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Abstract

Generating text from structured data is impor-
tant for various tasks such as question answer-
ing and dialog systems. We show that in at
least one domain, without any supervision and
only based on unlabeled text, we are able to
build a Natural Language Generation (NLG)
system with higher performance than super-
vised approaches. In our approach, we inter-
pret the structured data as a corrupt represen-
tation of the desired output and use a denois-
ing auto-encoder to reconstruct the sentence.
We show how to introduce noise into training
examples that do not contain structured data,
and that the resulting denoising auto-encoder
generalizes to generate correct sentences when
given structured data.

1 Introduction

Natural Language Generation (NLG) is the task
of generating text from structured data. Recent
success in Deep Learning motivated researchers
to use neural networks instead of human designed
rules and templates to generate meaningful sen-
tences from structured information. However,
these supervised models work well only when pro-
vided either massive amounts of labeled data or
when restricted to a limited domain. Unfortu-
nately, labeled examples are costly to obtain and
are non-existent for many domains. Conversely,
large amount of unlabeled data are often freely
available in many languages.

A labeled example is given in Table 1. One la-
beled example consists of a set of slot pairs and at
least one golden target sequence. Each slot pair
has a slot name (e.g. “name”) and a slot value
(e.g. “Loch Fyne”). In this work, we present
an unsupervised NLG approach that learns its pa-
rameters without the slot pairs on target sequences
only. We use the approach of a denoising auto-
encoder (DAE) (Vincent et al., 2008) to train our

name ‘ type ‘ food ‘ family friendly
Loch Fyne ‘ restaurant ‘ Indian ‘ yes

Table 1: Three possible correct target sequences for the
structured data above: (a) There is an Indian restaurant
that is kids friendly. It is Loch Fyne. (b) Loch Fyne is a
well-received restaurant with a wide range of delicious
Indian food. It also delivers a fantastic service to young
children. (c) Loch Fyne is a family friendly restaurant
providing Indian food.

model. During training, we use corrupt versions
of each target sequence as input and learn to re-
construct the correct sequence using a sequence-
to-sequence network (Kalchbrenner and Blunsom,
2013; Sutskever et al.,, 2014; Bahdanau et al.,
2015). We show how to introduce noise into the
training data in such a way that the resulting DAE
is capable of generating sentences out of a set of
slot pairs. Taking advantage of using unlabeled
data only, we also incorporate out-of-domain data
into the training process to improve the quality of
the generated text.

2 Network

In all our experiments, we use our in-house
attention-based sequence-to-sequence (seq2seq)
implementation which is similar to Bahdanau
etal. (2015). The approach is based on an encoder-
decoder network. The encoder employs a bi-
directional RNN to encode the input words x =
(21, ...,2;) into a sequence of hidden states h =
(h1, ..., h;), where [ is the length of the input se-
quence. Each h; is a concatenation of a left-to-

ﬁ
right h; and a right-to-left E RNN:
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where f and ? are two gated recurrent units
(GRU) proposed by Cho et al. (2014).
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Given the encoded h, the decoder predicts the
target sentence by maximizing the conditional log-
probability of the correct output y* = (v7,...4},),
where m is the length of the target. At each time
t, the probability of each word y, from a target
vocabulary V), is:

p(yelh,yi1y1) = g(se, i1, Hy), (1)

where ¢ is a two layer feed-forward neural net-
work over the embedding of the previous target
word y;_;, the hidden state s;, and the weighted
sum of h (H,).

Before we compute s; and Hy, we first covert
s¢—1 and the embedding of y;_; into an intermedi-
ate state s, with a GRU w as:

sp = u(si—1, Y1) (2)

Then we have s; as:

st = q(st, M) (3)
where ¢ is a GRU, and the H; is computed as:
l .. <—
Ht — Z;’:l (atﬂ gl) , (4)
> iy (i i)

The attention weights, a in Hy, are computed with
a two layer feed-forward neural network 7:

i = exp{r(s}, hi)} 5)

> o1 exp{r(st, hy)}
3 Unsupervised Approach

Our unsupervised model is based on the same
training idea as a denoising auto-encoder (DAE)
similar to Vincent et al. (2008). The original DAEs
were feedforward nets applied to (image) data.
In our experiments, the model architecture is a
seq2seq model similar to Bahdanau et al. (2015).
The idea of a DAE is to train a model that is able
to reconstruct each training example from a par-
tially destroyed input. This is done by first cor-
rupting each training sequence x; to get a partially
destroyed version ;.

In our unsupervised experiments, we generate
the training data with the following corrupting
process, parameterized by the desired percentage
p of deletion: for each target sequence z;, a fixed
percentage p of words are removed at random,
while the others are left untouched. We sample
a new corrupt version z; in each training epoch.

Instead of always removing a fixed percentage of
words, we sample p for each sequence separately
from a Gaussian distribution with mean p = 0.6
and variance 0.1. We chose p = 0.6 based on the
average length ratio between the slot values and
the target sequences in our labeled training data.

This corruption approach is motivated by the
fact that many NLG problems are facing a simi-
lar task to the one the DAE is solving. Given some
structured information, the task is to generate a tar-
get sequence that includes all the information. If
we map the structured information to phrases that
should be in the desired output, then the structured
data problem resembles the DAE problem. For in-
stance, if we have the following structured exam-
ple: name: Aromi - family friendly: yes — Aromi
has a family friendly atmosphere. , we convert it
into the input Aromi family friendly that we can
feed to the DAE. To preprocess the structured data,
we convert the boolean feature family friendly into
a meaningful phrase ("family friendly”) by using
the slot name. For all non boolean slot pairs,
we just use the slot values as meaningful phrases.
Please keep in mind this transformation is only
needed during inference as the training data has
no slot pairs and only consists of pairs of corrupt
and correct target sequences.

Nevertheless, there are two major differences
between the training procedure of a DAE and an
inference instance in NLG: First, we do not need
to predict any content information in NLG as all
of the content information is already provided by
the structured data. On the other hand, a DAE
training instance can also remove content words
from the sentence. To align the two much closer,
we restrict the words which the DAE is allowed
to remove and apply the following heuristic to the
corruption process of the DAE: Given the absolute
counts N (v;) for each word v; in our vocabulary,
we only allow v; to be removed when its count
N(v;) is larger than a threshold. This heuristic
is motivated by the fact that the corpus frequency
of content words like a restaurant name is most
likely low and the corpus frequency of non-content
words like “the” is most likely high. The corpus
frequencies can be either calculated on the train-
ing data itself or on a different corpora. The latter
one has the advantage that domain specific content
words that are frequent in the training data will
have a low frequency in an out-of-domain corpora.

The second difference is that in a DAE training
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‘ original

Loch Fyne is a family friendly restaurant providing Indian food .

(a) | remove random 60%

Fyne is restaurant food .

(b) remove only words w;
with N (w;) > 100

Loch Fyne family friendly Indian

(c) | shuffle words

family friendly Indian Loch Fyne

Table 2: Training data generation heuristics. (a): random 60% of the words are removed. (b): 60% of the words
are removed, but only words that occur more than 100 times in the training data. Our assumption is that these are
the non-content words. (c): On top of (b), all words are shuffled while keeping all word pairs (e.g. Loch Fyne)

together that also occur in the original sentence.

instance, the words in a corrupt input occur in the
same order as in the desired target. For an NLG
inference instance, the order of the structured in-
put does not need to match the order of the words
in the output. To overcome this issue, we shuf-
fle the words within the corrupt sentence while not
splitting bigrams that also exist in the original sen-
tence. An example of all three heuristics is given
In Table 2.

4 Supervised Approach

For comparison, we train a supervised baseline
based on the vanilla seq2seq model as described
in Section 2. To make better use of the structured
data, we found that the input word embeddings
(wemb) of the seq2seq network should be repre-
sented together by the slot name and value. We
split the word embedding vector into two parts and
use the upper half for a word embedding of the slot
name and the lower half for the word embedding
of the slot value. If a slot value has multiple words,
we build separate word embeddings for each word,
but all having the same upper part (slot name). An
example for the slot pairs of Table 1 is given in
Figure 1.

Wemb || Wemb || Wemb | | Wemb \a{:rr:b
(name) | [(name)| | (type) || (food) friend)
Wemb || Wemb || Wemb || Wemb || Wemb
(Loch) || (Fyne) || (rest.) | |(Indian)|| (yes)

Figure 1: Example input word embeddings for our su-
pervised baseline (Section 4) from the training Exam-
ple of Table 1. The upper half of the word embedding
is used for the slot names; the lower half for the slot
values.

5 Data Sets

The E2E data set (Novikova et al., 2017) contains
reviews in the restaurant domain. Given up to 8

different pieces of information about a restaurant,
the task is to generate an English sentence that in-
cludes all of the provided structured information.
The dataset comes with 42061 training examples.
We split the provided dev set (547 examples) into
validation (tail 268 examples) and test (head 279
examples), each having between 3 and 42 (on av-
erage 8) reference sentences. An example of an
E2E training instance is given in Table 1.

The news-commentary data set is a paral-
lel corpus of news provided by the WMT con-
ference (Bojar et al., 2017) for training ma-
chine translation (MT) systems. For our unsu-
pervised experiments, we use the English news-
commentary part of the corpora only which con-
tains 256,715 sentences.

All corpora are tokenized and we remove sen-
tences that are longer than 60 tokens. In addition
to tokenization, we also apply byte-pair encoding
(Sennrich et al., 2016) when news-commentary
is included in the setup.

’ dataset ‘ task ‘ # examples
E2E NLG 42,061
news-commentary | MT (De-En) 256,715

Table 3: Training data statistics. Each training instance
in NLG contains structured information and one refer-
ence sequence. Each training instance in MT contains
one sentence written in both German and English.

6 Experiments

6.1 Model Parameters

For all of our experiments we utilize the seq2seq
implementation as described in Section 2. We run
inference with a beam size of 5. We use a hid-
den layer size of 1024 and a word embedding size
of 620 and use SGD with an initial learning rate
of 0.5. We halve the learning rate every other
epoch starting from the 5th epoch. We evaluate the
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generated text with BLEU (Papineni et al., 2002),
ROUGE-L (Lin, 2004), and NIST (Doddington,
2002) and use the evaluation tool provided by the
E2E organizers to calculate the scores.

6.2 Automatic Scores

Our experimental results are summarized in Ta-
ble 4. We list two supervised baselines: The first
one is from the organizers of the E2E challenge,
the second one is from our supervised setup (Sec-
tion 4). Our baseline yields better performance on
BLEU and ROUGE-L while reaching similar per-
formance in NIST. Our third (unsupervised) base-
line copy input just runs the evaluation metrics
on the input (slot values of the structured data).
This system performs much worse, but serves as a
lower bound for our unsupervised experiments.

We report results on different unsupervised se-
tups as described in Section 3. The system ran-
domly drop just randomly drops 60% of the words,
but still yields 57.3 BLEU, 65.9 ROUGE-L and 7.3
NIST points. You can easily detect a lot of extra in-
formation in the output that can not be explained
by the structured input. Further, the output sounds
very machine generated as the output depends on
the order of the structured data. The heuristics +
only words w/ count >100 (on ind data) and +
only words w/ count >100 (on ood data) forbid
removing words in the corruption phase that ap-
pear less than 100 times in the in-domain data or
out-of-domain (ood) data, respectively. The lat-
ter setup uses the out-of-domain data for generat-
ing the word counts only and yields an improve-
ment of 5.2 BLEU, 1.3 ROUGE-L and 0.2 NIST
points compared to just randomly dropping words.
The output still sounds very machine generated,
but stops hallucinating additional information. We
further improve the performance by 3.5 BLEU, 3.9
ROUGE-L, and 0.2 NIST points when shuffling the
words in the corrupted input and using the out-of-
domain data also as training examples. We use
the English side of the 256,715 sentences from the
news-commentary dataset as out-of-domain data
only. We did not see any further improvements by
adding more out-of-domain training data.

Finally, we build a semi supervised system that
in addition to the unlabeled data includes the la-
beled information for some of the training exam-
ples. For these, we remove the slot names from
the structured data and use a concatenation of all
slot values as input to learn the correct output.

By jointly using both unlabeled and labeled data,
we yield an additional improvement of 1.0 BLEU
points compared to our best fully unsupervised
system. In our semi supervised setup, we only
use the slot values as input even for the labeled
examples. This explains the drop in performance
when comparing to the supervised setups. All su-
pervised setups also include the slot names in their
input representation.

6.3 Human Evaluation

In addition to automatic scores, we ran human as-
sessment of the generated text as none of the au-
tomatic metrics correlates well with human judg-
ment (Belz and Reiter, 2006).

To collect human rankings, we presented 3 out-
puts generated by 3 different systems side-by-side
to crowd-workers, who were asked to score each
sentence on a 6-point scale for:

e fluency: How do you judge the overall natural-
ness of the utterance in terms of its grammatical
correctness and fluency?

For the next questions, we presented in addi-
tion to the 3 different system outputs, the struc-
tured representations of each example. We asked
the crowd-worker to score the following two ques-
tions on a 5-point scale:

e all information: How much of the given infor-
mation is mentioned in the text?

e bad/ false information: How much false or ex-
tra information is mentioned in the text?

Each task has been given to three different
raters. Consequently, each output has a separate
score for each question that is the average of 3 dif-
ferent ratings. The human evaluation results are
summarized in Table 5. We included the two su-
pervised baselines and our best unsupervised setup
in the human evaluation. The unsupervised setup
outperforms the supervised setups in fluency. One
explanation is that our unsupervised system in-
cludes additional unlabeled data that can not be
included in a supervised setup. Due to our unsu-
pervised learning approach that all words in the
structured data need to be included in the final out-
put, the unsupervised system did not miss any in-
formation. Further, all three outputs included little
false or wrong information that was not included
in the structured data. All in all the output of the
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setup model ‘ BLEU ‘ ROUGE-L ‘ NiIsT ‘
supervised baseline E2E challenge (Dusek and Jurcicek, 2016) | 70.2 72.4 8.3
baseline vanilla seq2seq (Section 4) 72.7 75.1 8.3
baseline copy input 27.7 56.4 32
randomly drop 57.3 65.9 7.3
unsupervised + only words w/ count >100 (on ind data) 59.5 66.4 7.3
+ only words w/ count >100 (on ood data) 62.5 67.2 7.5
+ shuffle pos 64.8 69.4 7.6
+ ood data 66.0 71.1 7.7

semi-supervised + labeled ind data ‘ 67.0 ‘ 72.1 ‘ 7.8 ‘

Table 4: Results on the E2E dataset. The terms ood and ind are abbreviations for out-of-domain and in-domain
respectively. The baseline systems as well as the unsupervised systems that are not labeled with + ood data are
trained on the E2E in-domain training data only.

all extra/ false
system fluency | . . . .
information | information
baseline E2E challenge (Dusek and Jurcicek, 2016) 4.01 4.89 0.05
baseline vanilla seq2seq (Section 4) 4.46 491 0.08
unsupervised (random drop + words w/ count >100 (ood data) 4701 500 0.05
+ shuffle pos + ood data)

Table 5: Human evaluation results: We generated 279 output sequences for each of the 3 listed systems. Each
sequence has been evaluated by 3 different raters and the score is the average of 837 ratings per system. For
each task and sequence, the raters where asked to give a score between 0 and 5. A score of 5 for fluency means
that the text is fluent and grammatical correct. A score of 5 for all information means that all information from
the structured data is mentioned. A score of O for extra/ false information means that no information besides the
structured data is mentioned in the sequence. Scores labeled with | are significant better than all other systems

(p < 0.0001).

unsupervised system is better than the two super-
vised systems.

We used approximate randomization (AR) as
our significance test, as recommended by (Rie-
zler and Maxwell, 2005). Pairwise tests between
results in Table 5 showed that our novel unsu-
pervised approach is significantly better than both
baselines regarding fluency and mentioning all in-
formation with the likelihood of incorrectly reject-
ing the null hypothesis of p < 0.0001.

7 Limitations

Our unsupervised approach has two limitations
and is therefore not easily applicable to all NLG
problems or datasets. First, we can only run our
approach for datasets where the input meaning
representation either overlaps with target texts or
we need to generate rules that map the structured
data to target words. Unfortunately, the needed
pattern can be very complicated and the effort of
writing rules can be similar to the one of building
a template based system.

Second, to be able to generate text from struc-
tured data during inference, the original structured
input is converted to an unstructured one by dis-
carding the slot names. This can be problematic
in scenarios where the slot name itself contributes
to the meaning representation, but the slot name
should not be in the target text. For instances
the structured data of a WEBNLG (Gardent et al.,
2017) training example consists of several subject-
predicate-object tuple features. Many of the fea-
tures for one example have the same subject, but
different predicates and objects. But yet in the fi-
nal output, we prefer to have the subject only once.

8 Related Work

8.1 Neural Language Generation

Due to the recent success in Deep Learning, re-
searchers started to use end-to-end systems to
jointly model the traditional separated tasks of
content selection, sentence planning and surface
realization in one system. Recently, RNNs (Wen
et al., 2015b), attention-based methods (Mei et al.,
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2016) or LSTMs (Wen et al., 2015a) were success-
fully applied for the task of NLG. Liu et al. (2018)
introduced a modified LSTM that adds a field gate
into the LSTM to incorporate the structured data.
Further, they used a dual attention mechanism that
combines attention of both the slot names and the
actual slot content. Sha et al. (2017) extended this
approach and integrated a linked matrix in their
model that learns the desired order of the slots in
the target text. Further, Dusek and Jurcicek (2016)
reranked the n-best output from a seq2seq model
to penalize sentences that miss required informa-
tion or add irrelevant ones. Instead of RNNs, Le-
bret et al. (2016) introduced a neural feed-forward
language model conditioned on both the full struc-
tured data and the structured information of the
previous generated words. In addition, the au-
thors introduced a copy mechanism for boosting
the words given by the structured data.

In contrast to the above mentioned related work,
we train our model in a fully unsupervised fash-
ion. Although, all our experiments have been con-
ducted with the seq2seq model, our unsupervised
approach can be applied on top of all of the dif-
ferent network architectures that are introduced by
the above mentioned papers.

8.2 DAE and Unsupervised Learning

Denoising auto-encoders and unsupervised train-
ing have been applied to various other NLP tasks.
Vincent et al. (2008) introduced denoising one-
layer auto-encoders that are optimized to recon-
struct input data from random corruption. The
outputs of the intermediate layers of these de-
noisers are then used as input features for subse-
quent learning tasks such as supervised classifica-
tion (Lee et al., 2009; Glorot et al., 2011). They
showed that transforming data into DAE repre-
sentations (as a pre-training or initialization step)
gives more robust (supervised) classification per-
formance. Lample et al. (2018) used a denoising
auto-encoder to build an unsupervised Machine
Translation model. Hill et al. (2016) trained a de-
noising auto-encoder on a seq2seq network archi-
tecture for training sentence and paragraph repre-
sentations from the output of the intermediate lay-
ers. They showed that using noise in the encoder
step is helpful to learn a better sentence represen-
tation.

In contrast to the above mentioned related work,
we train a DAE directly on a task and do not

take the intermediate hidden states of a DAE as
sentence representation to help learning a differ-
ent task. Further, none of the related work ap-
plied DAEs on the task of generating sentences
out of structured data. In addition, we modify
the original DAE corruption process by introduc-
ing heuristics that remove non-content words only
to match the input representation of a supervised
NLG training instance.

9 Conclusion

We showed how to train a denoising auto-encoder
that is able to generate correct English sentences
from structured data. By applying several heuris-
tics to the corruption phase of the auto-encoder,
we reach better performance compared to two
fully supervised systems. As no labeled data
is needed in our approach, we further success-
fully improve the quality by incorporating out-of-
domain data into the training phase. We run a hu-
man evaluation for the two supervised baselines
and our best unsupervised setup. We see that the
output of our unsupervised setup not only includes
100% of the structured information, but also out-
performs both supervised baselines in terms of flu-
ency and grammatical correctness.

The unsupervised training scheme gives us the
option to incorporate any unlabeled data. One pos-
sible addition to our approach would be to incor-
porate text in different languages into our system,
so that we can generate the output in any language
from the same structured data.

Our approach is appropriate only for NLG prob-
lems where the goal is to include all the informa-
tion from the structured data in the output. In fu-
ture work, we will focus on the semi-supervised
approach to make the DAE also suitable for prob-
lems where instead of all, only a subset of the
structured information should be included in the
output.
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