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Abstract

Neural machine translation usually adopts au-
toregressive models and suffers from exposure
bias as well as the consequent error propaga-
tion problem. Many previous works have dis-
cussed the relationship between error propa-
gation and the accuracy drop (i.e., the left part
of the translated sentence is often better than
its right part in left-to-right decoding model-
s) problem. In this paper, we conduct a se-
ries of analyses to deeply understand this prob-
lem and get several interesting findings. (1)
The role of error propagation on accuracy drop
is overstated in the literature, although it in-
deed contributes to the accuracy drop prob-
lem. (2) Characteristics of a language play
a more important role in causing the accura-
cy drop: the left part of the translation result
in a right-branching language (e.g., English) is
more likely to be more accurate than its right
part, while the right part is more accurate for a
left-branching language (e.g., Japanese). Our
discoveries are confirmed on different mod-
el structures including Transformer and RNN,
and in other sequence generation tasks such as
text summarization.

1 Introduction

Neural machine translation (NMT) has attracted
much research attention in recent years (Bahdanau
etal.,2014; Shen et al., 2018; Song et al., 2018; X-
ia et al., 2018; He et al., 2016; Wu et al., 2017,
2018). The major approach to the task typical-
ly leverages an encoder-decoder framework (Cho
et al., 2014; Sutskever et al., 2014) and the de-
coder usually generates the target tokens one by
one from left to right autoregressively, in which
the generation of a target token is conditioned on
previously generated target tokens.

It has been observed that for an NMT model
with left-to-right decoding, the right part words in
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its translation results are usually worse than the
left part words in terms of accuracy (Zhang et al.,
2018; Bengio et al., 2015; Ranzato et al., 2015;
Hassan et al., 2018; Liu et al., 2016b,a). This phe-
nomenon is referred to as accuracy drop in this
paper. A straightforward explanation to accura-
cy drop is error propagation: If a word is mistak-
enly predicted during inference, the error will be
propagated and the future words conditioned on
this one will be impacted. Different methods have
been proposed to address the problem of accuracy
drop (Liu et al., 2016a,b; Hassan et al., 2018).

Instead of solving the problem, in this paper, we
aim to deeply understand the causes of the prob-
lem. In particular, we want to answer the follow-
ing two questions:

e [s error propagation the main cause of accu-
racy drop?

e Are there any other causes leading to accura-
cy drop?

To answer these two questions, we conduct a
series of experiments to analyze the problem.

First, we train NMT models separately using
left-to-right and right-to-left decoding (Sennrich
et al., 2016; Liu et al., 2016b; He et al., 2017;
Gao et al., 2018) on several language pairs (i.e.,
German to English, English to German, and En-
glish to Chinese). If error propagation is the main
cause of accuracy drop, then the right part word-
s in the translation results generated by right-to-
left NMT models should be more accurate than
the left part words. However, we observe the op-
posite phenomenon that the accuracy of the right
part words of the translated sentences in both left-
to-right and right-to-left models is lower than that
of the left part, which contradicts with error prop-
agation. This shows that error propagation alone
cannot well explain the accuracy drop and even
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suggests that error propagation may not exist or
matter.

Second, to further investigate the influence of
error propagation on accuracy drop, we conduct a
set of experiments with teacher forcing (Williams
and Zipser, 1989) during inference, in which we
feed the ground-truth preceding words to predict
the next target word. Teacher forcing eliminates
exposure bias as well as error propagation in in-
ference. The results verify the existence of error
propagation, since the later part (the right part in
left-to-right decoding and the left part in right-to-
left decoding) of the translation results get more
accuracy improvement with teacher forcing, re-
gardless of the decoding direction. Meanwhile,
the accuracy of the right part is still lower than that
of the left part with teacher forcing, which demon-
strates that there must be some other causes apart
from error propagation leading to accuracy drop.

Third, inspired by linguistics, we find that the
concept of branching (Berg et al., 2011; Payne,
2006) can help to explain the problem. We con-
duct the third set of experiments to study the cor-
relation between language branching and accura-
cy drop. We find that if a target language is right
branching such as English, the accuracy of the left
part words is usually higher than that of the right
part words, no matter for left-to-right or right-to-
left NMT models, while for a left-branching target
language such as Japanese, the accuracy of the left
part words is usually lower than that of the right
part, no matter for which models. The intuitive
explanation is that a right-branching language has
a clearer structure pattern (easier to predict) in the
left part of sentence than that in the right part, s-
ince the main subject of the sentence is usually
put in the left part. We calculate two statistics to
verify this assumption: n-gram statistics (includ-
ing n-gram frequency and conditional probabili-
ties) and dependency parsing statistics. For right-
branching languages, we found higher n-gram fre-
quency/conditional probabilities as well as more
dependencies in the left part compared with that in
the right part. The opposite results are also found
in left-branching languages.

We summarize our findings as follows.

e Through empirical analyses, we find that the
influence of error propagation is overstated
in the literature, which may misguide the fu-
ture research. Error propagation alone cannot
fully explain the accuracy drop in the left or

right part of sentence.

e We find the branching in linguistics well cor-
relates with accuracy drop in the left or right
part of sentence and the corresponding analy-
sis on n-gram and dependency parsing statis-
tics well explain this phenomenon.

Our studies show that linguistics can be very
helpful to understand existing machine learning
models and build better models for language re-
lated tasks. We hope that our work can bring some
insights to the research on neural machine trans-
lation. We believe that our findings can help us
to design better translation models. For example,
the finding on language branching suggests us to
use left-to-right NMT models for right-branching
languages such as English and right-to-right N-
MT models for left-branching languages such as
Japanese.

2 Related Work

2.1 Exposure Bias and Error Propagation

Exposure bias and error propagation are two d-
ifferent concepts but often mentioned together in
literature (Bengio et al., 2015; Shen et al., 2016;
Ranzato et al., 2015; Liu et al., 2016b,a; Zhang
et al., 2018; Hassan et al., 2018). Exposure bias
refers to the fact that the sequence generation mod-
el is usually trained with teacher-forcing while
generates the sequence autoaggressviely during
inference. This discrepancy between training and
inference can yield errors that accumulate quickly
along the generated sequence, which is known as
error propagation (Bengio et al., 2015; Shen et al.,
2016; Ranzato et al., 2015).

Bengio et al. (2015) propose the sched-
uled sampling method to eliminate the exposure
bias and the resulting error propagation, which
achieves promising performance on sequence gen-
eration tasks such as image captioning. Shen et al.
(2016); Ranzato et al. (2015) improve the basic
maximum likelihood estimation (MLE) with rein-
forcement learning or minimum risk training and
aim to address the limitation of MLE training and
exposure bias problem.

2.2 Tackling Accuracy Drop

(Liu et al., 2016b,a; Zhang et al., 2018; Hassan
et al., 2018) mainly ascribe accuracy drop (the ac-
curacy of right part words is worse than that in the
left part in most cases) to error propagation and
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propose different methods to solve this problem.
Liu et al. (2016b,a); Hassan et al. (2018) use a-
greement regularization between the left-to-right
and right-to-left models to achieve better perfor-
mance. Zhang et al. (2018) and (Hassan et al.,
2018) propose to use two-pass decoding to refine
the generated sequence to yield better quality.

All these works focus on error propagation and
accuracy drop. To our knowledge, there is no deep
study about other causes of accuracy drop. In this
paper, we aim to conduct such a study. Our study
shows that accuracy drop is not only caused by er-
ror propagation, but also the characteristics of lan-
guage itself.

3 Error Propagation and Accuracy Drop

3.1 Error Propagation is Not the Only Cause

A left-to-right NMT model feeds target tokens one
by one from left to right in training and generate
target tokens one by one from left to right during
inference, while a right-to-left NMT model trains
and generates token in the reverse direction. Intu-
itively, if error propagation is the root cause of ac-
curacy drop, then a right-to-left NMT model will
generate translations with better right half accura-
cy than the left half. In this section, we study the
results of both left-to-right and right-to-left NMT
models to analyze the relationship between error
propagation and accuracy drop.

We conduct experiments on three translation
tasks with different language pairs, which include:
IWSLT 2014 German-English (De-En), WMT
2014 English-German (En-De) and WMT 2017
English-Chinese (En-Zh). We choose the state-of-
the-art NMT model Transformer (Vaswani et al.,
2017) as the basic model structure and train t-
wo separate models with left-to-right and right-to-
left decoding on each language pair. More details
about the datasets and model descriptions can be
found in supplementary materials (section A.1 and
A.2). We evenly split each generated sentence into
the left half and the right half with same number of
words'. Then for both the left and right half, we
compute their accuracy with respect to the refer-
ence target sentence, in terms of BLEU score (Pa-

11) For most of the sentences, the last word of the sen-
tence is period which is easy to decode. To make a fair com-
parison, we simply remove the last period before dividing the
translation sentence. 2) For sentence with an odd number of
words, we simply remove the word in the middle position to
make the left half and right half have the same number of
words.

De-En En-De En-Zh
left-to-right  31.42 26.93 20.79
right-to-left ~ 30.00 25.35 20.23

Table 1: BLEU scores on the test set of the three trans-
lation tasks with both left-to-right and right-to-left de-
coding.

left-to-right De-En En-De En-Zh
Left 10.17 7.90 741
Right 8.39 6.60 591
right-to-left De-En En-De En-Zh
Right 7.83 6.45 5.77
Left 941 7.11 7.01

Table 2: BLEU scores of the left and right half of left-
to-right and right-to-left NMT models. In (Liu et al.,
2016a), the authors report the partial BLEU score with-
out length penalty, our result is consistent with partial
BLEU if simply removing length penalty when calcu-
lating BLEU.

pineni et al., 2002) 2.

We first report the BLEU scores of the ful-
I translation results (without split) in Table 1. As
can be seen, the accuracy of the model is compara-
ble to state-of-the-art results (Vaswani et al., 2017,
Wang et al., 2017, 2018). Afterwards we report the
BLEU scores of the left half and the right half in
Table 2. We have several observations.

e When translating from left-to-right, the
BLEU score of the left half is higher than the
right half on all the three tasks, which is con-
sistent with previous observation and is able
to be explained via error propagation.

e When translating from right-to-left, the accu-
racy of the left half (in this way it’s the later
part of the generated sentence) is still high-
er than the right half. Such an observation
is contradictory to the previous analyses be-
tween error propagation and accuracy drop,
which regard that accumulated error brought
by exposure bias will deteriorate the quality
in later part of translation (i.e., the left half).

The inconsistent observation above suggests
that error propagation is not the only cause of ac-
curacy drop that there are other factors beyond er-

We use the multi-blewperl script https:
//github.com/moses—smt/mosesdecoder/
scripts/generic/multi-bleu.perl. When com-
puting BLEU score of the left or right half, the reference is
the full reference sentence.
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left-to-right right-to-left

De-En

0 1 A 0 1 A
Left 10.17 10.71 0.54 941 1041 1.00
Right 8.39 925 0.86 783 845 0.62
left-to-right right-to-left
En-De =, 1A o 1 A
Left 7.90 943 1.53 711 10.71 3.60
Right 6.60 836 1.76 6.45 837 192
left-to-right right-to-left
En-Zh —, 1 A 0 1 A
Left 7.41 911 1.70 701 983 2382
Right 591 855 2.64 577 754 177

Table 3: BLEU scores. ”0” represents the translation
results without teacher forcing during inference, and
”1” represents the translation results with teacher forc-
ing during inference. A represents the BLEU score im-
provement of teacher forcing over normal translation.

ror propagation for accuracy drop. It even chal-
lenges the existence of error propagation: does er-
ror propagation really exist? In the next section we
try to answer this question through teacher forcing
experiments.

3.2 The Influence of Error Propagation

Teacher forcing (Williams and Zipser, 1989) in
sequence generation means that when training a
sequence generation model, we feed the previous
ground-truth tokens as inputs to predict the next
target word. Here we apply teacher forcing in the
inference phase of NMT: to generate the next word
Ui, we input the preceding ground-truth words y;
rather than the previously generated words ¢;,
which largely alleviates the effect of error prop-
agation, since there will be no error propagated
from the previously generated words.

Same as last section, we evaluate the quality
of the left and right half of the translation result-
s generated by both the left-to-right and right-to-
left models. The results are summarized in Table
3. For comparison, we also include the BLEU s-
cores of normal translation (without teacher forc-
ing). We have several findings from Table 3 as
follows:

e Exposure bias exists. The accuracy of both
left and right half tokens in the normal trans-
lation is lower than that in teacher forcing,
which feeds the ground-truth tokens as input-
s. This demonstrates that feeding the previ-
ously generated tokens (which might be in-

correct) in inference indeed hurts translation
accuracy.

e Error propagation does exist. We find the er-
ror is accumulated along the sequential gen-
eration of the sentence. Taking En-Zh and the
left-to-right NMT model as an example, the
BLEU score improvement of the right half
(the second half of the generation) of teach-
er forcing over normal translation is 2.64,
which is much larger than the accuracy im-
provement of the left half (the first half of the
generation): 1.70. Similarly, for En-Zh with
the right-to-left NMT model, the BLEU score
improvement of the left half (the second half
of the generation) of teacher forcing over nor-
mal translation is 2.82, which is much larger
than the accuracy improvement of the right
half (the first half of the generation): 1.77.

e Other causes exist. Taking En-De translation
with the left-to-right model as an example,
the accuracy of the left half (9.43) is higher
than that of the right half (8.36) when there
is no error propagation with teacher forcing.
Similar results can be found in other language
pairs and models. This suggests that there
must be some other causes leading to accu-
racy drop, which will be studied in the next
section.

4 Language Branching Matters

Section 3.1 and 3.2 together show that error propa-
gation has influence on but is not the only cause of
accuracy drop. We hypothesize that the language
itself, i.e., its characteristics, may explain the phe-
nomenon of accuracy drop.

Watanabe and Sumita (2002) finds that left-
to-right decoding performs better for Japanese-
English translation while right-to-left decoding
performs better for English-Japanese translation.
We conduct the same analysis settings as in Sec-
tion 3.1 and 3.2 on English-Japanese (En-Jp)
translation dataset. More details about this dataset
and model descriptions can be found in supple-
mentary materials (section A.1 and A.2).

Table 4 shows the BLEU score on the En-Jp test
set. It can be observed that regardless of decoding
direction (i.e., from left-to-right or from right-to-
left) and with or without teacher forcing, the ac-
curacy of the right half is always higher than that
in the left half. This observation on Japanese is

3605



left-to-right right-to-left

0 1 0 1
left 790 991 745 895
right 870 11.52 9.24 10.59

Table 4: BLEU scores on En-Jp test set. ”’0” represents
the normal translation results, and 1" represents the
teacher-forcing translation results.

opposite to English, German and Chinese in Sec-
tion 3.1 and 3.2, and motivates us to investigate the
differences between these languages.

We find that a linguistics concept, the branch-
ing, can differentiate Japanese from other lan-
guages such as English/German. Branching refer-
s to the shape of the parse trees that represen-
t the structure of sentences (Berg et al., 2011;
Payne, 2006). Usually, right-branching sentences
are head-initial, which means the main subject of
the sentence is described first, and is followed by
a sequence of modifiers that provide additional
information about the subject. On the contrary,
left-branching sentences are head-final that putting
such modifiers to the left of the sentence (Payne,
2006).

English is a typical right-branching lan-
guage, while Japanese is almost fully left-
branching (Wikipedia, 2018). The two languages
demonstrate the opposite phenomenon of accuracy
drop as shown in previous studies. When we say a
language is typical left/right-branching, we mean
most of the sentences in this language follows the
left/right-branching structure. While being pre-
dominantly right-branching, German is less con-
clusively so than English. Chinese features a mix-
ture of head-final and head-initial structures, with
the noun phrases are head-final while the stric-
t head/complement ordering sentences are head-
initial as right-branching (Wikipedia, 2018), but
less conclusively than German.

We believe the language branching is a main
cause of accuracy drop. Intuitively, the main sub-
ject of a right-branching sentence is described first
(in the left part) and is followed by additional
modifiers (in the right part) (Berg et al., 2011).
Therefore, the left half of a right-branching sen-
tence is more likely to possess a clearer structure
pattern and thus lead to higher generation accura-
cy than in the right part, since the main subject is
usually simpler and clearer than the modifiers that
providing additional information about the subjec-

t. In next section, we will verify this intuition this
assumption from a statistical perspective.

5 Correlation between Language
Branching and Accuracy Drop

As previous work (Arpit et al., 2017) shows, neu-
ral networks are easy to learn and memorize sim-
ple patterns but difficult to make a correct pre-
diction on noise examples. In this section, we s-
tudy different branching languages from two as-
pects, including the n-gram statistics of a target
language, which has been used as a kind of char-
acterization of hardness of learning (Bengio et al.,
2009), and the dependency statistics in parse trees.
We show that these statistics well correlate with
the accuracy drop between the left half and the
right half of translation results.

5.1 N-gram Statistics

Intuitively speaking, if a pattern occurs frequent-
ly and deterministically, it is easy to be learned by
neural networks. By comparing the general statis-
tics on the n-gram frequency and n-gram condi-
tional probability of the left and right half tokens,
we link the language branching to accuracy drop.

Denote a bilingual dataset D = {(x;,v:}, ¢ =
1,---, M, where each y; is a sequence of words
yi = {yt.---.y]'}. T is the length of y;. F,
and Pi{n denote the average n-gram frequency and
n-gram conditional probability of the left half of
Y; 3, i.e.,

1 T;/2—n+1

11 j j+n—1

P =Tyt 2 T,
i =1

1 T;/2—n+1 v ] ‘
Pl = T/2—ntl > Pyl eyl ),
2

=1

’ M
where F(.) and P(.) are the n-gram frequen-
cy and n-gram conditional probability calculated
from the training dataset. Similarly, £}, and P},
denote the n-gram frequency and n-gram condi-
tional probability of the right half.

We calculate the average n-gram frequencies F,ll
and F] of the left half and right half over all the
target sentences in the training set. We also calcu-
late the average n-gram conditional probabilities
P! and P! over all the training sentences to com-
pare the uncertainty of phrases in the left half and

3Again, we assume 7; is an even number. If not, we sim-
ply remove the middle word of y;, as done in Section 3.1.
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right half.
1 M 1 M
L ! | r

1 M . 1 M
szi,na Pn :Mgl-Pv,n

We also calculate the ratio of the sentences that
the frequency/conditional probability of left half is
bigger/smaller than that in the right half, denoted
as RF>T/REF!<" and RP>"/RPL<T:

@
Pl

M
RFy" = % > U{FL > FLLY,
i=1

M
1
RF." = i > U{F, < FlL}
i=1
3
M
RPT — 1 Z]l pl pr
n - M { i,n > i,n}a
i=1

M
1<r _ 1 1
RP." = i > (P, < P}
=1

We choose n = 2 and 3 to calculate the met-
rics in Equation 2 and 3 on different translation
datasets. The numbers are listed in Table 5 and 6.

We can see the 2/3-gram frequency as well as
the conditional probability of the left half is high-
er than that of the right half for right-branching
languages including English, German and Chinese
in De-En, En-De and En-Zh translation dataset-
s. For left-branching language Japanese, the re-
sult is opposite. The n-gram frequency and con-
ditional probability statistics are consistent with
our observations on accuracy drop in left/right-
branching languages and verify our hypothesis:
right-branching languages have clearer patterns in
left part (with larger n-gram frequency as well
as the conditional probability) and consequently
leads to higher translation accuracy in the left part
than the right part; left-branching languages are
opposite.

We further visualize how the accuracy drop (be-
tween the left half and right half of the translation-
s) correlates with the gap of n-gram statistics in the
left and right part. The accuracy drop (e.g., BLEU
score) of left/right half is taken from the teacher-
forcing with left-to-right decoding in Table 3, and
the n-gram gap is taken from the A in the last row
of Table 5 and 6. Figure 1 shows strong correla-
tion between accuracy drop and the gap of n-gram
statistics: As the gap of n-gram statistics increases
from negative values to positive values, the accu-
racy drop also increases from negative to positive.

De-En En-De
2-gram  3-gram 2-gram  3-gram
F! 5713.8  3122.7 13811.8  687.1
Ey 3026.5 1377.6 116922 4199
RFEP™  59.6% 55.8% 53.8% 53.6%
RFL™ 38.8% 37.6% 46.0% 45.0%
A 20.8% 18.2% 7.8% 8.6%
En-Zh En-Jp
2-gram  3-gram 2-gram  3-gram
F! 17707.0  1954.1 18910.0  1350.0
Fy 16256.4  1250.5 21076.7 1754.0
RF>™  51.9% 50.2% 41.2% 38.0%
RFLS™ 46.7% 43.9% 51.7% 52.3%
A 52% 6.3% -10.5%  -14.3%

Table 5: The n-gram frequency statistics on differen-
t translation datasets. F and F represent the aver-
age of n-gram frequency of left and right half of tar-
get sentences. RF'>" and RF!<" represent the ra-
tio that the n-gram frequency of left half of sentences
are bigger/smaller than that of the right half. A =
RF!>" — RF!<". Note that the sum of RF!>" and
RF!'<" is less than 1 since sentence with less than 4
words does not contribute to the n-gram statistics.

De-En En-De

2-gram 3-gram 2-gram 3-gram

P! 0.137 0.181 0.082 0.155
P 0.092 0.116 0.080 0.148
RP>"  598%  56.6% 50.6% 51.7%
RPI<™  387%  36.4% 492%  47.0%
A 212%  20.2% 1.4% 4.7%
En-Zh En-Jp
2-gram  3-gram 2-gram  3-gram
P! 0.064 0.113 0.082 0.171
Pr 0.055 0.108 0.086 0.191
RP>"  521% 47.8% 439%  39.4%
RPI<™  46.6%  47.0% 492%  509%
A 5.5% 0.8% 53%  -11.5%

Table 6: The n-gram conditional probability statistic-
s on different translation datasets. P. and P! rep-
resent the average n-gram conditional probability of
left and right half of target sentences. RP.>" and
RP!<" represent the ratio that the n-gram frequency
of left half are bigger/smaller than that of the right half.
A = RP!>"—RP!<". Note that the sum of RP.>" and
RP,IL<T is less than 1 due to two reasons: (1) sentence
with less than 4 words does not contribute to the statis-
tics, and (2) we remove the n-gram condition probabil-
ity with the denominator less than 100 to make proba-
bility calculation robust.
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Figure 1: Accuracy drop (the gap between the left/right BLEU score) with respect to the ARF5 and ARPs3 from
Table 5 and 6 in the four translation tasks. The x-axis ARF3 and ARP; represent the gap of between the left
and right ratio of the 3-gram frequency/conditional probability defined in Table 5 and 6. The y-axis represents the
accuracy drop in terms of BLEU score calculated by the teacher forcing decoding.

5.2 Dependency Statistics

In this subsection, we study language branch-
ing from the perspective of dependency struc-
ture. We hypothesize that if the left/right half of
sentence contains more dependencies between it-
s intra words, this half should be easier to pre-
dict, leading to higher accuracy. Here we ana-
lyze the English sentence in De-En translation and
Japanese sentence in En-Jp translation, since En-
glish is fully right-branching and Japanese is fully
left-branching as introduced before.

For English parsing, we utilize the well-
acknowledged Standford Parser* to parse the sen-
tences. After obtaining the parsing results, we split
the sentence into left and right half, and separately
count the numbers of dependencies in each half>.
For Japanese, we leverage the open-source toolkit
J.DepP® to parse the sentence, and then count the
number of dependencies of each half.

We provide the results in Table 7. As can be ob-
served, for English sentences, the left-half word-
s depend more on each other than the right-half
words, while for the Japanese sentences, the right-
half words have more dependencies. This obser-
vation is consistent with our observations on accu-

‘nttps://nlp.stanford.edu/software/
lex—-parser.shtml

SFor simplicity, we just count the number of dependency,
without considering dependency types. The detailed parsing
formats can be found in the supplementary material (Section
A.3).

*http://www.tkl.iis.u-tokyo.ac.jp/
~ynaga/jdepp/

English  Japanese

40242 921735
31509 1570630

Left
Right

Table 7: Number of dependencies in left and right half
of English (De-En) and Japanese (En-Jp) training cor-
pus. The number varies a lot since the two training
corpus have different training sentences.

racy drop, and can well explain the high accuracy
of left part in English translation and right part in
Japanese translation.

6 Extended Analyses and Discussions

We have analyzed the accuracy drop problem from
the view of error propagation and language itself
in previous sections. In this section, we further
provide extended analyses and several discussions
to give a more clear understanding of the accuracy
drop problem.

6.1 More Languages on Left-Branching

The previous analyses are based on four lan-
guages, three right-branching (En, De, Zh) and
one left-branching language (Jp). To avoid the
experimental bias and randomness, we provide
one more translation task, English-Turkish (En-
Tr) translation’, as Turkish is a left-branching lan-
guage. We simply calculate the BLEU score of
the left/right half in left-to-right and right-to-left

"The detailed dataset and model description can be found
in supplementary material (section A.1 and section A.2).
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0 1
Left 5.83 7.44
Right 527 7.96

Table 8: BLEU scores on En-Tr test set with left-to-
right generation. Normal translation is denoted as “0”,
and teacher-forcing translation is denoted as “1”.

left-to-right  right-to-left

Full 27.63 25.44
Left 9.17 8.37
Right 7.51 7.25

Table 9: BLEU scores on the left-to-right and right-
to-left translation sentences on the De-En test set, with
RNN-based model. “Full” means the BLEU score of
the whole translation sentence.

decodings, as in Section 3.1 and 3.2.

The result is provided in Table 8. For the left-
to-right decoding, the accuracy of the left half is
higher than that of the right half in the normal
translation. However, the accuracy of the right half
becomes higher with teacher forcing translation.
This demonstrates that English-Turkish translation
performs similar to English-Japanese translation
as the accuracy of right half is higher than that
of the left half. But different from what we ob-
served in Japanese, Turkish shows the opposite
phenomenon: the influence of language branching
is weaker than error propagation.

6.2 Other Model Structures

One may wonder whether the results in the pa-
per are biased towards a certain model structure
as we use Transformer on all the above analyses.
To address such concerns, we conduct an addition-
al experiment on De-En translation task with RN-
N (GRU)-based model®. The results are shown in
Table 9 and the observations are consistent with
what we observed on Transformer. The accuracy
of the left half of the De-En translation sentence is
always higher than the right half, in both the left-
to-right and right-to-left decodings.

6.3 Other Sequence Generation Tasks

We conduct experimental analysis on abstractive
summarization, which is also a sequence genera-
tion task. The goal of the task is to recap a long
news sentence into a short summary. We use Giga-
word dataset which contains 3.8 M training pairs,

8The detailed setting for GRU based RNN model can be
found in supplementary material (section A.2).

left-to-right

ROUGE-1 ROUGE-2 ROUGE-L
Full 35.55 16.66 33.01
Left 24.44 9.87 23.34
Right 21.31 8.32 20.38

right-to-left

ROUGE-1 ROUGE-2 ROUGE-L
Full 35.22 16.55 32.59
Right 21.62 8.41 20.48
Left 23.60 9.54 22.52

Table 10: ROUGE F1 scores for left-to-right and right-
to-left generated translation sentences in abstractive
summarization task. ROUGE-N stands for N-gram
based ROUGE F1 score, ROUGE-L stands for longest
common subsequence based ROUGE F1 score. “Full”
means the entire translation sentence.

190k validation and 2k test pairs of English sen-
tence, and train an RNN-based model for sentence
summarization. The accuracy is measured by the
commonly used metric ROUGE F1 score and are
reported in Table 10.

We observe the same phenomenon as in transla-
tion tasks. The accuracy of the left half is always
better than the right half, no matter in left-to-right
or right-to-left decoding, since the target language
English is a right-branching language.

7 Conclusion

In this work, we studied the problem of accura-
cy drop between the left half and the right half of
the results generated by neural machine translation
models. We found the influence of error propa-
gation is overstated in literature and error prop-
agation alone cannot explain accuracy drop. We
showed that language branching well correlates to
the accuracy drop problem and the evidences on
n-gram statistics as well as the dependency statis-
tics well support this correlation. Our discover-
ies suggest that left-to-right NMT models fit bet-
ter for right-branching languages (e.g., English)
and right-to-left NMT models fit better for left-
branching languages (e.g., Japanese).

For future works, we will study more left/right-
branching languages as well as other languages
that have no obvious branching characteristics.
We will also investigate how language branching
influences other natural language tasks, especially
for neural networks based models.

3609



References

Devansh Arpit, Stanislaw K. Jastrzebski, Nicolas Bal-
las, David Krueger, Emmanuel Bengio, Maxinder S.
Kanwal, Tegan Maharaj, Asja Fischer, Aaron C.
Courville, Yoshua Bengio, and Simon Lacoste-
Julien. 2017. A closer look at memorization in deep
networks. In ICML, volume 70 of Proceedings of
Machine Learning Research, pages 233-242. PML-
R.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint arX-
iv:1409.0473.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and
Noam Shazeer. 2015. Scheduled sampling for se-
quence prediction with recurrent neural networks.
In Advances in Neural Information Processing Sys-
tems 28: Annual Conference on Neural Information
Processing Systems 2015, December 7-12, 2015,
Montreal, Quebec, Canada, pages 1171-1179.

Yoshua Bengio, Jérdme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th annual international con-
ference on machine learning, pages 41-48. ACM.

Thomas Berg et al. 2011. Structure in language: A
dynamic perspective. Routledge.

Kyunghyun Cho, Bart van Merrienboer, Caglar
Giilgehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder-decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2014, October
25-29, 2014, Doha, Qatar, A meeting of SIGDAT,
a Special Interest Group of the ACL, pages 1724—
1734.

Fei Gao, Lijun Wu, Li Zhao, Tao Qin, Xueqi Cheng,
and Tie-Yan Liu. 2018. Efficient sequence learning
with group recurrent networks. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistic-
s: Human Language Technologies, Volume 1 (Long
Papers), volume 1, pages 799-808.

Hany Hassan, Anthony Aue, Chang Chen, Vishal
Chowdhary, Jonathan Clark, Christian Federman-
n, Xuedong Huang, Marcin Junczys-Dowmunt,
William Lewis, Mu Li, Shujie Liu, Tie-Yan Liu,
Rengian Luo, Arul Menezes, Tao Qin, Frank Sei-
de, Xu Tan, Fei Tian, Lijun Wu, Shuangzhi Wu,
Yingce Xia, Dongdong Zhang, Zhirui Zhang, and
Ming Zhou. 2018. Achieving human parity on au-
tomatic chinese to english news translation. CoRR,
abs/1803.05567.

Di He, Hanqing Lu, Yingce Xia, Tao Qin, Liwei Wang,
and Tieyan Liu. 2017. Decoding with value net-
works for neural machine translation. In Advances

in Neural Information Processing Systems, pages
178-187.

Di He, Yingce Xia, Tao Qin, Liwei Wang, Nenghai Yu,
Tieyan Liu, and Wei-Ying Ma. 2016. Dual learn-
ing for machine translation. In Advances in Neural
Information Processing Systems, pages 820-828.

Lemao Liu, Andrew M. Finch, Masao Utiyama, and
Eiichiro Sumita. 2016a.  Agreement on target-
bidirectional Istms for sequence-to-sequence learn-
ing. In Proceedings of the Thirtieth AAAI Con-
ference on Artificial Intelligence, February 12-17,
2016, Phoenix, Arizona, USA., pages 2630-2637.

Lemao Liu, Masao Utiyama, Andrew M. Finch, and
Eiichiro Sumita. 2016b.  Agreement on target-
bidirectional neural machine translation. In NAA-
CL HLT 2016, The 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
San Diego California, USA, June 12-17, 2016, pages
411-416.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, July 6-12, 2002, Philadelphia,
PA, USA., pages 311-318.

Thomas Payne. 2006. Exploring language structure: a
student’s guide. Cambridge University Press.

Marc’ Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2015. Sequence level train-
ing with recurrent neural networks. CoRR, ab-
s/1511.06732.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Edinburgh neural machine translation system-
s for WMT 16. In Proceedings of the First Confer-
ence on Machine Translation, WMT 2016, colocat-
ed with ACL 2016, August 11-12, Berlin, Germany,
pages 371-376.

Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua
Wu, Maosong Sun, and Yang Liu. 2016. Minimum
risk training for neural machine translation. In Pro-
ceedings of the 54th Annual Meeting of the Associ-
ation for Computational Linguistics, ACL 2016, Au-
gust 7-12, 2016, Berlin, Germany, Volume 1: Long
Papers.

Yanyao Shen, Xu Tan, Di He, Tao Qin, and Tie-Yan
Liu. 2018. Dense information flow for neural ma-
chine translation. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2018, New Or-
leans, Louisiana, USA, June 1-6, 2018, Volume 1
(Long Papers), pages 1294-1303.

Kaitao Song, Xu Tan, Di He, Jianfeng Lu, Tao Qin,
and Tie-Yan Liu. 2018. Double path networks for
sequence to sequence learning. In Proceedings of

3610



the 27th International Conference on Computational
Linguistics, COLING 2018, Santa Fe, New Mexico,
USA, August 20-26, 2018, pages 3064-3074.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural network-
s. In Advances in Neural Information Processing
Systems 27: Annual Conference on Neural Informa-
tion Processing Systems 2014, December 8-13 2014,
Montreal, Quebec, Canada, pages 3104-3112.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, 4-9 Decem-
ber 2017, Long Beach, CA, USA, pages 6000-6010.

Yijun Wang, Yingce Xia, Li Zhao, Jiang Bian, Tao Qin,
Guiquan Liu, and Liu. 2018. Dual transfer learning
for neural machine translation with marginal distri-
bution regularization. In AAAIL

Yuguang Wang, Shanbo Cheng, Liyang Jiang, Jiajun
Yang, Wei Chen, Muze Li, Lin Shi, Yanfeng Wang,
and Hongtao Yang. 2017. Sogou neural machine
translation systems for WMT17. In Proceedings
of the Second Conference on Machine Translation,
WMT 2017, Copenhagen, Denmark, September 7-8,
2017, pages 410-415.

Taro Watanabe and Eiichiro Sumita. 2002. Bidirec-
tional decoding for statistical machine translation.
In 19th International Conference on Computation-
al Linguistics, COLING 2002, Howard Internation-
al House and Academia Sinica, Taipei, Taiwan, Au-
gust 24 - September 1, 2002.

Wikipedia. 2018. Head-directionality param-
eter — Wikipedia, the free encyclopedia.
http://en.wikipedia.org/w/index.
php?title=Head-directionality$
20parameter&oldid=835385416. [Online;
accessed 08-May-2018].

Ronald J. Williams and David Zipser. 1989. A learn-
ing algorithm for continually running fully recurren-
t neural networks. Neural Computation, 1(2):270-
280.

Lijun Wu, Fei Tian, Tao Qin, Jianhuang Lai, and Tie-
Yan Liu. 2018. A study of reinforcement learning
for neural machine translation. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing.

Lijun Wu, Yingce Xia, Li Zhao, Fei Tian, Tao Qin,
Jianhuang Lai, and Tie-Yan Liu. 2017. Adversari-
al neural machine translation. arXiv preprint arX-
iv:1704.06933.

Yingce Xia, Xu Tan, Fei Tian, Tao Qin, Nenghai Yu,
and Tie-Yan Liu. 2018. Model-level dual learn-
ing. In Proceedings of the 35th International Con-
ference on Machine Learning, ICML 2018, Stock-

holmsmdissan, Stockholm, Sweden, July 10-15, 2018,
pages 5379-5388.

Xiangwen Zhang, Jinsong Su, Yue Qin, Yang Liu, Ron-
grong Ji, and Hongji Wang. 2018. Asynchronous
bidirectional decoding for neural machine transla-
tion. CoRR, abs/1801.05122.

3611


http://en.wikipedia.org/w/index.php?title=Head-directionality%20parameter&oldid=835385416
http://en.wikipedia.org/w/index.php?title=Head-directionality%20parameter&oldid=835385416
http://en.wikipedia.org/w/index.php?title=Head-directionality%20parameter&oldid=835385416

