper we propose a label-wise attention
mechanism with which we attempt to better
understand the nuances underlying emoji pre-
diction. In addition to advantages in terms
of interpretability, we show that our proposed
architecture improves over standard baselines
in emoji prediction, and does particularly well
when predicting infrequent emojis.

1 Introduction

Communication in social media differs from more
standard linguistic interactions across a wide
range of dimensions. Immediacy, short text
length, the use of pseudowords like #hashtags or
@mentions, and even metadata such as user in-
formation or geolocalization are essential compo-
nents of social media messages. In addition, the
use of emojis, small ideograms depicting objects,
people and scenes (Cappallo et al., 2015), are be-
coming increasingly important for fully modeling
the underlying semantics of a social media mes-
sage, be it a product review, a tweet or an Insta-
gram post. Emojis are the evolution of character-
based emoticons (Pavalanathan and Eisenstein,
2015), and are extensively used, not only as senti-
ment carriers or boosters, but more importantly, to
express ideas about a myriad of topics, e.g., mood
(@), food (=), sports () or scenery (&).

Emoji modeling and prediction is, therefore,
an important problem towards the end goal of
properly capturing the intended meaning of a so-

cial media message. In fact, emoji prediction,
i.e., given a (usually short) message, predict its
most likely associated emoji(s), may help to im-
prove different NLP tasks (Novak et al., 2015),
such as information retrieval, generation of emoji-
enriched social media content or suggestion of
emojis when writing text messages or sharing pic-
tures online. It has furthermore proven to be useful
for sentiment analysis, emotion recognition and
irony detection (Felbo et al., 2017). The prob-
lem of emoji prediction, albeit recent, has already
seen important developments. For example, Bar-
bieri et al. (2017) describe an LSTM model which
outperforms a logistic regression baseline based
on word vector averaging, and even human judge-
ment in some scenarios.

The above contributions, in addition to emoji
similarity datasets (Barbieri et al., 2016; Wijer-
atne et al., 2017) or emoji sentiment lexicons (No-
vak et al., 2015; Wijeratne et al., 2016; Kimura
and Katsurai, 2017; Rodrigues et al., 2018), have
paved the way for better understanding the seman-
tics of emojis. However, our understanding of
what exactly the neural models for emoji predic-
tion are capturing is currently very limited. What
is a model prioritizing when associating a message
with, for example, positive (¢), negative (%) or
patriotic (%) intents? A natural way of assessing
this would be to implement an attention mecha-
nism over the hidden states of LSTM layers. At-
tentive architectures in NLP, in fact, have recently
received substantial interest, mostly for sequence-
to-sequence models (which are useful for machine
translation, summarization or language modeling),
and a myriad of modifications have been proposed,
including additive (Bahdanau et al., 2015), multi-
plicative (Luong et al., 2015) or self (Lin et al.,
2017) attention mechanismes.

However, standard attention mechanisms only
tell us which text fragments are considered impor-
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Figure 1: A classic attention network (top), and our attentive label-wise network (bottom), with a specific

attention module for each label.

tant for the overall prediction distribution. While
emoji prediction has predominantly been treated
as a multi-class classification problem in the lit-
erature, it would be more informative to analyze
which text fragments are considered important for
each individual emoji. With this motivation in
mind, in this paper we put forward a label-wise
mechanism that operates over each label during
training. The resulting architecture intuitively be-
haves like a batch of binary mini-classifiers, which
make decisions over one single emoji at a time, but
without the computational burden and risk of over-
fitting associated with learning separate LSTM-
based classifiers for each emoji.

Our contribution in this paper is twofold. First,
we use the proposed label-wise mechanism to an-
alyze the behavior of neural emoji classifiers, ex-
ploiting the attention weights to uncover and in-
terpret emoji usages. Second, we experimentally
compare the effect of the label-wise mechanism
on the performance of an emoji classifier. We ob-
served a performance improvement over compet-
itive baselines such as FastText (FT) (Joulin
et al., 2017) and Deepmo ji (Felbo et al., 2017),
which is most noticeable in the case of infrequent
emojis. This suggests that an attentive mecha-
nism can be leveraged to make neural architec-
tures more sensitive to instances of underrepre-
sented classes.

2 Methodology

Our base architecture is the Deepmoji model
(Felbo et al., 2017), which is based on two stacked
word-based bi-directional LSTM recurrent neural

networks with skip connections between the first
and the second LSTM. The model also includes an
attention module to increase its sensitivity to indi-
vidual words during prediction. In general, atten-
tion mechanisms allow the model to focus on spe-
cific words of the input (Yang et al., 2016), instead
of having to memorize all the important features in
a fixed-length vector. The main architectural dif-
ference with respect to the typical attention is il-
lustrated in Figure 1.

In Felbo et al. (2017), attention is computed as
follows:

zi = wahi + by
e~

Ny = —

N 2

Zj:le ’

N
s = E Oéjhj
j=1

Here h; € R? is the hidden representation of the
LSTM corresponding to the i word, with N the
total number of words in the sentence. The weight
vector w, € R? and bias term b, € R map this
hidden representation to a value that reflects the
importance of this state for the considered clas-
sification problem. The values 21, ..., z,, are then
normalized using a softmax function, yielding the
attention weights «;. The sentence representation
s is defined as a weighted average of the vectors
h;. The final prediction distribution is then defined
as follows:

6, = wyris + be
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where wy; € R? and b ¢, define a label-specific
linear transformation, with 3; reflecting our confi-
dence in the [ label and L is the total number of
labels. The confidence scores [; are then normal-
ized to probabilities using another softmax oper-
ation. However, while the above design has con-
tributed to better emoji prediction, in our case we
are interested in understanding the contribution of
the words of a sentence for each label (i.e., emoji),
and not in the whole distribution of the target la-
bels. To this end, we propose a label-wise atten-
tion mechanism. Specifically, we apply the same
type of attention, but repeating it |L| (number of
labels) times, where each attention module is re-
served for a specific label {:
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3 Evaluation

This section describes the main experiment w.r.t
the performance of our proposed attention mech-
anism, in comparison with existing emoji predic-
tion systems. We use the data made available in
the context of the SemEval 2018 Shared Task on
Emoji Prediction (Barbieri et al., 2018). Given a
tweet, the task consists of predicting an associated
emoji from a predefined set of 20 emoji labels.
We evaluate our model on the English split of the
official task dataset. We also show results from
additional experiments in which the label space
ranged from 20 to 200 emojis. These extended
experiments are performed on a corpus of around
100M tweets geolocalized in the United States and
posted between October 2015 and May 2018.

Models. In order to put our proposed label-
wise attention mechanism in context, we com-
pare its performance with a set of baselines: (1)
FastText (Joulin et al., 2017) (FT), which was
the official baseline in the SemEval task; (2) 2

Lab Syst Fl1 ARl A@5 CE
FastText [30.97 42.57 7245 4.56
20 2-BiLSTM |[33.52 45.76 75.54 3.88
2-BiLSTM, |34.11 46.11 75.68 3.86
2-BiLSTM; [33.51 4594 76.02 3.82
FastText |18.04 22.33 48.13 14.27
50 2-BiLSTM [19.07 25.35 53.38 9.37
2-BiLSTM, | 19.83 25.52 53.51 9.35
2-BiLSTM; [20.08 25.64 53.77 9.26
FastText |16.25 20.29 42.65 26.04
100 2-BiLSTM |17.44 23.01 47.46 15.24
2-BiLSTM, | 17.56 22.77 46.93 15.51
2-BiLSTM; (17.92 22.80 47.41 15.17
FastText |13.31 18.80 38.99 51.06
200 2-BiLSTM [16.16 21.05 42.64 24.68
2-BiLSTM, | 16.30 21.13 42.50 24.60
2-BiLSTM; |16.91 21.39 43.35 23.73

Table 1: Experimental results of the two baselines,
as well as single and label-wise attention modifi-
cations to the “vanilla” 2-BiLSTM model.

stacked Bi-LSTMs (2-BiLSTMs) without atten-
tion; and (3) 2 stacked Bi-LSTMs with standard
attention (2-BiLSTMs,) (Felbo et al., 2017). Fi-
nally, we denote as 2-BiLSTMs; our proposed
label-wise attentive Bi-LSTM architecture.

Results. Table 1 shows the results of our model
and the baselines in the emoji prediction task for
the different evaluation splits. The evaluation met-
rics used are: F1, Accuracy @k (AQk, where k €
{1,5}), and Coverage Error (CE!) (Tsoumakas
et al., 2009). We note that the latter metric is not
normally used in emoji prediction settings. How-
ever, with many emojis being “near synonyms” (in
the sense of being often used almost interchange-
ably), it seems natural to evaluate the performance
of an emoji prediction system in terms of how far
we would need to go through the predicted emo-
jis to recover the true label. The results show that
our proposed 2-BiLSTMs; method outperforms
all baselines for F1 in three out of four settings,
and for CE in all of them. In the following section
we shed light on the reasons behind this perfor-
mance, and we try to understand how these pre-
dictions were made.

!CE is computed as the average number of labels that need
to be in the predictions for all true labels to be predicted.
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Figure 2: Difference in rank distributions. The

r-axis represents emoji labels, ranked from most
to least frequent. Lower scores indicate a higher
average rank predicted by our proposed label-wise
attention mechanism.

4 Analysis

By inspecting the predictions of our model, we
found that the label-wise attention mechanism
tends to be less heavily biased towards the most
frequent emojis. This is reflected in the lower
coverage error results in all settings, and becomes
more noticeable as the number of labels grows.
We verified this by computing the average differ-
ence between ranked predictions of the two atten-
tive models in the 200-label setting (Figure 2). We
can observe a sudden switch at more or less the
median emoji, after which the label-wise attention
model becomes increasingly accurate (relative to
the standard attention model). This can be ex-
plained by the fact that infrequent emojis tend to
be more situational (used in specific contexts and
leaving less room for ambiguity or interchange-
ability), which the label-wise attention mechanism
can take advantage of, as it explicitly links emojis
with highly informative words. Let us illustrate
this claim with a case in which the label-wise at-
tention model predicts the correct emoji, unlike its
single-attention counterpart:

a friendship is built over time , but sister-
hood is given automatically. Gold:

For the above example?, the predictions of the sin-
gle attention model were all linked to the general
meaning of the message, that is love and friend-
ship, leading it to predict associated emojis (¥,
¢ and ©), failing to capture the most relevant bit
of information. On the other hand, our proposed
model “picks on” the word sisterhood, and with

2The highlights show the «; attention weights of i

Single Att. Pred: Ju ¢.709, © 0.126» € 0.017
praying we have a snow day tomorrow
Multi Att. Pred: < g 510,  0.153, 0.027
praying we have a snow day tomorrow (<)
praying we have a snow day tomorrow ()
praying we have a snow day tomorrow (. )

Figure 3: Attention weights o and ¢ of single and
label-wise attentive models. Gold: .

the added context of the surrounding words, ranks
the gold label® in 4th position, which would be a
true positive as per A@S5.

Let us explore what we argue are interesting
cases of emoji usage (ranging from highly explicit
to figurative or situtational intent). Figure 3 shows
how the word (praying) and emojis such as Zu and

. are strongly correlated. In addition, the bond
between the word snow and the ~ emoji is also
indisputable. However, a perhaps more surpris-
ing example is displayed in Figure 4, which is a
negative example. Here, the ¥ emoji was pre-
dicted with rank 1, and we see it being strongly
associated with the ordinal second, suggesting that
the model assumed this was some kind of “ticked
enumeration” of completed tasks, which is indeed
regular practice in Twitter. Finally, we found it re-
markable that the ambiguous nature of the word
boarding is also reflected in two different emojis
being predicted with high probability (- and %),
each of them showcasing one of the word’s senses.

As an additional exploratory analysis, we com-
puted statistics on those words with the highest av-
erage attention weights associated with one single
emoji. One interesting example is the # emoji,
which shows two clear usage patterns: one lit-
eral (a tree) and one figurative (christmas and hol-
idays). Finally, as a final (and perhaps thought-
provoking) finding, the highest attention weights
associated to the @ emoji were given to the words
game, boys and football, in that order. In other
words, the model relies more on the word boys
than on the actual description of the emoji. This
is in line with a previous study that showed how
the current usage of emojis in Twitter is in some
cases associated with gender stereotypes (Barbieri
and Camacho-Collados, 2018).

3Which is among the 10% most infrequent emojis in the
dataset.
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Single Att. Pred:

0.565> < 0.260, @ 0.019

second day snowboarding ever and i decided to try nightboarding ... what an experience !

Multi Att. Pred:

0.156>

~7
0.131> % 0.108

second day snowboarding ever and i decided to try night boarding ... what an experience ! (V)

second day snowboarding ever and i decided to try night boarding ... what an experience ! (*+)

second day snowboarding ever and i decided to try night boarding ... what an experience ! (+%)

Figure 4: Attention weights o and o of single and label-wise attentive models. Gold: &.

5 Conclusion

In this paper we have presented a neural archi-
tecture for emoji prediction based on a label-wise
attention mechanism, which, in addition to im-
proving performance, provides a degree of inter-
pretability about how different features are used
for predictions, a topic of increasing interest in
NLP (Linzen et al., 2016; Palangi et al., 2017). As
we experimented with sets of emoji labels of dif-
ferent sizes, our proposed label-wise attention ar-
chitecture proved especially well-suited for emojis
which were infrequent in the training data, making
the system less biased towards the most frequent.
We see this as a first step to improve the robustness
of recurrent neural networks in datasets with un-
balanced distributions, as they were shown not to
perform better than well-tuned SVMs on the emoji
predicion task (Coltekin and Rama, 2018).

As for future work, we plan to apply our label-
wise attention mechanism to understand other in-
teresting linguistic properties of human-generated
text in social media, and other multi-class or multi-
label classification problems.

Finally, code to reproduce our experiments
and additional examples of label-wise atten-
tion weights from input tweets can be down-
loaded at https://fvancesco.github.
io/label _wise_attention/.
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