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Abstract

Self-attention networks have proven to be of
profound value for its strength of capturing
global dependencies. In this work, we propose
to model localness for self-attention networks,
which enhances the ability of capturing use-
ful local context. We cast localness modeling
as a learnable Gaussian bias, which indicates
the central and scope of the local region to be
paid more attention. The bias is then incorpo-
rated into the original attention distribution to
form a revised distribution. To maintain the
strength of capturing long distance dependen-
cies and enhance the ability of capturing short-
range dependencies, we only apply localness
modeling to lower layers of self-attention net-
works. Quantitative and qualitative analyses
on Chinese⇒English and English⇒German
translation tasks demonstrate the effectiveness
and universality of the proposed approach.

1 Introduction

Recently, a new simple architecture, the TRANS-
FORMER (Vaswani et al., 2017), that based solely
on attention mechanisms has attracted increas-
ing attention in machine translation community.
Instead of using complex recurrent or convolu-
tional neural networks, TRANSFORMER imple-
ments encoder and decoder as self-attention net-
works to draw global dependencies between input
and output. By further parallel performing (multi-
head) and stacking (multi-layer) attentive func-
tions, TRANSFORMER has achieved state-of-the-
art performance on various translation tasks (Shaw
et al., 2018; Hassan et al., 2018).

One strong point of self-attention networks is
the strength of capturing long-range dependencies
by explicitly attending to all the signals. In this

∗ Zhaopeng Tu and Derek F. Wong are the co-
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way, a representation is allowed to build a direct
relation with another long-distance representation.
Accordingly, it can serve as the role of RNN and
CNN to capture both the short- and long-range re-
lations among the representations.

Self-attention networks fully take into account
all the signals with a weighted averaging opera-
tion. We argue that such operation disperses the
distribution of attention, which results in over-
looking the relation of neighboring signals. Re-
cent works have shown that self-attention net-
works benefit from locality modeling. For ex-
ample, Shaw et al. (2018) introduced relative
position encoding to consider the relative dis-
tances between sequence elements, which pro-
duces substantial improvements on the translation
task. Sperber et al. (2018) modeled the local in-
formation by restricting self-attention model to
neighboring representations, which boosts perfor-
mance on long-sequence acoustic modeling. Al-
though not for self-attention, Luong et al. (2015)
proposed a local attention model for translation
task, which looks at only a subset of source words
at a time. Inspired by these studies, we propose
more flexible strategies for modeling localness for
self-attention networks in this work.

Specifically, we cast the localness modeling as
a learnable Gaussian bias, in which a central po-
sition (i.e. mean of the position) and a dynamic
window (i.e. deviation of the distribution) are pre-
dicted with the intermediate representations in the
self-attention network. Intuitively, the central po-
sition and the window respectively denote the cen-
ter and the scope of the locality to be paid more
attention. The learned Gaussian bias is then in-
corporated into the original attention distribution
to form a revised distribution, which considers the
expected local context.

Some researchers may doubt that self-attention
networks augmented localness modeling focuses
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leanings toward local context, which weakens its
strength of capturing long-range dependencies.
Our extensive analyses can dispel such doubt by
showing that the potential problem is compen-
sated by multi-layer multi-head self-attention net-
works. First, multi-head attention attends to lo-
cal regions centered at different positions, which
can constitute the complete information of an in-
put sequence. Second, we found that self-attention
models tend to capture short-range dependencies
among neighboring words in lower layers, while
capture long-range dependencies beyond phrase
boundaries in higher layers. Accordingly, we only
apply localness modeling to lower layers.

We conducted experiments on two widely-
used WMT14 English⇒German and WMT17
Chinese⇒English translation tasks. The proposed
approach consistently improves translation perfor-
mance over the strong TRANSFORMER baseline,
demonstrating its effectiveness and universality.
In addition, our approach is complementary to the
relative position encoding (Shaw et al., 2018), and
combining them can further improve translation
performance.

2 Background

Attention model has recently been a basic module
of most deep learning models. The mechanism al-
lows to dynamically select related representations
as needed. In particular, it is very useful for gen-
eration models such as machine translation (Bah-
danau et al., 2015; Luong et al., 2015; Yang et al.,
2017) and image captioning (Xu et al., 2015).

2.1 Self-Attention Model

Recently, self-attention networks (Vaswani et al.,
2017; Shaw et al., 2018; Shen et al., 2018a) have
attracted increasing attention due to their flexibil-
ity in parallel computation and dependency mod-
eling. Self-attention networks calculate attention
weights between each pair of tokens in a single
sequence, thus can capture long-range dependency
more directly than their RNN counterpart.

Formally, given an input sequence x =
{x1, . . . , xI}, each hidden state in the l-th layer
is constructed by attending to the states in the
(l − 1)-th layer.1 Specifically, the (l − 1)-th layer
H l−1 ∈ RI×d is first transformed into the queries
Q ∈ RI×d, the keys K ∈ RI×d, and the values
V ∈ RI×d with three separate weight matrices.

1The first layer is the word embedding layer.

The l-th layer is calculated as:

H l = ATT(Q,K) V , (1)

where ATT(·) is a dot-product attention model, de-
fined as:

ATT(Q,K) = softmax(energy) (2)

energy =
QKT

√
d
, (3)

where
√
d is the scaling factor with d being the

dimensionality of layer states.

2.2 Motivation
The self-attention network models the global de-
pendencies without regard to their distances, by
directly attending to all the positions in an input
sequence (i.e. Equation 3). We argue that self-
attention can be further improved by taking into
account the local context. However, since the con-
ventional self-attention models consider all of the
words in a sequence, the weighted averaging in-
hibits the relation among the neighboring words.

From a linguistic intuition, when a word xi is
aligned to another word xj , we also expect xi to
align mainly to the neighboring words of xj , so
as to capture the phrasal patterns that contain use-
ful local context information. Take Figure 1 as an
example, if “Bush” is aligned to “held” with high
probability, we expect the self-attention model to
pay more attention to the neighboring words “a
talk”. Consequently, the model is guided to cap-
ture the phrase “held a talk”.

3 Localness Modeling

Figure 1 shows an example. We first learn a Gaus-
sian bias, which is centered around the word “talk”
(it is not necessary to be consistent with the orig-
inal attention distribution), with a window size
being 2 (in practice, it is a float number in our
model). The distribution of attention is then regu-
larized with the learned Gaussian bias to produce
the final distribution, which pays more attention to
the local context around the word “talk”.

3.1 Localness Modeling as a Gaussian Bias
Specifically, a Gaussian bias G is placed to mask
the logit similarity energy in Equation 2, namely:

ATT(Q,K) = softmax(energy + G). (4)

The first term is the original dot product self-
attention model. G ∈ RI×I is a favor alignment
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Bush held a talk with Sharon

Bush held a talk with SharonBush held a talk with Sharon
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Bush held a talk with Sharon
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D

Figure 1: Illustration of the proposed approach. In this example, window size of 2 is used (D = 2).

position matrix (I denotes the sequence length).
The element Gi,j ∈ [0,−∞) measures the tight-
ness between the word xj and the predicted central
position Pi:

Gi,j = −
(j − Pi)

2

2σi2
, (5)

where σi denotes the standard deviation which is
empirically set as σi = Di

2 , and Di is a window
size. Note that, due to the exponential operation
in softmax function, adding the logit similarity
energy with a bias ∈ [0,−∞) approximates to
multiplying the attention distribution by a weight
∈ [1, 0). The position and window size can be
calculated as:[

Pi

Di

]
= I · sigmoid(

[
pi
zi

]
). (6)

The scalar factor I is used to regulate Pi and Di

to real value numbers between 0 and the length of
input sequence. The predictions are conditioned
on two scalar pi and zi respectively.

3.2 Central Position Prediction
Since the prediction of each central position de-
pends on its corresponding query vector,2 we sim-
ply apply a feed-forward network to transform
Qi into a positional hidden state, which is then
mapped into the scalar pi by a linear projection
Up ∈ Rd, namely:

pi = Up
T tanh(WpQi), (7)

where Wp ∈ Rd×d is the model parameter.

3.3 Window Size Prediction
Several alternative strategies are proposed to se-
lect the window size. Except a non-parametric ap-
proach, the other two define parametric windows.

2For the input of feed-forward network, we also tried an
additive term to consider the weighted context Oi (Equa-
tion 1), namely: tanh(WpQi + WoOi). Our experimental
results showed that there is no progressive improvement.

Among the parametric methods, the first strategy
assigns a unified window size to all the hidden
states in a layer, so as to consider the context of
the sequence, while the second one calculates a
distinct window size for each hidden state.

Fixed-Window A simple choice is to use a pre-
defined window size D, which is a constant num-
ber throughout the whole training and testing pro-
cess. In this study, following the common practice
(Luong et al., 2015), D is set to 10.

Layer-Specific Window Furthermore, an inter-
pretable way to select the window size is to ac-
count for the context of the sequence by summa-
rizing the information from all the representations
in a layer. In this study, we assign the mean of
keys K to represent the semantic context. Thus,
the unified scalar z of a layer is defined as:

z = UT
d tanh(WdK), (8)

where Wd ∈ Rd×d and Ud ∈ Rd are learnable
parameters.

Query-Specific Window The last strategy pro-
vides a more flexible manner to differentiate the
scope by conditioning on each query. Similar to
the prediction of the central position (Equation 7),
the query-specific window can be formally ex-
pressed as:

zi = Ud
T tanh(WpQi). (9)

Here, Ud ∈ Rd is a trainable linear projection.
Note that, Equations 7 and 9 share same param-
eter Wp but use different Up and Ud. The intu-
ition behind this design is that the central position
and window size interdependently locate the local
scope, hence condition on the same hidden state.
The distinct linear projections Up and Ud are suffi-
cient in distinguishing the two scalars, resulting in
a smaller parameter size and faster computational
speed than that of the layer-specific model.
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3.4 Incorporating into TRANSFORMER

We evaluate our model on the advanced TRANS-
FORMER model (Vaswani et al., 2017), which
builds an encoder-decoder framework merely us-
ing attention networks. Both the encoder and de-
coder are composed of a stack of L = 6 layers,
each of which has two sub-layers. The first is a
multi-head self-attention layer, and the second is a
position-wise fully connected feed-forward layer.
In this section, we describe how to apply our ap-
proach to TRANSFORMER by adapting to multi-
head and multi-layer self-attention networks.

Adapting to Multi-Head Self-Attention In-
stead of performing a single attention function, the
multi-head mechanism employsM separate atten-
tion models with distinct parameters to jointly at-
tend to the information from different representa-
tion subspaces at different positions. Accordingly,
we assign a distinct Gaussian bias to each attention
head, and rewrite Equation 6 as:[

Pm
i

Dm
i

]
= I · sigmoid(

[
pmi
zmi

]
), (10)

where pmi and zmi are trained with distinct parame-
ters to predict the central position and window size
for the m-th attention head.

We argue that multi-head self-attention may
benefit more from localness modeling. Multi-head
attention captures different features by attending
to different positions, which complements the lo-
calness modeling that may potentially ignore the
global information. Experimental results in Ta-
ble 5 confirm our hypothesis by showing that lo-
calness modeling achieves more significant im-
provement when working with multi-head atten-
tion than its single-head counterpart.

Adapting to Multi-Layer Self-Attention Re-
cent work shows that different layers capture dif-
ferent types of features. Anastasopoulos and
Chiang (2018) indicated that higher-level layers
are more representative than lower-level layers,
while Peters et al. (2018) showed that higher-level
layers capture context-dependent aspects of word
meaning while lower-level layers model aspects of
syntax. One question naturally arises: is it neces-
sary to model localness for all layers?

In this work, we investigate which levels of lay-
ers benefit most from the localness modeling. In
addition, we visualize the Gaussian biases across
layers, to better understand the behaviors of differ-
ent attentive layers.

4 Experiments

4.1 Setup
To compare with the results reported by previ-
ous work (Gehring et al., 2017; Vaswani et al.,
2017; Hassan et al., 2018), we conducted exper-
iments on both Chinese⇒English (Zh⇒En) and
English⇒German (En⇒De) translation tasks. For
the Zh⇒En task, the models were trained using
all of the available parallel corpus from WMT17
dataset with maximum length limited to 50, con-
sisting of about 20.62 million sentence pairs. We
used newsdev2017 as the development set and
newstest2017 as the test set. For the En⇒De task,
we trained on the widely-used WMT14 dataset
consisting of about 4.56 million sentence pairs.
The models were validated on newstest2013 and
examined on newstest2014. The Chinese sen-
tences were segmented by the word segmentation
toolkit Jieba,3 and the English and German sen-
tences were tokenized using the scripts provided
in Moses. Then, all tokenized sentences were pro-
cessed by byte-pair encoding (BPE) to alleviate
the Out-of-Vocabulary problem (Sennrich et al.,
2016) with 32K merge operations for both lan-
guage pairs. The 4-gram NIST BLEU score (Pap-
ineni et al., 2002) is used as the evaluation metric.

We evaluated the proposed approaches on ad-
vanced TRANSFORMER model (Vaswani et al.,
2017), and implemented on top of an open-source
toolkit – THUMT4 (Zhang et al., 2017). We fol-
lowed Vaswani et al. (2017) to set the configu-
rations and reproduced their reported results on
the En⇒De task. We tested both the Base and
Big models, which differ at the layer size (512
vs. 1024) and the number of attention heads (8 vs.
16). All the models were trained on eight NVIDIA
P40 GPUs, each of which is allocated a batch of
4096 tokens. In consideration of the computation
cost, we studied the variations of the Base model
on Zh⇒En task, and evaluated the overall perfor-
mance with the Big model on both Zh⇒En and
En⇒De translation tasks.

4.2 Ablation Study
In the first series of experiments, we evaluated the
impact of different components on the Zh⇒En
validation set using the TRANSFORMER-BASE.
First, we investigated the effect of different strate-
gies to predict the localness window. Then, we

3https://github.com/fxshy/jieba
4https://github.com/thumt/THUMT

https://github.com/fxshy/jieba
https://github.com/thumt/THUMT
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Model Speed Dev 4

Baseline 1.20 22.59 -

Fixed 1.14 23.07 + 0.48
Layer-Spec. 1.07 23.13 + 0.54
Query-Spec. 1.11 23.13 + 0.54

Table 1: Evaluation of various window predic-
tion strategies for localness modeling, which is
only applied to encoder-side self-attention net-
work. “Speed” denotes training speed measured
in steps per second.

examined whether it is necessary to apply local-
ness modeling to all the layers. Finally, given that
TRANSFORMER consists of encoder and decoder
side self-attention as well as encoder-decoder at-
tention networks, we checked which types of at-
tention networks benefit most from the localness
modeling. To eliminate the influence of control
variables, we conducted the first two ablation stud-
ies on encoder-side self-attention networks only.

Window Prediction Strategies As shown in
Table 1, all the proposed window prediction
strategies consistently improve the model perfor-
mance over the baseline, validating the impor-
tance of localness modeling in self-attention net-
works. Among them, layer-specific and query-
specific window outperform5 their fixed counter-
part, showing the benefit that flexible mechanism
is able to capture varying local context accord-
ing to layer and query information. Moreover,
the flexible strategy does not reply on the hand-
crafted parameters (e.g. the pre-defined window
size), which makes model robustly applicable to
other language pairs and NLP tasks. Considering
the training speed, we use the query-specific pre-
diction mechanism as the default setting in subse-
quent experiments.

Layers to be Applied In this experiment, we
investigated the question of which layers should
be applied with the localness modeling. Recent
works show that different layers tend to capture
different features, thus there may have different
needs for the local context. We applied localness

5Although the differences are not always significant, the
flexible strategy consistently outperforms its fixed counter-
part across language pairs. For example, the query-specific
strategy improves performance over the fixed-window model
by +0.07 and +0.23 BLEU points on Zh-En and En-De vali-
dation sets, respectively.

# Layers Speed Dev 4
1 [1-6] 1.11 23.13 -
2 [1-1] 1.18 23.20 + 0.07
3 [1-2] 1.17 23.23 + 0.10
4 [1-3] 1.15 23.29 + 0.16
5 [1-4] 1.14 23.26 + 0.13
6 [4-6] 1.15 23.22 + 0.09

Table 2: Evaluation of different layers in the en-
coder, which are implemented as self-attention
with query-specific localness modeling.

Enc Dec Enc-Dec Speed Dev
X × × 1.15 23.29
X X × 1.10 23.27
X × X 1.08 23.33
X X X 1.02 23.19

Table 3: Effect of localness modeling on dif-
ferent types of attention networks. “Enc” and
“Dec” denote the encoder and decoder side self-
attention networks respectively, while “Enc-Dec”
represents the encoder-decoder attention network.

modeling to different combinations of layers, as
shown in Table 2. Clearly, modeling the localness
for part of the layers consistently outperforms all
layers in terms of the training speed and transla-
tion quality, which again validates our claim.

Interestingly, the performance generally goes
up with the increase of layers from bottom to top
(Rows 2-4), while the trend does not hold when
reaching the 4th-layer (Row 5). In addition, the
lower three layers benefit more from the local-
ness modeling than that of the higher three layers
(Rows 4 and 6). These results reveal that lower-
level layers benefit more from the local context.
Accordingly, we only model the localness in the
lower three layers in the following experiments.

Attention Networks to be Applied Table 3
lists the results of localness modeling on dif-
ferent types of attention networks. As ob-
served, modeling localness for decoder-side self-
attention and encoder-decoder attention networks
only marginally improves or even harms the trans-
lation quality. We attribute the marginal improve-
ment of the encoder-decoder attention network
to the fact that it exploits the top-layer of en-
coder representations, which already embeds use-
ful local context. Concerning decoder-side self-
attention network, Zhang et al. (2018) pointed out
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System Architecture Zh⇒En En⇒De
# Para. BLEU # Para. BLEU

Existing NMT systems
(Wu et al., 2016) GNMT n/a n/a n/a 26.30
(Gehring et al., 2017) CONVS2S n/a n/a n/a 26.36

(Vaswani et al., 2017)
TRANSFORMER-BASE n/a n/a 65M 27.3
TRANSFORMER-BIG n/a n/a 213M 28.4

(Hassan et al., 2018) TRANSFORMER-BIG n/a 24.2 n/a n/a
Our NMT systems

this work

TRANSFORMER-BASE 107.9M 24.13 88.0M 27.64
+ Rel Pos (Shaw et al., 2018) 108.0M 24.53 88.1M 27.94
+ Localness 108.7M 24.77⇑ 88.8M 28.11↑

+ Localness + Rel Pos 108.8M 24.96⇑ 88.9M 28.54⇑

TRANSFORMER-BIG 303.9M 24.56 264.1M 28.58
+ Localness 307.2M 25.03↑ 267.4M 28.89
+ Localness + Rel Pos 307.3M 25.28⇑ 267.5M 29.18⇑

Table 4: Comparing with the existing NMT systems on WMT17 Zh⇒En and WMT14 En⇒De test sets.
“# Para.” denotes the trainable parameter size of each model (M = million). “↑ / ⇑”: significant over the
conventional self-attention counterpart (p < 0.05/0.01), tested by bootstrap resampling (Koehn, 2004).

that it tends to only focus on its nearby repre-
sentation, which poses difficulties to modeling lo-
calness on the decoder side. In the main experi-
ments, we only applied localness modeling to the
lower three layers of the encoder, which employs
a query-specific window prediction strategy.

4.3 Main Results

In this section, we evaluated the proposed ap-
proach on both WMT17 Zh⇒En and WMT14
En⇒De translation tasks, as listed in Table 4. Our
baseline models, both TRANSFORMER-BASE and
TRANSFORMER-BIG, outperform the reported re-
sults on the same data, which we believe make the
evaluation convincing. As seen, modeling local-
ness (“Localness”) consistently achieves improve-
ment across language pairs and model variations,
demonstrating the efficiency and universality of
the proposed approach.

We also re-implemented the relative posi-
tion encoding (“Rel Pos”) that recently proposed
by Shaw et al. (2018), which considers the rela-
tive distances between sequence elements. Both
Shaw et al. (2018) and our work have shown that
explicitly modeling locality for self-attention net-
works can improve the model performance. This
indicates that it is necessary to enhance the locality
modeling for Transformer. Besides, our approach
is complementary to theirs, and combining them
is able to further improve the translation perfor-

mance. We attribute this to the fact that the two
models modeling localness from two different as-
pects: First, the position embeddings are the same
across different positions (if the absolute positions
or relative positions are the same) and training ex-
amples, our model assigns a distinct localness bias
to each position from layer to layer. Second, con-
trast to position encoding which learns the locality
through the positional information in embeddings,
our model directly revises the attention distribu-
tion to focus on a local space.

5 Analysis

We conducted extensive analyses to better under-
stand our model in terms of its compatibility with
multi-head and multi-layer attention networks, as
well as building the ability of capturing phrasal
patterns. All the results are reported on Zh⇒En
development set with TRANSFORMER-BASE, un-
less otherwise stated.

5.1 Compatibility with Multi-Head Attention

In this section, we investigated whether multi-head
attention and localness modeling are compatible
from two perspectives: (1) whether multi-head at-
tention benefits more from the localness modeling
than its single-head counterpart; and (2) how does
multi-head attention work together with localness
modeling?
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Model 1-Head 8-Head
Dev 4 Dev 4

BASE 22.05 - 22.59 -
OURS 22.18 + 0.13 23.29 + 0.70

Table 5: Evaluation of localness modeling on top
of single and multiple attention heads.

Multi-Head vs. Single-Head The single-head
attention and multi-head attention differ at: the
former uses a single 512-dimension attention head
while the latter uses eight 64-dimension heads.
The results in Table 5 confirm our claim by
showing that multi-head attention indeed benefits
more from our model than the single-head model
(+0.70 vs. +0.13). It should be noted that our
model marginally improves the performance un-
der single-head setting. One possible reason is that
our model focuses more on local context thus may
ignore global information, which cannot be com-
plemented by the single-head attention.

10 20 30 40 50
Window Size

1
2
3
4
5
6

La
ye
r

Figure 2: Instructions of the learned window size
by head-specific parametric model, where colors
distinguish the heads.

Can Multi-Head Separate Locality? To sim-
plistically visualize how heads cooperate in mod-
eling localness, we propose an additional paramet-
ric model which is assigned a learnable but unified
window size for each head, namely head-specific.
As a result, the window size Dm of the m-th head
is calculated as:

Dm = N · sigmoid(zm), (11)

where the scalar zm is a trainable parameter, N =
50 denotes a pre-defined constant number.

Figure 2 visualizes the distribution of the
learned window size of each head, verifying that
multi-head attention is able to capture diverse in-
formation by selecting suitable window sizes for
different heads. For example, in the middle-level

layers, heads are assigned to consider both the
global and local information by regulating the dif-
ferent window sizes. One interesting finding is
that the distributions of window size are not ex-
actly same in different layers, which is explored in
more details in the next section.

5.2 Analysis on Multi-Layer Attention

In this section, we try to answer how does each
layer learn the localness. We first investigated how
the window size varies across layers. Then we
checked the specific behavior of the first word em-
bedding layer, which is inconsistent with the trend
of other layers.

The Higher Layer, The Larger Scope Shi et al.
(2016) and Vaswani et al. (2017) have shown that
different layers have the abilities to distinguish and
capture diverse syntactic context (e.g. the depen-
dents between words). Figure 3 shows the dis-
tribution of local scopes predicted by each layer.
Except the first layer, the higher layers are more
likely to pay attention to larger scopes, indicating
that self-attention models tend to capture short-
term dependencies among neighboring words in
lower layers, while capture long-range dependen-
cies beyond phrase boundaries in higher layers.

The Special First Layer Inconsistent with the
intuition which the lower layers may focus on lo-
cal information, in common, the first layer is as-
signed with large scopes of local context. The
same phenomenon has also occurred for head-
specific model (Figure 2). Since the first layer
represents word embeddings that are deficient in
context, we argue that the self-attention model at
first layer has to encode the representations with
global context. In addition, experimental results
in Table 2 (Row 2) show that despite its large lo-
cal size, modeling localness at the first layer is still
valid.

5.3 Analysis on Phrasal Pattern

As aforementioned, one intuition of our approach
is to capture useful phrase patterns. To evalu-
ate the accuracy of phrase translations, we calcu-
late the improvement of the proposed approaches
over multiple N-grams, as shown in Figure 4.
Although our models underperform the baseline
on unigram translations, they consistently outper-
form the baseline on larger granularities, indicat-
ing that modeling locality can raise the ability of
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Figure 3: Distribution of the local scopes learned by each attentive layer. The upper figures illustrate the
distribution of the predicted pairs of central position (Y-axis) and its correspond window size (X-axis)
in each layer, the samples are randomly selected from the development set. The lower figures show
the distribution of the window size in each layer. Blue color represents the layer-specific parametric
approach, while the query-specific parametric method is indicated in red.
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Figure 4: Performance improvement according to
N-gram. Y-axis denotes the gap of BLEU score
between our model and baseline.

self-attention model on capturing the phrasal in-
formation. Concerning the two variations, query-
specific localness modeling surpasses its layer-
specific counterpart on large phrases (i.g. 4-grams
to 8-grams). We attribute this to the more model-
ing flexibility of query-specific strategy to differ-
entiate the scope by conditioning on each query.

6 Related Work

A successful extension of neural language model
is attention mechanism, which can directly capture
long-distance dependencies by attending to previ-
ously generated words. Daniluk et al. (2017) pro-
posed a key-value-predict attention to separate the
key addressing, value reading, and word predict-

ing functions explicitly. Im and Cho (2017) and
Sperber et al. (2018) adopted self-attention net-
works for acoustic modeling and natural language
inference tasks, respectively.

Vaswani et al. (2017) applied the idea of self-
attention to neural machine translation. Shen et al.
(2018a) and Shen et al. (2018b) proposed to im-
prove the self-attention model with directional
masks and multi-dimensional features. Although
the standard self-attention model can give more
bias toward localness,6 several studies show that
explicitly modeling localness for self-attention
model can further improve performance. For
example, Sperber et al. (2018) showed that re-
stricting the self-attention model on the neigh-
boring representations performs better for longer
sequences in acoustic modeling and natural lan-
guage inference tasks. Closely related to this
work, Shaw et al. (2018) introduced relative po-
sition encoding to consider the relative distances
between sequence elements. While they modeled
localness from static position embedding, we im-
prove locality modeling from dynamically revising
attention distribution. Experimental results show

6As pointed out by one reviewer, in the original self-
attention model, there are some considerations about given
more bias toward the localness. For example, base on the
definition of the positional embeddings, the adjacent words
will have more similar positional embeddings compared with
more further words. After summing word embeddings and
corresponding positional embeddings together, the model
would prefer the local words.
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that the two models are complementary to each
other, and combining them can further improve
performance.

Several researches have shown that explicitly
modeling phrases is useful for neural machine
translation (Wang et al., 2017; Huang et al., 2018).
Our results confirm these findings. Concerning
attention models, Luong et al. (2015) proposed
a modification to look at only a subset of input
words at a time. This can be regarded as a “hard”
variation of our fixed-window strategy. In this
study, we propose more flexible strategies for plac-
ing and zooming the local scope, which yield bet-
ter results than the fixed scope.

7 Conclusion

In this work, we enhanced the ability of captur-
ing local context for self-attention networks with
a learnable Gaussian bias. We proposed several
strategies to learn the scope of the local con-
text, and found that a query-specific mechanism
yielded the best result due to its more modeling
flexibility. Experimental results on widely-used
English⇒German and Chinese⇒English transla-
tion tasks demonstrate the effectiveness and uni-
versality of the proposed approach. By visualiz-
ing the scopes of the learned Gaussian biases, we
found that the higher the layer, the larger scope the
bias, which is consistent with the findings in pre-
vious work (Shi et al., 2016; Peters et al., 2018).

As our approach is not limited to specific tasks,
it is interesting to validate our model in other tasks,
such as reading comprehension, language infer-
ence, and stance classification (Xu et al., 2018).
Another promising direction is to design more
powerful localness modeling techniques, such as
incorporating linguistic knowledge (e.g. phrases
and syntactic categories). It is also interesting
to combine with other techniques (Shaw et al.,
2018; Shen et al., 2018a; Dou et al., 2018; Li
et al., 2018) to further improve the performance
of Transformer.
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and Sebastian Riedel. 2017. Frustratingly short at-
tention spans in neural language modeling. In ICLR.

Ziyi Dou, Zhaopeng Tu, Xing Wang, Shuming Shi, and
Tong Zhang. 2018. Exploiting Deep Representa-
tions for Neural Machine Translation. In EMNLP.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N. Dauphin. 2017. Convolutional
Sequence to Sequence Learning. In ICML.

Hany Hassan, Anthony Aue, Chang Chen, Vishal
Chowdhary, Jonathan Clark, Christian Feder-
mann, Xuedong Huang, Marcin Junczys-Dowmunt,
William Lewis, Mu Li, et al. 2018. Achieving Hu-
man Parity on Automatic Chinese to English News
Translation. arXiv:1803.05567.

Po Sen Huang, Chong Wang, Sitao Huang, Dengyong
Zhou, and Li Deng. 2018. Towards Neural Phrase-
based Machine Translation. In ICLR.

Jinbae Im and Sungzoon Cho. 2017. Distance-based
Self-Attention Network for Natural Language Infer-
ence. arXiv:1712.02047.

Philipp Koehn. 2004. Statistical Significance Tests for
Machine Translation Evaluation. In EMNLP.

Jian Li, Zhaopeng Tu, Baosong Yang, Michael R. Lyu,
and Tong Zhang. 2018. Multi-Head Attention with
Disagreement Regularization. In EMNLP.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective Approaches to Attention-
based Neural Machine Translation. In EMNLP.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: A Method for Automatic
Evaluation of Machine Translation. In ACL.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep Contextualized Word Rep-
resentations. In NAACL.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural Machine Translation of Rare Words
with Subword Units. In ACL.



4458

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani.
2018. Self-Attention with Relative Position Repre-
sentations. In NAACL.

Tao Shen, Tianyi Zhou, Guodong Long, Jing Jiang,
Shirui Pan, and Chengqi Zhang. 2018a. DiSAN:
Directional Self-Attention Network for RNN/CNN-
Free Language Understanding. In AAAI.

Tao Shen, Tianyi Zhou, Guodong Long, Jing Jiang, and
Chengqi Zhang. 2018b. Bi-Directional Block Self-
Attention for Fast and Memory-Efficient Sequence
Modeling. In ICLR.

Xing Shi, Inkit Padhi, and Kevin Knight. 2016. Does
String-based Neural MT Learn Source Syntax? In
EMNLP.

Matthias Sperber, Jan Niehues, Graham Neubig, Se-
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