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Abstract

Despite continuously improving performance,
contemporary image captioning models are
prone to “hallucinating” objects that are not
actually in a scene. One problem is that stan-
dard metrics only measure similarity to ground
truth captions and may not fully capture im-
age relevance. In this work, we propose a
new image relevance metric to evaluate current
models with veridical visual labels and assess
their rate of object hallucination. We analyze
how captioning model architectures and learn-
ing objectives contribute to object hallucina-
tion, explore when hallucination is likely due
to image misclassification or language priors,
and assess how well current sentence metrics
capture object hallucination. We investigate
these questions on the standard image caption-
ing benchmark, MSCOCO, using a diverse set
of models. Our analysis yields several inter-
esting findings, including that models which
score best on standard sentence metrics do not
always have lower hallucination and that mod-
els which hallucinate more tend to make errors
driven by language priors.

1 Introduction

Image captioning performance has dramatically
improved over the past decade. Despite such
impressive results, it is unclear to what extent
captioning models actually rely on image con-
tent: as we show, existing metrics fall short of
fully capturing the captions’ relevance to the im-
age. In Figure 1 we show an example where a
competitive captioning model, Neural Baby Talk
(NBT) (Lu et al., 2018), incorrectly generates the
object “bench.” We refer to this issue as object
hallucination.

While missing salient objects is also a failure
mode, captions are summaries and thus generally

* Denotes equal contribution.

NBT: A woman talking on a cell phone while sitting on a bench.
CIDEr: 0.87, METEOR: 0.23, SPICE: 0.22, CHs: 1.00, CHi: 0.33

TopDown: A woman is talking on a cell phone.
CIDEr: 0.54, METEOR: 0.26, SPICE: 0.13, CHs: 0.00, CHi: 0.00

Figure 1: Image captioning models often “hallucinate”
objects that may appear in a given context, like e.g. a
bench here. Moreover, the sentence metrics do not al-
ways appropriately penalize such hallucination. Our
proposed metrics (CHAIRs and CHAIRi) reflect hallu-
cination. For CHAIR lower is better.

not expected to describe all objects in the scene.
On the other hand, describing objects that are not
present in the image has been shown to be less
preferable to humans. For example, the LSMDC
challenge (Rohrbach et al., 2017a) documents that
correctness is more important to human judges
than specificity. In another study, (MacLeod et al.,
2017) analyzed how visually impaired people re-
act to automatic image captions. They found that
people vary in their preference of either coverage
or correctness. For many visually impaired who
value correctness over coverage, hallucination is
an obvious concern.

Besides being poorly received by humans, ob-
ject hallucination reveals an internal issue of a cap-
tioning model, such as not learning a very good
representation of the visual scene or overfitting to
its loss function.

In this paper we assess the phenomenon of
object hallucination in contemporary captioning
models, and consider several key questions. The
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first question we aim to answer is: Which mod-
els are more prone to hallucination? We analyze
this question on a diverse set of captioning models,
spanning different architectures and learning ob-
jectives. To measure object hallucination, we pro-
pose a new metric, CHAIR (Caption Hallucination
Assessment with Image Relevance), which cap-
tures image relevance of the generated captions.
Specifically, we consider both ground truth object
annotations (MSCOCO Object segmentation (Lin
et al., 2014)) and ground truth sentence annota-
tions (MSCOCO Captions (Chen et al., 2015)). In-
terestingly, we find that models which score best
on standard sentence metrics do not always hallu-
cinate less.

The second question we raise is: What are the
likely causes of hallucination? While hallucina-
tion may occur due to a number of reasons, we
believe the top factors include visual misclassifi-
cation and over-reliance on language priors. The
latter may result in memorizing which words “go
together” regardless of image content, which may
lead to poor generalization, once the test distri-
bution is changed. We propose image and lan-
guage model consistency scores to investigate this
issue, and find that models which hallucinate more
tend to make mistakes consistent with a language
model.

Finally, we ask: How well do the standard
metrics capture hallucination? It is a common
practice to rely on automatic sentence metrics,
e.g. CIDEr (Vedantam et al., 2015), to evaluate
captioning performance during development, and
few employ human evaluation to measure the fi-
nal performance of their models. As we largely
rely on these metrics, it is important to under-
stand how well they capture the hallucination phe-
nomenon. In Figure 1 we show how two sen-
tences, from NBT with hallucination and from
TopDown model (Anderson et al., 2018) – with-
out, are scored by the standard metrics. As we
see, hallucination is not always appropriately pe-
nalized. We find that by using additional ground
truth data about the image in the form of object la-
bels, our metric CHAIR allows us to catch discrep-
ancies that the standard captioning metrics cannot
fully capture. We then investigate ways to assess
object hallucination risk with the standard metrics.
Finally, we show that CHAIR is complementary to
the standard metrics in terms of capturing human
preference.

2 Caption Hallucination Assessment

We first introduce our image relevance metric,
CHAIR, which assesses captions w.r.t. objects that
are actually in an image. It is used as a main tool
in our evaluation. Next we discuss the notions of
image and language model consistency, which we
use to reason about the causes of hallucination.

2.1 The CHAIR Metric

To measure object hallucination, we propose the
CHAIR (Caption Hallucination Assessment with
Image Relevance) metric, which calculates what
proportion of words generated are actually in the
image according to the ground truth sentences and
object segmentations. This metric has two vari-
ants: per-instance, or what fraction of object in-
stances are hallucinated (denoted as CHAIRi), and
per-sentence, or what fraction of sentences include
a hallucinated object (denoted as CHAIRs):

CHAIRi =
|{hallucinated objects}|
|{all objects mentioned}|

CHAIRs =
|{sentences with hallucinated object}|

|{ all sentences}|

For easier analysis, we restrict our study to
the 80 MSCOCO objects which appear in the
MSCOCO segmentation challenge. To determine
whether a generated sentence contains halluci-
nated objects, we first tokenize each sentence
and then singularize each word. We then use
a list of synonyms for MSCOCO objects (based
on the list from Lu et al. (2018)) to map words
(e.g., “player”) to MSCOCO objects (e.g., “per-
son”). Additionally, for sentences which in-
clude two word compounds (e.g., “hot dog”) we
take care that other MSCOCO objects (in this
case “dog”) are not incorrectly assigned to the
list of MSCOCO objects in the sentence. For
each ground truth sentence, we determine a list
of MSCOCO objects in the same way. The
MSCOCO segmentation annotations are used by
simply relying on the provided object labels.

We find that considering both sources of an-
notation is important. For example, MSCOCO
contains an object “dining table” annotated with
segmentation maps. However, humans refer to
many different kinds of objects as “table” (e.g.,
“coffee table” or “side table”), though these ob-
jects are not annotated as they are not specifically
“dining table”. By using sentence annotations to
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scrape ground truth objects, we account for vari-
ation in how human annotators refer to different
objects. Inversely, we find that frequently humans
will not mention all objects in a scene. Qualita-
tively, we observe that both annotations are impor-
tant to capture hallucination. Empirically, we ver-
ify that using only segmentation labels or only ref-
erence captions leads to higher hallucination (and
practically incorrect) rates.

2.2 Image Consistency

We define a notion of image consistency, or how
consistent errors from the captioning model are
with a model which predicts objects based on an
image alone. To measure image consistency for
a particular generated word, we train an image
model and record P (w|I) or the probability of pre-
dicting the word given only the image. To score
the image consistency of a caption we use the av-
erage of P (w|I) for all MSCOCO objects, where
higher values mean that errors are more consis-
tent with the image model. Our image model is a
multi-label classification model with labels corre-
sponding to MSCOCO objects (labels determined
the same way as is done for CHAIR) which shares
the visual features with the caption models.

2.3 Language Consistency

We also introduce a notion of language consis-
tency, i.e. how consistent errors from the cap-
tioning model are with a model which predicts
words based only on previously generated words.
We train an LSTM (Hochreiter and Schmidhu-
ber, 1997) based language model which pre-
dicts a word wt given previous words w0:t−1

on MSCOCO data. We report language consis-
tency as 1/R(wt) where R(wt) is the rank of the
predicted word in the language model. Again,
for a caption we report average rank across all
MSCOCO objects in the sentence and higher lan-
guage consistency implies that errors are more
consistent with the language model.

We illustrate image and language consistency in
Figure 2, i.e. the hallucination error (“fork”) is
more consistent with the Language Model predic-
tions than with the Image Model predictions. We
use these consistency measures in Section 3.3 to
help us investigate the causes of hallucination.

Generated caption: A plate of food with broccoli and a fork.

Image Model predictions: 
bowl, broccoli, carrot, dining table

Language Model predictions for 
the last word: 
fork, spoon, bowl

Figure 2: Example of image and language consistency.
The hallucination error (“fork”) is more consistent with
the Language Model.

3 Evaluation

In this section we present the findings of our study,
where we aim to answer the questions posed in
Section 1: Which models are more prone to hal-
lucination? What are the likely causes of halluci-
nation? How well do the standard metrics capture
hallucination?

3.1 Baseline Captioning Models

We compare object hallucination across a wide
range of models. We define two axes for compari-
son: model architecture and learning objective.

Model architecture. Regarding model architec-
ture, we consider models both with and without
attention mechanisms. In this work, we use “at-
tention” to refer to any mechanism which learns
to focus on different image regions, whether im-
age regions be determined by a high level feature
map, or by object proposals from a trained de-
tector. All models are end-to-end trainable and
use a recurrent neural network (LSTM (Hochre-
iter and Schmidhuber, 1997) in our case) to output
text. For non-attention based methods we consider
the FC model from Rennie et al. (2017) which
incorporates visual information by initializing the
LSTM hidden state with high level image features.
We also consider LRCN (Donahue et al., 2015)
which considers visual information at each time
step, as opposed to just initializing the LSTM hid-
den state with extracted features.

For attention based models, we consider
Att2In (Rennie et al., 2017), which is similar
to the original attention based model proposed
by (Xu et al., 2015), except the image feature is
only input into the cell gate as this was shown
to lead to better performance. We then consider
the attention model proposed by (Anderson et al.,
2018) which proposes a specific “top-down at-
tention” LSTM as well as a “language” LSTM.
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Generally attention mechanisms operate over high
level convolutional layers. The attention mecha-
nism from (Anderson et al., 2018) can be used on
such feature maps, but Anderson et al. also con-
sider feature maps corresponding to object pro-
posals from a detection model. We consider both
models, denoted as TopDown (feature map ex-
tracted from high level convolutional layer) and
TopDown-BB (feature map extracted from object
proposals from a detection model). Finally, we
consider the recently proposed Neural Baby Talk
(NBT) model (Lu et al., 2018) which explicitly
uses object detections (as opposed to just bound-
ing boxes) for sentence generation.

Learning objective. All of the above models
are trained with the standard cross entropy (CE)
loss as well as the self-critical (SC) loss pro-
posed by Rennie et al. (2017) (with an exception
of NBT, where only the CE version is included).
The SC loss directly optimizes the CIDEr metric
with a reinforcement learning technique. We ad-
ditionally consider a model trained with a GAN
loss (Shetty et al., 2017) (denoted GAN), which
applies adversarial training to obtain more diverse
and “human-like” captions, and their respective
non-GAN baseline with the CE loss.

TopDown deconstruction. To better evaluate
how each component of a model might influ-
ence hallucination, we “deconstruct” the Top-
Down model by gradually removing components
until it is equivalent to the FC model. The interme-
diate networks are NoAttention, in which the atten-
tion mechanism is replaced by mean pooling, No-
Conv in which spatial feature maps are not input
into the network (the model is provided with fully
connected feature maps), SingleLayer in which
only one LSTM is included in the model, and fi-
nally, instead of inputting visual features at each
time step, visual features are used to initialize the
LSTM embedding as is done in the FC model. By
deconstructing the TopDown model in this way,
we ensure that model design choices and hyperpa-
rameters do not confound results.

Implementation details. All the baseline mod-
els employ features extracted from the fourth layer
of ResNet-101 (He et al., 2016), except for the
GAN model which employs ResNet-152. Mod-
els without attention traditionally use fully con-
nected layers as opposed to convolutional layers.
However, as ResNet-101 does not have intermedi-
ate fully connected layers, it is standard to average

pool convolutional activations and input these fea-
tures into non-attention based description models.
Note that this means the difference between the
NoAttention and NoConv model is that the NoAt-
tention model learns a visual embedding of spatial
feature maps as opposed to relying on pre-pooled
feature maps. All models except for TopDown-
BB, NBT, and GAN are implemented in the same
open source framework from Luo et al. (2018).1

Training/Test splits. We evaluate the captioning
models on two MSCOCO splits. First, we con-
sider the split from Karpathy et al. (Karpathy and
Fei-Fei, 2015), specifically in that case the mod-
els are trained on the respective Karpathy Training
set, tuned on Karpathy Validation set and the re-
ported numbers are on the Karpathy Test set. We
also consider the Robust split, introduced in (Lu
et al., 2018), which provides a compositional split
for MSCOCO. Specifically, it is ensured that the
object pairs present in the training, validation and
test captions do not overlap. In this case the cap-
tioning models are trained on the Robust Training
set, tuned on the Robust Validation set and the re-
ported numbers are on the Robust Test set.

3.2 Which Models Are More Prone To
Hallucination?

We first present how well competitive models
perform on our proposed CHAIR metric (Ta-
ble 1). We report CHAIR at sentence-level and
at instance-level (CHs and CHi in the table). In
general, we see that models which perform bet-
ter on standard evaluation metrics, perform bet-
ter on CHAIR, though this is not always true. In
particular, models which optimize for CIDEr fre-
quently hallucinate more. Out of all generated
captions on the Karpathy Test set, anywhere be-
tween 7.4% and 17.7% include a hallucinated ob-
ject. When shifting to more difficult training sce-
narios in which new combinations of objects are
seen at test time, hallucination consistently in-
creases (Table 2).

Karpathy Test set. Table 1 presents object hal-
lucination on the Karpathy Test set. All sentences
are generated using beam search and a beam size
of 5. We note a few important trends. First, mod-
els with attention tend to perform better on the
CHAIR metric than models without attention. As
we explore later, this is likely because they have

1https://github.com/ruotianluo/
self-critical.pytorch
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Cross Entropy Self Critical
Model Att. S M C CHs CHi S M C CHs CHi
LRCN* 17.0 23.9 90.8 17.7 12.6 16.9 23.5 93.0 17.7 12.9
FC* 17.9 24.9 95.8 15.4 10.9 18.4 25.0 103.9 14.4 10.1
Att2In* X 18.9 25.8 102.0 10.8 7.8 19.0 25.7 106.7 12.2 8.4
TopDown* X 19.9 26.7 107.6 8.4 6.0 20.4 27.0 117.2 13.6 8.8

TopDown-BB † X 20.4 27.1 113.7 8.3 5.9 21.4 27.7 120.6 10.4 6.9
NBT † X 19.4 26.2 105.1 7.4 5.4 - - - -

Cross Entropy GAN
GAN ‡ 18.7 25.7 100.4 10.6 7.6 16.6 22.7 79.3 8.2 6.5

Table 1: Hallucination analysis on the Karpathy Test set: Spice (S), CIDEr (C) and METEOR (M) scores across different image
captioning models as well as CHAIRs (sentence level, CHs) and CHAIRi (instance level, CHi). All models are generated with
beam search (beam size=5). * are trained/evaluated within the same implementation (Luo et al., 2018), † are trained/evaluated
with implementation publicly released with corresponding papers, and ‡ sentences obtained directly from the author. For
discussion see Section 3.2.

a better understanding of the image. In particular,
methods that incorporate bounding box attention
(as opposed to relying on coarse feature maps),
consistently have lower hallucination as measured
by our CHAIR metric. Note that the NBT model
does not perform as well on standard captioning
metrics as the TopDown-BB model but has lower
hallucination. This is perhaps because bounding
box proposals come from the MSCOCO detec-
tion task and are thus “in-domain” as opposed to
the TopDown-BB model which relies on proposals
learned from the Visual Genome (Krishna et al.,
2017) dataset. Second, frequently training mod-
els with the self-critical loss actually increases the
amount of hallucination. One hypothesis is that
CIDEr does not penalize object hallucination suf-
ficiently, leading to both increased CIDEr and in-
creased hallucination. Finally, the LRCN model
has a higher hallucination rate than the FC model,
indicating that inputting the visual features only at
the first step, instead of at every step, leads to more
image relevant captions.

We also consider a GAN based model (Shetty
et al., 2017) in our analysis. We include a base-
line model (trained with CE) as well as a model
trained with the GAN loss.2 Unlike other mod-
els, the GAN model uses a stronger visual network
(ResNet-152) which could explain the lower hal-
lucination rate for both the baseline and the GAN
model. Interestingly, when comparing the baseline
and the GAN model (both trained with ResNet-
152), standard metrics decrease substantially, even
though human evaluations from (Shetty et al.,
2017) demonstrate that sentences are of compa-
rable quality. On the other hand, hallucination

2Sentences were procured directly from the authors.

Att S M C CHs CHi

FC* 15.5 22.7 76.2 21.3 15.3
Att2In* X 16.9 24.0 85.8 14.1 10.1
TopDown* X 17.7 24.7 89.8 11.3 7.9
NBT † X 18.1 24.8 94.5 6.8 4.6

Table 2: Hallucination Analysis on the Robust Test set:
Spice (S), CIDEr (C) and METEOR (M) scores across dif-
ferent image captioning models as well as CHAIRs (sen-
tence level, CHs) and CHAIRi (instance level, CHi). * are
trained/evaluated within the same implementation (Luo et al.,
2018), † are trained/evaluated with implementation publicly
released with corresponding papers. All models trained with
cross-entropy loss. See Section 3.2.

decreases, implying that the GAN loss actually
helps decrease hallucination. Unlike the self crit-
ical loss, the GAN loss encourages sentences to
be human-like as opposed to optimizing a metric.
Human-like sentences are not likely to hallucinate
objects, and a hallucinated object is likely a strong
signal to the discriminator that a sentence is gen-
erated, and is not from a human.

We also assess the effect of beam size on
CHAIR. We find that generally beam search de-
creases hallucination. We use beam size of 5, and
for all models trained with cross entropy, it out-
performs lower beam sizes on CHAIR. However,
when training models with the self-critical loss,
beam size sometimes leads to worse performance
on CHAIR. For example, on the Att2In model
trained with SC loss, a beam size of 5 leads to 12.8
on CHAIRs and 8.7 on CHAIRi, while a beam size
of 1 leads to 10.8 on CHAIRs and 8.1 on CHAIRi.

Robust Test set. Next we review the hallucina-
tion behavior on the Robust Test set (Table 2). For
almost all models the hallucination increases on
the Robust split (e.g. for TopDown from 8.4% to
11.4% of sentences), indicating that the issue of
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TopDown: A pile of luggage sitting on top of a table.
NBT: Several pieces of luggage sitting on a table.

TopDown: A group of people sitting around a 
table with laptops.
NBT: A group of people sitting around a table 
with laptop.

TopDown:  A couple of cats laying on top of a bed.
NBT: A couple of cats laying on top of a bed.

TopDown: A kitchen with a stove and a sink.
NBT: A kitchen with a stove and a sink.

TopDown: Aa man and a woman are playing 
with a frisbee.
NBT: A man riding a skateboard down a street.

TopDown:  A cat sitting on top of a laptop 
computer.
NBT: A cat sitting on a table next to a computer.

TopDown: A small brown dog standing on top 
of a chair.
NBT: A brown dog standing on top of a white 
chair.

TopDown: A brown dog sitting on top of a chair.
NBT: A brown and white dog sitting under an 
umbrella.

TopDown: A man standing on a beach holding a 
surfboard.
NBT: A man standing on top of a sandy beach.

Figure 3: Examples of object hallucination from two state-of-the-art captioning models, TopDown and NBT, see Section 3.2.

hallucination is more critical in scenarios where
test examples can not be assumed to have the same
distribution as train examples. We again note that
attention is helpful for decreasing hallucination.
We note that the NBT model actually has lower
hallucination scores on the robust split. This is
in part because when generating sentences we use
the detector outputs provided by Lu et al. (2018).
Separate detectors on the Karpathy test and robust
split are not available and the detector has access
to images in the robust split during training. Con-
sequently, the comparison between NBT and other
models is not completely fair, but we include the
number for completeness.

In addition to the Robust Test set, we also con-
sider a set of MSCOCO in which certain ob-
jects are held out, which we call the Novel Ob-
ject split (Hendricks et al., 2016). We train on the
training set outlined in (Hendricks et al., 2016) and
test on the Karpathy test split, which includes ob-
jects unseen during training. Similarly to the Ro-
bust Test set, we see hallucination increase sub-
stantially on this split. For example, for the Top-
Down model hallucination increases from 8.4% to
12.1% for CHAIRs and 6.0% to 9.1% for CHAIRi.

We find no obvious correlation between the av-
erage length of the generated captions and the hal-
lucination rate. Moreover, vocabulary size does
not correlate with hallucination either, i.e. mod-
els with more diverse descriptions may actually
hallucinate less. We notice that hallucinated ob-
jects tend to be mentioned towards the end of the
sentence (on average at position 6, with average

sentence length 9), suggesting that some of the
preceding words may have triggered hallucination.
We investigate this below.

Which objects are hallucinated and in what
context? Here we analyze which MSCOCO ob-
jects tend to be hallucinated more often and what
are the common preceding words and image con-
text. Across all models the super-category Fur-
niture is hallucinated most often, accounting for
20 − 50% of all hallucinated objects. Other com-
mon super-categories are Outdoor objects, Sports
and Kitchenware. On the Robust Test set, Ani-
mals are often hallucinated. The dining table is
the most frequently hallucinated object across all
models (with an exception of GAN, where person
is the most hallucinated object). We find that often
words like “sitting” and “top” precede the “din-
ing table” hallucination, implying the two com-
mon scenarios: a person “sitting at the table” and
an object “sitting on top of the table” (Figure 3,
row 1, examples 1, 2). Similar observations can
be made for other objects, e.g. word “kitchen” of-
ten precedes “sink” hallucination (Figure 3, row
1, example 3) and “laying” precedes “bed” (Fig-
ure 3, row 1, example 4). At the same time, if we
look at which objects are actually present in the
image (based on MSCOCO object annotations),
we can similarly identify that presence of a “cat”
co-occurs with hallucinating a “laptop” (Figure 3,
row 2, example 1), a “dog” – with a “chair” (Fig-
ure 3, row 2, example 2) etc. In most cases we
observe that the hallucinated objects appear in the
relevant scenes (e.g. “surfboard” on a beach), but
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Figure 4: Image and Language model consistency (IM, LM) and CHAIRi (instance-level, CHi) on deconstructed TopDown
models. Images with less hallucination tend to make errors consistent with the image model, whereas models with more
hallucination tend to make errors consistent with the language model, see Section 3.3.

there are cases where objects are hallucinated out
of context (e.g. “bed” in the bathroom, Figure 3,
row 1, example 4).

3.3 What Are The Likely Causes Of
Hallucination?

In this section we investigate the likely causes of
object hallucination. We have earlier described
how we deconstruct the TopDown model to en-
able a controlled experimental setup. We rely on
the deconstructed TopDown models to analyze the
impact of model components on hallucination.

First, we summarize the hallucination analysis
on the deconstructed TopDown models (Table 3).
Interestingly, the NoAttention model does not do
substantially worse than the full model (w.r.t. sen-
tence metrics and CHAIR). However, removing
Conv input (NoConv model) and relying only on
FC features, decreases the performance dramati-
cally. This suggests that much of the gain in at-
tention based models is primarily due to access to
feature maps with spatial locality, not the actual
attention mechanism. Also, similar to LRCN vs.
FC in Table 1, initializing the LSTM hidden state
with image features, as opposed to inputting image
features at each time step, leads to lower halluci-
nation (Single Layer vs. FC). This is somewhat
surprising, as a model which has access to image
information at each time step should be less likely
to “forget” image content and hallucinate objects.
However, it is possible that models which include
image inputs at each time step with no access to
spatial features overfit to the visual features.

Now we investigate what causes hallucination
using the deconstructed TopDown models and
the image consistency and language consistency
scores, introduced in Sections 2.2 and 2.3 which
capture how consistent the hallucinations errors
are with image- / language-only models.

Karpathy Split METEOR CIDEr SPICE CHs CHi

TD 26.10 103.40 19.50 10.80 7.40
No Attention 25.60 99.70 18.80 14.20 9.40
No Conv 22.90 81.30 15.70 25.70 17.70
Single Layer 22.70 80.20 15.50 25.60 18.00
FC 23.30 85.10 16.40 23.60 15.70

Table 3: Hallucination analysis on deconstructed TopDown
models with sentence metrics, CHAIRs (sentence level, CHs)
and CHAIRi (instance level, CHi). See Section 3.3.

Figure 4 shows the CHAIR metric, image con-
sistency and language consistency for the decon-
structed TopDown models on the Karpathy Test
set (left) and the Robust Test set (right). We note
that models with less hallucination tend to make
errors consistent with the image model, whereas
models with more hallucination tend to make er-
rors consistent with the language model. This im-
plies that models with less hallucination are bet-
ter at integrating knowledge from an image into
the sentence generation process. When looking
at the Robust Test set, Figure 4 (right), which is
more challenging, as we have shown earlier, we
see that image consistency decreases when com-
paring to the same models on the Karpathy split,
whereas language consistency is similar across all
models trained on the Robust split. This is perhaps
because the Robust split contains novel composi-
tions of objects at test time, and all of the models
are heavily biased by language.

Finally, we measure image and language con-
sistency during training for the FC model and note
that at the beginning of training errors are more
consistent with the language model, whereas to-
wards the end of training, errors are more con-
sistent with the image model. This suggests that
models first learn to produce fluent language be-
fore learning to incorporate visual information.
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TD: A cat is sitting on a 
bed in a room.
S: 12.1  M: 23.8   C: 69.7
TD Restrict: A bed with a 
blanket and a pillow on it. 
S: 23.5  M: 25.4   C: 52.5

TD: A cat laying on the ground 
with a frisbee.
S: 8.0   M: 13.1   C: 37.0
 TD Restrict: A black and white 
animal laying on the ground. 
S: 7.7   M: 15.9   C: 17.4

Figure 5: Examples of how TopDown (TD) sentences
change when we enforce that objects cannot be hallucinated:
SPICE (S), Meteor (M), CIDEr (C), see Section 3.4.

3.4 How Well Do The Standard Metrics
Capture Hallucination?

In this section we analyze how well SPICE (An-
derson et al., 2016), METEOR (Banerjee and
Lavie, 2005), and CIDEr (Vedantam et al., 2015)
capture hallucination. All three metrics do penal-
ize sentences for mentioning incorrect words, ei-
ther via an F score (METEOR and SPICE) or co-
sine distance (CIDEr). However, if a caption men-
tions enough words correctly, it can have a high
METEOR, SPICE, or CIDEr score while still hal-
lucinating specific objects.

Our first analysis tool is the TD-Restrict model.
This is a modification of the TopDown model,
where we enforce that MSCOCO objects which
are not present in an image are not generated in
the caption. We determine which words refer to
objects absent in an image following our approach
in Section 2.1. We then set the log probability for
such words to a very low value. We generate sen-
tences with the TopDown and TD-Restrict model
with beam search of size 1, meaning all words pro-
duced by both models are the same, until the Top-
Down model produces a hallucinated word.

We compare which scores are assigned to such
captions in Figure 5. TD-Restrict generates cap-
tions that do not contain hallucinated objects,
while TD hallucinates a “cat” in both cases. In
Figure 5 (left) we see that CIDEr scores the more
correct caption much lower. In Figure 5 (right),
the TopDown model incorrectly calls the animal
a “cat.” Interestingly, it then correctly identifies
the “frisbee,” which the TD-Restrict model fails to
mention, leading to lower SPICE and CIDEr.

In Table 4 we compute Pearson correlation co-
efficient between individual sentence scores and

CIDEr METEOR SPICE

FC 0.197 0.198 0.266
Att2In 0.177 0.178 0.246
TopDown 0.135 0.140 0.172

Table 4: Pearson correlation coefficients between 1-CHs and
CIDEr, METEOR, and SPICE scores, see Section 3.4.

Fully Connected:
A clock sitting on top of a 
wooden table.
SPICE: 7.4

TopDown:
A clock on a wall in a room.
SPICE: 7.7

Figure 6: Difference in percentage of sentences with no hal-
lucination for TopDown and FC models when SPICE scores
fall into specific ranges. For sentences with low SPICE
scores, the hallucination is generally larger for the FC model,
even though the SPICE scores are similar, see Section 3.4.

the absence of hallucination, i.e. 1−CHAIRs; we
find that SPICE consistently correlates higher with
1−CHAIRs. E.g., for the FC model the correlation
for SPICE is 0.27, while for METEOR and CIDEr
– around 0.2.

We further analyze the metrics in terms of their
predictiveness of hallucination risk. Predictive-
ness means that a certain score should imply a cer-
tain percentage of hallucination. Here we show
the results for SPICE and the captioning models
FC and TopDown. For each model and a score in-
terval (e.g. 10−20) we compute the percentage of
captions without hallucination (1−CHAIRs). We
plot the difference between the percentages from
both models (TopDown - FC) in Figure 6. Com-
paring the models, we note that even when scores
are similar (e.g., all sentences with SPICE score
in the range of 10− 20), the TopDown model has
fewer sentences with hallucinated objects. We see
similar trends across other metrics. Consequently,
object hallucination can not be always predicted
based on the traditional sentence metrics.

Is CHAIR complementary to standard met-
rics? In order to measure usefulness of our pro-
posed metrics, we have conducted the following



4043

Metric Metric Metric
+(1-CHs) +(1-CHi)

METEOR 0.269 0.299 0.304
CIDEr 0.282 0.321 0.322
SPICE 0.248 0.277 0.281

Table 5: Pearson correlation coefficients between individ-
ual/combined metrics and human scores. See Section 3.4.

human evaluation (via the Amazon Mechanical
Turk). We have randomly selected 500 test images
and respective captions from 5 models: non-GAN
baseline, GAN, NBT, TopDown and TopDown -
Self Critical. The AMT workers were asked to
score the presented captions w.r.t. the given image
based on their preference. They could score each
caption from 5 (very good) to 1 (very bad). We did
not use ranking, i.e. different captions could get
the same score; each image was scored by three
annotators, and the average score is used as the fi-
nal human score. For each image we consider the
5 captions from all models and their correspond-
ing sentence scores (METEOR, CIDEr, SPICE).
We then compute Pearson correlation between the
human scores and sentence scores; we also con-
sider a simple combination of sentence metrics
and 1-CHAIRs or 1-CHAIRi by summation. The
final correlation is computed by averaging across
all 500 images. The results are presented in Ta-
ble 5. Our findings indicate that a simple combi-
nation of CHAIRs or CHAIRi with the sentence
metrics leads to an increased correlation with the
human scores, showing the usefulness and com-
plementarity of our proposed metrics.

Does hallucination impact generation of other
words? Hallucinating objects impacts sentence
quality not only because an object is predicted in-
correctly, but also because the hallucinated word
impacts generation of other words in the sen-
tence. Comparing the sentences generated by Top-
Down and TD-Restrict allows us to analyze this
phenomenon. We find that after the hallucinated
word is generated, the following words in the sen-
tence are different 47.3% of the time. This im-
plies that hallucination impacts sentence quality
beyond simply naming an incorrect object. We ob-
serve that one hallucination may lead to another,
e.g. hallucinating a “cat” leading to hallucinating
a “chair”, hallucinating a “dog” – to a “frisbee”.

4 Discussion

In this work we closely analyze hallucination in
object captioning models. Our work is similar to
other works which attempt to characterize flaws
of different evaluation metrics (Kilickaya et al.,
2016), though we focus specifically on halluci-
nation. Likewise, our work is related to other
work which aims to build better evaluation tools
((Vedantam et al., 2015), (Anderson et al., 2016),
(Cui et al., 2018)). However, we focus on carefully
quantifying and characterizing one important type
of error: object hallucination.

A significant number of objects are hallucinated
in current captioning models (between 5.5% and
13.1% of MSCOCO objects). Furthermore, hal-
lucination does not always agree with the output
of standard captioning metrics. For instance, the
popular self critical loss increases CIDEr score,
but also the amount of hallucination. Addition-
ally, we find that given two sentences with similar
CIDEr, SPICE, or METEOR scores from two dif-
ferent models, the number of hallucinated objects
might be quite different. This is especially appar-
ent when standard metrics assign a low score to
a generated sentence. Thus, for challenging cap-
tion tasks on which standard metrics are currently
poor (e.g., the LSMDC dataset (Rohrbach et al.,
2017b)), the CHAIR metric might be helpful to
tease apart the most favorable model. Our results
indicate that CHAIR complements the standard
sentence metrics in capturing human preference.

Additionally, attention lowers hallucination, but
it appears that much of the gain from attention
models is due to access to the underlying convo-
lutional features as opposed the attention mecha-
nism itself. Furthermore, we see that models with
stronger image consistency frequently hallucinate
fewer objects, suggesting that strong visual pro-
cessing is important for avoiding hallucination.

Based on our results, we argue that the de-
sign and training of captioning models should be
guided not only by cross-entropy loss or standard
sentence metrics, but also by image relevance. Our
CHAIR metric gives a way to evaluate the phe-
nomenon of hallucination, but other image rele-
vance metrics e.g. those that incorporate missed
salient objects, should also be investigated. We
believe that incorporating visual information in the
form of ground truth objects in a scene (as opposed
to only reference captions) helps us better under-
stand the performance of captioning models.
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