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Abstract

We present three enhancements to exist-
ing encoder-decoder models for open-domain
conversational agents, aimed at effectively
modeling coherence and promoting output di-
versity: (1) We introduce a measure of co-
herence as the GloVe embedding similarity
between the dialogue context and the gener-
ated response, (2) we filter our training cor-
pora based on the measure of coherence to
obtain topically coherent and lexically diverse
context-response pairs, (3) we then train a re-
sponse generator using a conditional varia-
tional autoencoder model that incorporates the
measure of coherence as a latent variable and
uses a context gate to guarantee topical con-
sistency with the context and promote lexical
diversity. Experiments on the OpenSubtitles
corpus show a substantial improvement over
competitive neural models in terms of BLEU
score as well as metrics of coherence and di-
versity.

1 Introduction

End-to-end neural response generation methods
are promising for developing open domain dia-
logue systems as they allow to learn from very
large unlabeled datasets (Shang et al., 2015; Sor-
doni et al., 2015; Vinyals and Le, 2015). How-
ever, these models have also been shown to gen-
erate generic, uninformative, and non-coherent
replies (e.g., “I don’t know.” in Figure 1), mainly
due to the fact that neural systems tend to set-
tle for the most frequent options, thus penaliz-
ing length and favoring high-frequency word se-
quences (Sountsov and Sarawagi, 2016; Wei et al.,
2017).

To address these problems, Li et al. (2016a) and
Li et al. (2017a) attempt to promote diversity by
improving the objective function, but do not model
diversity explicitly. Serban et al. (2017) focus on

Conversational history Response
A: You stay out of this. B-Coh: Well, I got water.
B: So you want water, huh? B-Incoh: I don’t know.
A: That’s right.
A: Where do we start? B-Coh: Specifically the stove.
B: Kitchen. B-Incoh: Let’s go for a walk.
A: Definitely the kitchen.

Figure 1: Examples of conversational history (left)
with two alternative responses to follow it (right): (B-
Coh) a more coherent, topical utterance, and (B-Incoh)
a generic, inconsistent response.

model structure without any upgrades to the ob-
jective function. Other works control the style of
the output by leveraging external resources (Hu
et al. (2017): sentiment classifier, time annotation;
Zhao et al. (2017): dialogue acts) or focus on well-
structured input such as paragraphs (Li and Juraf-
sky, 2017).

This paper extends previous attempts to model
diversity and coherence by enhancing all three as-
pects of the learning process: the data, the model,
and the objective function. While previous re-
search has addressed these aspects individually,
this paper is the first to address all three in a uni-
fied framework. Instead of using existing linguis-
tic knowledge or labeled datasets, we aim to con-
trol for coherence by learning directly from data,
using a fully unsupervised approach. This is also
the first work encoding and evaluating coherence
explicitly in the dialogue generation task, as op-
posed to using diversity, style, or other properties
of responses as a proxy.

In this work, given a dialogue history, we regard
as a coherent response an utterance that is themat-
ically correlated and naturally continuing from the
previous turns, as well as lexically diverse. For
example, in Figure 1 the response “Specifically
the stove.” is a very natural and coherent response,
elaborating on the topic of kitchen introduced in



3982

the previous two utterances and containing rich
thematic words, whereas the response “Let’s go
for a walk.” is unrelated and uninteresting.

In order to obtain coherent responses, we
present three generic enhancements to existing
encoder-decoder (E-D) models:

1. We define a measure of coherence simply as the
averaged word embedding similarity between
the words of the context and the response com-
puted using GloVe vectors (Pennington et al.,
2014).

2. We filter a corpus of conversations based on
our measure of coherence, which leaves us with
context-response pairs that are both topically
coherent and lexically diverse.

3. We train an E-D generator recast as a con-
ditional Variational Autoencoder (cVAE; Zhao
et al., 2017) model that incorporates two latent
variables, one for encoding the context and an-
other for conditioning on the measure of co-
herence, trained jointly as in Hu et al. (2017).
We then decode using a context gate (Tu et al.,
2017) to control the generation of words that
directly relate to the most topical words of the
context and promote coherence.

Experiments on the OpenSubtitles (Lison and
Meena, 2016) corpus demonstrate the effective-
ness of the overall approach. Our models achieve
a substantial improvement over competitive neural
models. We provide an ablation analysis, quanti-
fying the contributions that come from effective
modeling of coherence into our models. All our
experimental code is freely available on GitHub.1

2 Coherence-based Dialogue Generation

Our model aims to generate responses given a
dialogue context, incorporating measures of co-
herence estimated purely from the training data.
We propose the following enhancements to the
attention-based E-D architecture (Bahdanau et al.,
2015; Luong et al., 2015):

• We introduce a stochastic latent variable z con-
ditioned on previous dialogue context to store
the global information about the conversation
(Bowman et al., 2016; Chung et al., 2015; Li
and Jurafsky, 2017; Hu et al., 2017).

1https://github.com/XinnuoXu/CVAE_Dial

• We force the model to condition on the mea-
sure of coherence explicitly by encoding a la-
tent variable (code) c learned from data.

• We incorporate a context gate (Tu et al., 2017)
that dynamically controls the ratio at which
the generated words in the response derive di-
rectly from the coherence-enhanced dialogue
context or the previously generated parts of the
response.

In the rest of this section, we introduce the mea-
sure of coherence (Section 2.1), we present an
overview of our model (Section 2.2), and finally
describe the model in detail (Sections 2.3–2.4).

2.1 Measure of Dialogue Coherence

Semantic vector space models of language repre-
sent each word with a real-valued word embed-
ding vector (Pennington et al., 2014). By simply
taking a weighted average of all its word embed-
dings, a whole sentence can be mapped into the
semantic vector space. We define the coherence
of a dialogue as the average distance between se-
mantic vectors of preceding dialogue context and
its response.

Let x = {x1, . . . xj , . . . xJ} represent a dia-
logue context and y = {y1, . . . yi, . . . yI} a re-
sponse. J and I are the numbers of words in
the dialogue context and its response, respectively.
Semantic vector space models map each word xj
into embeddings xemb

j , and yi into yemb
i . The se-

mantic representation of a dialogue context x is
then xemb =

∑J
j=1wjx

emb
j ; for a response y, it

is yemb =
∑I

i=1 viy
emb
i . Here, wj and vi are im-

portance weights for each word in the sentence.2

The measure of coherence is then defined as the
cosine distance of the two semantic vectors of the
dialogue context and its response:

C (x,y) = cos
(
xemb,yemb

)
(1)

2.2 Model Overview

End-to-end response generation for dialogue can
be formalized as follows: Given a dialogue con-
text x, a dialogue generator generates the next ut-
terance y. During the training process, the aim for
a dialogue generator is to maximize the probabil-
ity p (y|x) over the training dataset. To encode

2We set the importance weights to 0 for a list of stop
words (high-frequency words such as articles and preposi-
tions, names, punctuation marks), 1 otherwise.

https://github.com/XinnuoXu/CVAE_Dial
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dialogue contexts that adequately incorporate co-
herence information, we build our generator based
on the cVAE model of Hu et al. (2017), which has
been used to control text generation with respect
to linguistic properties, such as tense or sentiment.

In our model, the response y is generated condi-
tioned on the previous conversation x, a diversity-
promoting latent variable z, and a latent variable
c indicating dialogue coherence; z and c are in-
dependent. The generation probability p (y|x) is
defined as:

p (y|x) =

∫
z,c
p (y|x, z, c) p (z, c|x) dz dc

=

∫
z,c
p (y|x, z, c) p (z|x) p (c|x) dz dc

(2)

Unfortunately, optimizing Eq (2) during train-
ing is intractable; therefore, we apply variational
inference and optimize instead the variational
lower bound:

log p (y|x) = log

∫
z,c
p (y|x, z, c) p (z, c|x) dz dc

≥ Eq(z|x,y)p(c|x,y) [log p (y|x, z, c)]
−DKL (q (z|x,y) ‖ p (z|x))

(3)

where p (y|x, z, c) is the probability of gener-
ating utterance y given x, z and c; q (z|x,y)
stands for the approximate posterior distribution
of the latent variable z conditioned on dialogue
context x and the gold response y; p (c|x,y)
is the measure of coherence between context x
and response y; p (z|x) is the true prior distribu-
tion of z conditioned only on dialogue context x;
DKL (·|·) denotes the KL-divergence. We assume
that both q (z|x,y) and p (z|x) are Gaussian with
mean vectors µappr, µtrue and covariance matrices
Σappr, Σtrue.

2.2.1 Model Details

Optimizing Eq (3) consists of two parts: (1) min-
imizing the KL-divergence between the approxi-
mate posterior distribution and the true prior dis-
tribution of z, (2) maximizing the probability of
generating the gold response y conditioned on di-
alogue context x and coherence factors z and c.
Figure 2 shows the pipeline of the training proce-
dure.

Encoder: First, we encode a dialogue context x
into a hidden state h using the context encoder,
which is based on Recurrent Neural Networks
(RNNs). Then the posterior network encodes both
dialogue context x and gold response y into a hid-
den state happr followed by two linear transfor-
mations fappr (·) and gappr (·) to map happr into
mean vector µappr and covariance matrix Σappr.
The latent variable z can be sampled from the dis-
tribution N (µappr,Σappr):

µappr = fappr (happr)

Σappr = gappr (happr)

q (z|x,y) = N (µappr,Σappr)

(4)

The prior network in Figure 2 takes a form similar
to the posterior network:

µtrue = ftrue (htrue)

Σtrue = gtrue (htrue)

p (z|x) = N (µtrue,Σtrue)

(5)

where htrue is the final hidden state of an RNN en-
coding only the dialogue context x, and ftrue (·),
gtrue (·) are linear transformations. Code c is
given by the coherence measure from Eq (1).

Decoder: We build an attention-based decoder
(Bahdanau et al., 2015; Luong et al., 2015) using
RNNs to generate responses conditioned on en-
coded dialogue context h, diversity signal z, and
coherence signal c. We concatenate the latent vari-
ables z and c to the context encoder hidden state h
and feed them into the decoder as the initial hidden
state s0, similar to Hu et al. (2017).

During the decoding process, tokens are gener-
ated sequentially under the following probability
distribution:

p (y|x, z, c) =
I∏

i=1

p
(
yi|y<i,x, z, c

)
=

I∏
i=1

g (yi−1, si,ai)

(6)

where I is the length of the produced response;
g (·) is an RNN; si is the hidden state of the de-
coder at time step i which is conditioned on the
previously generated token yi−1, the previous hid-
den state si−1, and the weighted attention vector
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Figure 2: The training process of the generative model. First, the dialogue context is encoded: h is the final hidden
state of the context encoder. Then we derive the diversity-promoting latent variable z. Next, we compute the latent
variable c that corresponds to the measure of coherence between the dialogue context x and the generated response
y. We concatenate all three vectors into s to feed the decoder. a is the attention matrix calculated for every time
step of the decoding process.

ai:

si = f (yi−1, si−1,ai) (7)

ai =
J∑

j=1

wijhi (8)

where J is the number of tokens of the dialogue
context; hi is the ith hidden state of the encoder;
the attention weight wij of each context hidden
state hi is computed following Luong et al. (2015).

Context Gate: To increase the influence of code
c, we introduce the context gate k. Unlike Tu et al.
(2017), whose context gate assigns an element-
wise weight to the input signal deriving from the
encoder RNN, we build the context gate condi-
tioned only on the coherence signal:

ki = λσ
(
c− c′i

)
(9)

where σ is the sigmoid function; λ is a bias term;3

c is the target value of the measure of coherence,
calculated by C (x,y) (see Section 2.1); c′i is the
measure of coherence between the dialogue con-
text and the generated prefix sentence at time step
i, calculated by C

(
x,y<i

)
. Now Eq (7) with the

context gate applied to si can be rewritten as:

si = f
(
yi−1, (1− ki) ◦ si−1, ki ◦ ai

)
(10)

where ◦ denotes element-wise multiplication.
The coherence-informed context gate aims to

dynamically control the ratio at which preceding
dialogue context and previously generated tokens
of the current response contribute to the generation
of the next token in the response.

3We set λ empirically against the development set.

2.3 Training
Our generator is trained similarly to Hu et al.
(2017). The objective function is a weighted com-
bination of three losses (generation, coherence,
and diversity):

L = LG + λcLc + λzLz (11)

To teach the generator to produce responses close
to the training data, we maximize the generation
probability of the training response log p (y|x)
given the dialogue context according to Eq (2).
During training, we set LG = − log p (y|x) and
minimize the following:

LG =DKL (q (z|x,y) ‖ p (z|x))

− Eq(z|x,y)p(c|x,y) [log p (y|x, z, c)]
(12)

Apart from the generation loss, the coherence
measure provides an extra learning signal Lc
which pushes the generator to produce responses
that match the coherence signal given by the latent
variable c.

Lc = −Ep(z|x)p(c)

[
log p

(
c|x, G̃ (x, z, c)

)]
(13)

In Eq (13), p (c) = N (0, 1) is the prior distribu-
tion of the coherence variable c. To ensure that
the loss is differentiable, we cannot sample words
from the response vocabulary. Instead we define
G̃ (x, z, c) = ys = {ys

1, . . .y
s
i , . . .y

s
I} as the se-

quence of output word probability distributions.
p
(
c|x, G̃ (x, z, c)

)
is predicted by the coherence

measure defined in Eq (1) with yemb set as:

yemb =
I∑

i=1

ys
j
>Mglv (14)
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where Mglv is the word embedding matrix trained
using GloVe (Section 2.1).

The last component in Eq (11) is the indepen-
dent constraint Lz that forces the soft distribution
over the generated response G̃ to be diverse, so
that it is able to faithfully reproduce the latent vari-
able z:

Lz = −Ep(z|x)p(c)

[
log q

(
z|x, G̃ (x, z, c)

)]
(15)

where q
(
z|x, G̃ (x, z, c)

)
is predicted by the pos-

terior network with ys
j as the soft input to the RNN

encoder at each time step j.

2.4 Inference

Figure 3 shows the inference process of the gen-
erative model. Given a dialogue context x and an
expected coherence value c, the context encoder
first encodes the dialogue context into a hidden
state h. The prior network then generates a sam-
ple z′ conditioned on the dialogue context. The
decoder is initialized with s, i.e., the concatena-
tion of h, z and c. During decoding, the next
word is generated via the context gate modulating
between the attention-reweighted context and the
previously generated words of the response.

3 Dataset and Filtering

Dataset for Generator

We train and evaluate our models on the OpenSub-
titles corpus (Lison and Tiedemann, 2016) with
automatic dialogue turn segmentation (Lison and
Meena, 2016).4 A training pair consists of a dia-
logue context and a corresponding response. We
consider three consecutive turns as the dialogue
context and the following turn as the response.
From a total of 65M instances, we select those
that have context and response lengths of less than
120 and 30 words, respectively. We create two
datasets:

1. OST (plain OpenSubtitles) consists
of 2M/4K/4K instances as our train-
ing/development/test sets, selected randomly
from the whole corpus;

2. fOST (filtered OpenSubtitles) contains the
same amount of instances, but randomly se-
lected only among those that have a measure of

4http://www.opensubtitles.org

Dataset Coh D-1% D-2% D-Sent%
OST 0.390 14.3 57.9 83.8
fOST 0.801 15.5 62.9 89.3

Table 1: Coherence and diversity metrics7 for the OST
and fOST datasets (see Section 3 for the datasets and
Section 4.2 for metrics definition).

coherence score C (x,y) ≥ 0.68.5

Filtering of the OpenSubtitles corpus is moti-
vated by the fact that by removing the video and
audio modalities which the subtitles originally ac-
companied, we are very often left with incomplete
and incoherent dialogues. Therefore, by keep-
ing dialogues with high coherence scores, we aim
at building a high quality corpus with (1) more
semantically coherent and topically related con-
texts and responses, and (2) fewer general and
dull responses. Table 3 shows the coherence and
diversity metrics (cf. Section 4.2) between OST
and fOST. Unsurprisingly, coherence for fOST is
much higher than OST, with a slightly higher di-
versity. We list dialogue examples for different co-
herence scores in Supplemental Material B.

Dataset for Coherence Measure
In order to accurately measure coherence on our
domain using the semantic distance as defined in
Section 2.1, we train GloVe embeddings on the
full OpenSubtitles corpus (i.e. 100K movies).

4 Experiments

Our generator model, ablative variants, and base-
lines are implemented using the publicly avail-
able OpenNMT-py framework (Klein et al., 2017)
based on Bahdanau et al. (2015) and Luong et al.
(2015). We used the publicly available glove-
python package8 to implement our coherence
measure.

We experiment on two versions of our model:
(1) cVAE with the coherence context gate as de-
scribed in Section 2.3 (cVAE-XGate), (2) cVAE
with the original context gate implementation of

5The coherence score is calculated as shown in Eq (1).
We observed that the scores on the training set follow a nor-
mal distribution with a slight tail on the negatively correlated
side, so we fit a normal distribution to the data with parame-
ters N(0.25, 0.22) and set the cut-off to +2σ. A histogram
of coherence scores is shown in Figure 5 in Supplemental
Material A.

7Note that Distinct-1 and Distinct-2 are computed on a
randomly selected subsets of 4k responses.

8https://github.com/maciejkula/
glove-python

http://www.opensubtitles.org
https://github.com/maciejkula/glove-python
https://github.com/maciejkula/glove-python
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Figure 3: The inference process of the generative model, where the latent variable c is given as an input.

(Tu et al., 2017) (cVAE-CGate). For each of these,
we consider the main variant where the input co-
herence measure c is preset to a fixed ideal value as
estimated on development data (1.0 for OST and
0.95 for fOST), as well as an oracle variant where
we use the true coherence measure between the
context and the gold-standard response in the test
set (indicated with “(C)” in Tables 2 and 3).

We compare against two baseline models: (1)
a vanilla E-D with attention (Attention) (Luong
et al., 2015); (2) an enhancement where output
beams are rescored using the maximum mutual in-
formation anti-language model (MMI-antiLM) of
Li et al. (2016a) (MMI).

4.1 Parameter Settings
We set our model parameters based on preliminary
experiments on the development data.

We use 2-layer RNNs with LSTM cells
(Hochreiter and Schmidhuber, 1997) with in-
put/hidden dimension of 128 for both the context
encoder and the decoder. The dropout rate is set
to 0.2 and the Adam optimizer (Kingma and Ba,
2015) is used to update the parameters. A vocab-
ulary of 25,000 words is shared between the en-
coder and the decoder.

Both the posterior network and prior network
for the latent variable learning are built with 2-
layer LSTM RNNs with input/hidden dimension
of 64. The dimension of the latent variable z is set
to 20. Same as for the encoder and decoder, the
dropout rate is 0.2 and the Adam optimizer is used
to update the parameters.

The window size for GloVe computation in our
coherence measure is set to 10.

4.2 Evaluation metrics
We use a number of metrics to evaluate the outputs
of our models:
• BLEU, B1, B2, B3 – the word-overlap

score against gold-standard responses (Papineni
et al., 2002) used by the vast majority of recent

dialogue generation works (Zhao et al., 2017;
Yao et al., 2017; Li et al., 2017a, 2016c; Sor-
doni et al., 2015; Li et al., 2016a; Ghazvinine-
jad et al., 2017). BLEU in this paper refers to
the default BLEU-4, but we also report on lower
n-gram scores (B1, B2, B3).9

• Coh – our novel GloVe-based coherence score
calculated using Eq (1) showing the semantic
distance of dialogue contexts and generated re-
sponses.
• D-1, D-2, D-Sent – common metrics used to

evaluate the diversity of generated responses
(e.g. Li et al., 2016a; Xu et al., 2017; Xing et al.,
2017; Dhingra et al., 2017): the proportion of
distinct unigrams, bigrams, and sentences in the
outputs.

5 Results

All model variants described in Section 4 are
trained on both OST and fOST datasets. Tables 2
and 3 present the scores of all models tested on
the OST and fOST test sets, respectively. Note
that in addition to testing the models on the respec-
tive test sections of their training datasets, we also
test them on the other dataset (OST-trained mod-
els on fOST and vice-versa). This way, we can ob-
serve the performance of the fOST-trained models
in more noisy contexts and see how good the OST-
trained models are when evaluated against coher-
ent responses only.

Given all the evaluated model variants, we can
observe the effects and contributions of the indi-
vidual components of our setup:

• Data filtering: The models trained on fOST
consistently outperform the same models
trained on OST – for all evaluation metrics and
on both test sets. This shows that coherence-
based training data filtering is generally benefi-
cial.
9We use the Multi-BLEU script from OpenNMT to mea-

sure BLEU scores.
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Training data Model BLEU% B1% B2% B3% Coh D-1% D-2% D-Sent%

OST

Attention 1.32 10.92 3.85 2.10 0.293 3.4 14.2 25.6
MMI 1.31 11.06 3.88 2.09 0.284 3.3 14.6 28.2
cVAE-CGate (C) 1.58 11.86 4.45 2.48 0.311 4.1 15.0 28.2
cVAE-XGate (C) 1.51 13.38 4.97 2.58 0.324 3.9 14.5 29.8
cVAE-CGate (1.0) 1.60 17.08 5.78 2.86 0.404 5.0 27.1 79.7
cVAE-XGate (1.0) 1.44 15.83 5.34 2.62 0.413 4.5 22.6 80.2

fOST

Attention 1.79 15.43 5.65 2.94 0.758 11.9 41.8 92.7
MMI 1.99 16.24 6.06 3.22 0.764 11.9 44.5 95.8
cVAE-CGate (C) 2.10 15.98 6.05 3.35 0.728 11.9 37.6 88.4
cVAE-XGate (C) 1.85 16.44 5.94 3.07 0.706 10.3 31.2 80.4
cVAE-CGate (0.95) 2.02 15.52 5.78 3.16 0.767 10.6 44.8 98.7
cVAE-XGate (0.95) 1.64 14.43 5.20 2.70 0.745 9.0 36.9 98.7

Table 2: Evaluation results on the OST test set (see Section 4 for model description and Section 4.2 for metrics
definition). Note that the cVAE-CGate(C) / cVAE-XGate(C) models use the true c value between the context and
the gold response as input. Other cVAE-CGate / cVAE-XGate models use fixed values for c selected on dev sets
shown in brackets. BLEU score reported here is BLEU-4; B1, B2 and B3 denote lower n-gram BLEU scores.

Training data Model BLEU% B1% B2% B3% Coh D-1% D-2% D-Sent%

OST

Attention 0.86 8.34 2.79 1.45 0.284 3.6 14.6 29.4
MMI 0.89 8.47 2.89 1.48 0.278 3.7 15.3 31.5
cVAE-CGate (C) 1.64 10.20 4.17 2.40 0.329 5.1 19.4 35.8
cVAE-XGate (C) 1.80 11.70 4.90 2.83 0.359 5.2 19.2 39.7
cVAE-CGate (1.0) 2.25 16.82 6.81 3.70 0.422 5.4 28.2 81.0
cVAE-XGate (1.0) 2.41 18.62 7.56 4.09 0.434 4.8 23.4 84.0

fOST

Attention 3.84 16.65 8.72 5.54 0.803 12.8 43.4 88.7
MMI 3.84 16.81 8.78 5.57 0.803 12.6 42.5 88.8
cVAE-CGate (C) 4.58 17.64 9.53 6.30 0.796 12.4 41.6 85.5
cVAE-XGate (C) 4.33 18.43 9.59 6.11 0.783 10.7 33.1 78.8
cVAE-CGate (0.95) 4.98 20.95 10.93 7.02 0.814 12.1 51.4 98.2
cVAE-XGate (0.95) 4.47 20.98 10.43 6.50 0.797 10.4 42.5 97.6

Table 3: Evaluation results on the fOST test set (see Section 4 and Table 2 for model description; see Section 4.2
for metrics definition). BLEU score reported here is BLEU-4; B1, B2 and B3 denote lower n-gram BLEU scores.

• cVAE-Context Gate models: Nearly all cVAE-
based models perform markedly better than the
baselines w.r.t. BLEU, coherence, and diver-
sity.10

If we look at models trained on OST and
tested on fOST (the top half of Table 3), we
can see that all cVAE-based models, espe-
cially cVAE-XGate, are able to learn to pro-
duce coherent and diverse response even when
trained on a noisy, incoherent corpus. Ex-
amples of responses generated by the baseline
MMI model and by cVAE-XGate in Figure 4
show that cVAE-XGate mostly produces more
diverse and coherent responses than MMI.

• Preset c vs. oracle models with gold-standard
c: Table 2 shows that on the noisy OST test set,
cVAE-based models using the gold-standard

10 We performed paired bootstrap re-sampling for the best
cVAE model and the best baseline model in each experiments
set (Table 2 and Table 3) as is done for MT (Koehn, 2004),
which confirmed statistical significance at 99% confidence
level for all cases except for models trained on fOST and
tested on OST (bottom half of Table 2).

value of c achieve higher BLEU scores than
models using preset c. This is expected since
many gold-standard responses in the unfiltered
set have a low coherence score; – the model
can generate a more generic response if the
gold-standard c is low. The models with pre-
set c always attempt to generate coherent re-
sponses, which is apparent from the other met-
rics: Coh and D-Sent are consistently higher
than for models using gold-standard c.

On the fOST test set where only high-coherence
responses are expected, models using fixed c
consistently reach higher scores in all metrics
including BLEU (see Table 3). This shows that
in general, using a preset constant value of c
works well, even better than using the gold-
standard c.

In sum, using our coherence measure both for
data filtering and inside the models leads to output
performance improvements.
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Dialogue context Response
A: i have an audition at 4:00. B-GT: you volunteered.

1 B: apparently now i’m cooking dinner. B-MMI: i don ’t know.
A: how did this all happen? B-XGT: well , i’m going to have a dinner.
A: it’s not that easy. B-GT: the waiting list would take too long.

2 B: we can’t contact potential donors. B-MMI: i don’t know.
A: if we want to save frank, his brother is his only hope B-XGT: we can’t save him.
A: that fish ate my fish! B-GT: you’ll wait till next year to win one of these.

3 B: you cost me £30,000 B-MMI: i’m sorry.
A: sorry, folks. B-XGT: you owe me a little fish.
A: was it what you wanted? B-GT: you like model planes?

4 B: no. B-MMI: i wanted to know.
A: i wanted an airplane. B-XGT: i wanted a helicopter.
A: great. B-GT: yeah, a vanilla decaf latte.

5 B: thanks so much. B-MMI: no.
A: vanilla decaf latte? B-XGT: yeah , that ’s a good coffee
A: to make everybody happy. B-GT: and stick it in your mouth.

6 B: which means that sometimes B-MMI: and you got to take a shower.
A: you got to take a pile of poop B-XGT: and you got to take a walk.
A: now you’ll knock again and say you forgot to ask B-GT: should i knock and make her come here for that?

7 B: if she has a friend for your friend. B-MMI: you’re crazy!
A: are you crazy? B-XGT: i’m crazy, i’m crazy.
A: i knew you would say that. B-GT: you are all way too pretty to be arguing.

8 B: mr. kerem is a charming and decent guy. B-MMI: he’s a very good man.
A: and he’s really into you. B-XGT: i didn’t say that.

Figure 4: Generation output examples comparing two models trained on the OST dataset and tested on the
fOST test set: the MMI baseline (B-MMI) and our cVAE-XGate (1.0) model (B-XGT). B-GT is the ground-truth
response from the test set. The three sequential dialog turns on the left are the preceding dialogue context used to
generate the responses. Corresponding topical phrases are underlined. We can see that cVAE-XGate (1.0) mostly
produces markedly more coherent and specific outputs than MMI (1-5). In some cases, it is comparable with MMI
(6-7) and occasionally, it is less coherent (8).

6 Related Work

Our work fits into the context of the very active
area of end-to-end generative conversation mod-
els, where neural E-D approaches have been first
applied by Vinyals and Le (2015) and extended by
many others since.

Many works address the lack of diversity
and coherence in E-D outputs (Sountsov and
Sarawagi, 2016; Wei et al., 2017) but do not at-
tempt to model coherence directly, unlike our
work: Li et al. (2016a) use anti-LM reranking; Li
et al. (2016c) modify the beam search decoding al-
gorithm, similar to Shao et al. (2017) in addition
to using a self-attention model. Mou et al. (2016)
predict keywords for the output in a preprocessing
step while Wu et al. (2018) preselect a vocabulary
subset to be used for decoding. Li et al. (2016b)
focus specifically on personality generation (using
personality embeddings) and Wang et al. (2017)
promote topic-specific outputs by language-model
rescoring and sampling.

A lot of recent works explore the use of addi-
tional training signals and VAE setups in dialogue

generation. In contrast to this paper, they do not
focus explicitly on coherence: Asghar et al. (2017)
use reinforcement learning with human-provided
feedback, Li et al. (2017a) use a RL scenario with
length as reward signal. Li et al. (2017b) add an
adversarial discriminator to provide RL rewards
(discriminating between human and machine out-
puts), Xu et al. (2017) use a full adversarial train-
ing setup. The most recent works explore the us-
age of VAEs: Cao and Clark (2017) explore a
vanilla VAE setup conditioned on dual encoder
(for contexts and responses) during training, the
model of Serban et al. (2017) uses a VAE in a hier-
archical E-D model. Shen et al. (2017) use a cVAE
conditioned on sentiment and response genericity
(based on a handwritten list of phrases). Shen et al.
(2018) combine a cVAE with a plain VAE in an
adversarial fashion.

We also draw on ideas from other areas than di-
alogue generation to build our models: Tu et al.
(2017)’s context gates originate from machine
translation and Hu et al. (2017)’s cVAE training
stems from free-text generation.
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7 Conclusions and Future Work

We showed that explicitly modeling coherence
and optimizing towards coherence and diversity
leads to better-quality outputs in dialogue response
generation. We introduced three extensions to cur-
rent encoder-decoder response generation models:
(1) we defined a measure of coherence based on
GloVe embeddings (Pennington et al., 2014), (2)
we filtered the OpenSubtitles training corpus (Li-
son and Meena, 2016) based on this measure to
obtain coherent and diverse training instances, (3)
we trained a cVAE model based on (Hu et al.,
2017) and (Tu et al., 2017) that uses our coherence
measure as one of the training signals. Our ex-
perimental results showed a considerable improve-
ment in the output quality over competitive mod-
els, which demonstrates the effectiveness of our
approach.

In future work, we plan to replace the GloVe-
based measure of coherence with a trained dis-
criminator that distinguishes between coherent
and incoherent responses (Li and Jurafsky, 2017).
This will allow us to use extend the notion of co-
herence to account for phenomena such as topic
shifts. We also plan to verify the results with a
human evaluation study.
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