
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 3550–3559
Brussels, Belgium, October 31 - November 4, 2018. c©2018 Association for Computational Linguistics

3550

Hierarchical CVAE for Fine-Grained Hate Speech Classification

Jing Qian, Mai ElSherief, Elizabeth Belding, William Yang Wang
Department of Computer Science

University of California, Santa Barbara
Santa Barbara, CA 93106 USA

{jing qian,mayelsherif,ebelding,william}@cs.ucsb.edu

Abstract

Existing work on automated hate speech de-
tection typically focuses on binary classifica-
tion or on differentiating among a small set
of categories. In this paper, we propose a
novel method on a fine-grained hate speech
classification task, which focuses on differen-
tiating among 40 hate groups of 13 different
hate group categories. We first explore the
Conditional Variational Autoencoder (CVAE)
(Larsen et al., 2016; Sohn et al., 2015) as a
discriminative model and then extend it to a
hierarchical architecture to utilize the addi-
tional hate category information for more ac-
curate prediction. Experimentally, we show
that incorporating the hate category informa-
tion for training can significantly improve the
classification performance and our proposed
model outperforms commonly-used discrimi-
native models.

1 Introduction

The impact of the vast quantities of user-generated
web content can be both positive and negative.
While it improves information accessibility, it also
can facilitate the propagation of online harass-
ment, such as hate speech. Recently, the Pew
Research Center1 reported that “roughly four-in-
ten Americans have personally experienced online
harassment, and 63% consider it a major prob-
lem. Beyond the personal experience, two-thirds
of Americans reported having witnessed abusive
or harassing behavior towards others online.”

In response to the growth in online hate, there
has been a trend of developing automatic hate
speech detection models to alleviate online harass-
ment (Warner and Hirschberg, 2012; Waseem and
Hovy, 2016). However, a common problem with
these methods is that they focus on coarse-grained

1http://www.pewinternet.org/2017/07/11/online-
harassment-2017/

Figure 1: A portion of the hate group map published by
the Southern Poverty Law Center (SPLC). Each marker
represents a hate group. The markers with the same
pattern indicate the corresponding hate groups share
the same ideology. The white box shows an example
of a hate group in Auburn, Alabama under the category
of ”White Nationalist”. Due to the sensitivity of the
data, we mask the name of the group.

classifications with only a small set of categories.
To the best of our knowledge, the existing work
on hate speech detection formulates the task as
a classification problem with no more than seven
classes. Building a model for more fine-grained
multiclass classification is more challenging since
it requires the model to capture finer distinctions
between each class.

Moreover, fine-grained classification is neces-
sary for fine-grained hate speech analysis. Fig-
ure 1 is a portion of the hate group map published
by the Southern Poverty Law Center (SPLC)2,
where a hate group is defined as “an organization
that based on its official statements or principles,
the statements of its leaders, or its activities has
beliefs or practices that attack or malign an en-
tire class of people, typically for their immutable
characteristics.” The SPLC divides the 954 hate
groups in the United States into 17 categories ac-

2https://www.splcenter.org
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cording to their ideologies (e.g. Racist Skinhead,
Anti-Immigrant, and others). The SPLC monitors
hate groups throughout the United States by a va-
riety of methodologies to determine the activities
of groups and individuals: reviewing hate group
publications and reports by citizens, law enforce-
ment, field sources and the news media, and con-
ducting their own investigations. Therefore, build-
ing automatic classification models to differentiate
between the social media posts from different hate
groups is both challenging and of practical signif-
icance.

In this paper, we propose a fine-grained hate
speech classification task that separates tweets
posted by 40 hate groups of 13 different hate group
categories. Although CVAE is commonly used as
a generative model, we find it can achieve compet-
itive results and tends to be more robust when the
size of the training dataset decreases, compared to
the commonly used discriminative neural network
models. Based on this insight, we design a Hierar-
chical CVAE model (HCVAE) for this task, which
leverages the additional hate group category (ide-
ology) information for training. Our contributions
are three-fold:

• This is the first paper on fine-grained
hate speech classification that attributes hate
groups to individual tweets.
• We propose a novel Hierarchical CVAE

model for fine-grained tweet hate speech
classification.
• Our proposed model improves the Micro-F1

score of up to 10% over the baselines.

In the next section, we outline the related work on
hate speech detection, fine-grained text classifica-
tion, and Variational Autoencoder. In Section 3,
we explore the CVAE as a discriminative model,
and our proposed method is described in Section 4.
Experimental results are presented and discussed
in Section 5. Finally, we conclude in Section 6.

2 Related Work

2.1 Hate Speech Detection
An extensive body of work has been dedicated
to automatic hate speech detection. Most of the
work focuses on binary classification. Warner
and Hirschberg (2012) differentiate between anti-
semitic or not. Gao et al. (2017), Zhong et al.
(2016), and Nobata et al. (2016) differentiate be-
tween abusive or not. Waseem and Hovy (2016),

Burnap and Williams (2016), and Davidson et al.
(2017) focus on three-way classification. Waseem
and Hovy (2016) classify each input tweet as
racist hate speech, sexist hate speech, or neither.
Burnap and Williams (2016) build classifiers for
hate speech based on race, sexual orientation or
disability, while Davidson et al. (2017) train a
model to differentiate among three classes: con-
taining hate speech, only offensive language, or
neither. Badjatiya et al. (2017) use the dataset pro-
vided by Waseem and Hovy (2016) to do three-
way classification. Our work is most closely re-
lated to (Van Hee et al., 2015), which focuses
on fine-grained cyberbullying classification. How-
ever, this study only focuses on seven categories
of cyberbullying while our dataset consists of 40
classes. Therefore, our classification task is much
more fine-grained and challenging.

2.2 Fine-grained Text Classification
Our work is also related to text classification. Con-
volutional Neural Networks (CNN) have been suc-
cessfully applied to the text classification task.
Kim (2014) applies CNN at the word level while
Zhang et al. (2015) apply CNN at the character
level. Johnson and Zhang (2015) exploit the word
order of text data with CNN for accurate text cat-
egorization. Socher et al. (2013) introduces the
Recursive Neural Tensor Network for text classi-
fication. Recurrent Neural Networks (RNN) are
also commonly used for text classification (Tai
et al., 2015; Yogatama et al., 2017). Lai et al.
(2015) and Zhou et al. (2015) further combine
RNN with CNN. Tang et al. (2015) and Yang et al.
(2016) exploit the hierarchical structure for doc-
ument classification. Tang et al. (2015) generate
from the sentence representation to the document
representation while Yang et al. (2016) generate
from the word-level attention to the sentence-level
attention. However, the division of the hierarchies
in our HCVAE is according to semantic levels,
rather than according to document compositions.
We generate from the category-level representa-
tions to the group-level representations. Moreover,
the most commonly used datasets by these works
(Yelp reviews, Yahoo answers, AGNews, IMDB
reviews (Diao et al., 2014)) have no more than 10
classes.

2.3 Variational Autoencoder
Variational Autoencoder (VAE) (Kingma and
Welling, 2013) has achieved competitive results in
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Figure 2: The structure of the baseline CVAE model
during training. Bi-LSTM is a bidirectional LSTM
layer. MLP is a Multilayer Perceptron. x is the embed-
ded input text. yg is the ground truth hate group label.
ŷg is the output prediction of the hate group. p is the
posterior distribution of the latent variable z while p′

is the prior distribution of z. Note that this structure is
used for training. During testing, the posterior network
is replaced by the prior network to compute ŷg and thus
yg is not available during testing. Refer to Section 3 for
detailed explanation.

many complicated generation tasks, such as hand-
written digits (Kingma and Welling, 2013; Sali-
mans et al., 2015), faces (Kingma and Welling,
2013; Rezende et al., 2014), and machine transla-
tion (Zhang et al., 2016). CVAE (Larsen et al.,
2016; Sohn et al., 2015) is an extension of the
original VAE framework that incorporates condi-
tions during generation. In addition to image gen-
eration, CVAE has also been successfully applied
to several NLP tasks, such as dialog generation
(Zhao et al., 2017). Although so far CVAE has
always been used as a generative model, we ex-
plore the performance of the CVAE as a discrim-
inative model and further propose a hierarchical
CVAE model, which exploits the hate group cate-
gory (ideology) information for training.

3 CVAE Baseline

We formulate our classification task as the follow-
ing equation:

Obj =
∑

(x,yg)∈X

log p(yg|x) (1)

where x, yg are the tweet text and hate group label
respectively, X is the dataset. Instead of directly

parameterizing p(yg|x), it can be further written as
the following equation:

p(yg|x) =

∫
z
p(yg|z, x)p(z|x)dz (2)

where z is the latent variable. Since the integration
over z is intractable, we instead try to maximize
the corresponding evidence lower bound (ELBO):

ELBO =E[log p(yg|z, x)]−
DKL[q(z|x, yg)||p(z|x)]

(3)

where DKL is the KullbackLeibler (KL) diver-
gence. p(yg|z, x) is the likelihood distribution,
q(z|x, yg) is the posterior distribution, and p(z|x)
is the prior distribution. These three distributions
are parameterized by pϕ(yg|z, x), qα(z|x, yg), and
pβ(z|x). Therefore, the training loss function is:

L =LREC + LKL

=Ez∼pα(z|x,yg)[− log pϕ(yg|z, x)]+

DKL[qα(z|x, yg)||pβ(z|x)]

(4)

The above loss function consists of two parts. The
first part LREC is the reconstruction loss. Opti-
mizing LREC can push the predictions made by
the posterior network and the likelihood network
closer to the ground truth labels. The second part
LKL is the KL divergence loss. Optimizing it can
push the output distribution of the prior network
and that of the posterior network closer to each
other, such that during testing, when the ground
truth label yg is no longer available, the prior net-
work can still output a reasonable probability dis-
tribution over z.

Figure 2 illustrates the structure of the CVAE
model during training (the structure used for
testing is different). The likelihood network
pϕ(yg|z, x) is a Multilayer Perceptron (MLP). The
structure of both the posterior network qα(z|x, yg)
and the prior network pβ(z|x) is a bidirectional
Long Short-Term Memory (Bi-LSTM) (Hochre-
iter and Schmidhuber, 1997) layer followed by an
MLP. The Bi-LSTM is used to encode the tweet
text. The only difference between the posterior
and the prior network is that for the posterior net-
work the input for the MLP is the encoded text
concatenated with the group label while for the
prior network only the encoded text is fed forward.
During testing, the posterior network will be re-
placed by the prior network to generate the distri-
bution over the latent variable (i.e. p′ will replace
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p). Thus during testing, the ground truth labels
will not be used to make predictions.

We assume the latent variable z has a multi-
variate Gaussian distribution: p = N (µ,Σ) for
the posterior network, and p′ = N (µ′,Σ′) for the
prior network. The detailed computation process
is as follows:

e = f(x) (5)

µ,Σ = s(yg ⊕ e) (6)

µ′,Σ′ = s′(f ′(x)) (7)

where f is the Bi-LSTM function and e is the out-
put of the Bi-LSTM layer at the last time step. s
is the function of the MLP in the posterior net-
work and s′ is that of the MLP in the prior net-
work. The notation ⊕ means concatenation. The
latent variables z and z′ are randomly sampled
from N (µ,Σ) and N (µ′,Σ′), respectively. Dur-
ing training, the input for the likelihood network
is z:

ŷg = w(z) (8)

where w is the function of the MLP in the likeli-
hood network. During testing, the prior network
will substitute for the posterior network. Thus for
testing, the input for the likelihood is z′ instead of
z:

ŷg = w(z′) (9)

4 Our Approach

One problem with the above CVAE method is that
it utilizes the group label for training, but ignores
the available hate group category (ideology) infor-
mation of the hate speech. As mentioned in Sec-
tion 1, hate groups can be divided into different
categories in terms of ideologies. Each hate group
belongs to a specific hate group category. Con-
sidering this hierarchical structure, the hate cate-
gory information can potentially help the model to
better capture the subtle differences between the
hate speech from different hate groups. Therefore,
we extend the baseline CVAE model to incorpo-
rate the category information. In this case, the ob-
jective function is as follows:

Obj=
∑

(x,yc,yg)∈X

log p(yc, yg|x)

=
∑

(x,yc,yg)∈X

log p(yc|x)+log p(yg|x, yc)
(10)

where yc is the hate group category label and

p(yc|x)=

∫
zc

p(yc|zc, x)p(zc|x)dzc (11)

p(yg|x, yc)=

∫
zg

p(yg|zg,x,yc)p(zg|x,yc)dzg (12)

where zc and zg are latent variables. Therefore,
the ELBO of our method is the sum of the ELBOs
of log p(yc|x) and log p(yg|x, yc):

ELBO=E[log p(yc|zc, x)]−
DKL[q(zc|x, yc)||p(zc|x)]+

E[log p(yg|zg, x, yc)]−
DKL[q(zg|x, yc, yg)||p(zg|x, yc)]

(13)

During testing, the prior networks will substi-
tute the posterior networks and the ground truth
labels yc and yg are not utilized. Hence the
prior p(zg|x, yc) in the above equation cannot be
parametrized as a network that directly takes the
ground truth label yc and x as inputs. Instead, we
parameterize it as shown in the right part of Fig-
ure 3. We assume that u′ is trained to be a latent
representation of yc, so we use u′ and x as inputs
for this prior network.

According to the ELBO above, the correspond-
ing loss function L is the combination of the loss
function for the category classification (Lc) and
that for the group classification (Lg).

L =Lc + Lg, where

Lc =Ezc∼qα(zc|x,yc)[− log pϕ(yc|zc, x)]+

DKL[qα(zc|x, yc)||pβ(zc|x)], and

Lg =Ezg∼qη(zg |x,yc,yg)[− log pθ(yg|zg, x, yc)]+
DKL[qη(zg|x, yc, yg)||pγ(zg|x, u)]

(14)

Figure 3 shows the structure of our model for
training. By assuming the latent variables zc and
zg have multivariate Gaussian distributions, the
actual outputs of the posterior and prior networks
are the mean and variance: pc = N (µc,Σc),
pg = N (µg,Σg) for the two posterior networks,
and p′c = N (µ′c,Σ

′
c), p′g = N (µ′g,Σ

′
g) for the two

prior networks. Note that in addition to these four
distributions, there is another distribution px =
N (µx, σx) as shown in Figure 3. This distribu-
tion is generated only with the input text x, so it
provides the basic distribution (in order to avoid
confusion, we call it the basic distribution instead
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Figure 3: The structure of the HCVAE during train-
ing. Bi-LSTM is a bidirectional LSTM layer. MLP is
a Multilayer Perceptron. x is the embedded input text.
yc and yg are the ground truth hate category label and
hate group label. ŷc and ŷg are the output predictions
of the hate category and hate group. zc, zg , and z′c are
latent variables. In the left dotted box are two poste-
rior networks. In the right dotted box are two prior
networks. Note that this structure is used for training.
During testing, the posterior networks will be substi-
tuted by the posterior networks (i.e. the left dotted box
will be substituted with the right one) to compute ŷc
and ŷg . Thus yc and yg are not available during testing.
Refer to Section 4 for detailed explanation.

of the prior distribution) for both two posterior net-
works and two prior networks. With this basic dis-
tribution, the two posterior networks only need to
capture the additional signals learned from x and
labels. Similarly, the prior networks only need to
learn the additional signals learned by the poste-
rior networks. The detailed computation process
during training is shown as the following equa-
tions:

e = f(x) (15)

µx,Σx = sx(e) (16)

µc,Σc = sc(yc ⊕ e) (17)

µg,Σg = sg(yc ⊕ yg ⊕ e) (18)

µ′c,Σ
′
c = s′c(f

′
c(x)) (19)

where f is the Bi-LSTM function and e is the out-
put of the Bi-LSTM layer at the last time step. sx,
sc, sg, and s′c are the functions of four different
MLPs. f ′c is the Bi-LSTM function in the prior
network pβ(zc|x). The latent variables zx, zc, zg,
and z′c are randomly sampled from the Gaussian
distributions N (µx,Σx), N (µc,Σc), N (µg,Σg),
and N (µ′c,Σ

′
c) respectively. As mentioned above,

Algorithm 1 Train & Test Algorithm
1: function TRAIN(X)
2: randomly initialize network parameters;
3: for epoch = 1, E do
4: for (text, category, group) in X do
5: get embeddings x and one-hot vectors yc, yg;
6: compute e with the Bi-LSTM;
7: compute µx, Σx, µc, Σc, µg , Σg;
8: sample zx = reparameterize(µx,Σx);
9: sample zc = reparameterize(µc,Σc);

10: sample zg = reparameterize(µg,Σg);
11: u = zx + zc;
12: v = u+ zg;
13: compute ŷc and ŷg according to Eq. 24- 25;
14: LREC = BCE(ŷc, yc) +BCE(ŷg, yg);
15: compute µ′

c, Σ′
c;

16: sample z′c = reparameterize(µ′
c,Σ

′
c);

17: u′ = zx + z′c;
18: compute µ′

g , Σ′
g;

19: LKL = DKL(pc||p′c) +DKL(pg||p′g);
20: L = LKL + LREC ;
21: update network parameters on L;
22: end for
23: end for
24: end function
25:
26: function TEST(X)
27: for text in X do
28: get embeddings x;
29: compute e with the Bi-LSTM;
30: compute µx, Σx, µ′

c, Σ′
c;

31: sample zx = reparameterize(µx,Σx);
32: sample z′c = reparameterize(µ′

c,Σ
′
c);

33: u′ = zx + z′c;
34: compute µ′

g , Σ′
g;

35: sample z′g = reparameterize(µ′
g,Σ

′
g);

36: v′ = u′ + z′g;
37: compute ŷc and ŷg according to Eq. 26- 28;
38: end for
39: end function

px is the basic distribution while pc, pg, p′c, and
p′g are trained to capture the additional signals.
Therefore, zx is added to zc and z′c, then the re-
sults u and u′ are further added to zg and z′g, re-
spectively, as shown in the following equations:

u′ = zx + z′c (20)

µ′g,Σ
′
g = s′g(u

′ ⊕ f ′g(x)) (21)

u = zx + zc (22)

v = u+ zg (23)

where f ′g is the Bi-LSTM function and s′g is
the function of the MLP in the prior network
pγ(zg|x, u). + is element-wise addition. During
training, u and v are fed into the likelihood net-
works:

ŷc = wc(e⊕ u) (24)

ŷg = wg(e⊕ v) (25)
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Figure 4: The distribution of the data for 40 hate groups. The X-Axis is each hate group. The Y-Axis is the number
of tweets collected for each hate group.

where wc and wg are the functions of the MLPs in
two likelihood networks. During testing, the prior
networks will substitute the posterior networks, so
the latent variable z′g is randomly sampled from
the Gaussian distributionsN (µ′g,Σ

′
g), and the last

four equations above (Equation 22 - 25) will be
replaced by the following ones:

ŷc = wc(e⊕ u′) (26)

v′ = u′ + z′g (27)

ŷg = wg(e⊕ v′) (28)

Algorithm 1 illustrates the complete training and
testing process. BCE refers to the Binary Cross
Entropy loss. Note that during training, the ground
truth category labels and group labels are fed to the
posterior network to generate latent variables. But
during testing, the latent variables are generated
by the prior network, which only utilizes the texts
as inputs.

5 Experiments

5.1 Dataset

We collect the data from 40 hate group Twit-
ter accounts of 13 different hate ideologies, e.g.,
white nationalist, anti-immigrant, racist skinhead,
among others. The detailed themes and core val-
ues behind each hate ideology are discussed in
the SPLC ideology section.3 For each hate ide-
ology, we collect a set of Twitter handles based on
hate groups identified by the SPLC center.4 For

3https://www.splcenter.org/fighting-hate/extremist-
files/ideology

4https://www.splcenter.org/fighting-hate/extremist-
files/groups

each hate ideology, we select the top three han-
dles in terms of the number of followers. Due
to ties, there are four different groups in several
categories of our dataset. The dataset consists
of all the content (tweets, retweets, and replies)
posted with each account from the group’s incep-
tion date, as early as 07-2009, until 10-2017. Each
instance in the dataset is a tuple of (tweet text,
hate category label, hate group label). The com-
plete dataset consists of approximately 3.5 million
tweets. Note that due to the sensitive nature of the
data, we anonymously reference the Twitter han-
dles for each hate group by using IDs throughout
this paper. The distribution of the data is illus-
trated in Figure 4.

5.2 Experimental Settings

In addition to the discriminative CVAE model de-
scribed in Section 3, we implement for other base-
line methods and an upper bound model as fol-
lows.
Support Vector Machine (SVM): We implement
an SVM model with linear kernels. We use L2 reg-
ularization and the coefficient is 1. The input fea-
tures are the Term Frequency Inverse Document
Frequency (TF-IDF) values of up to 2-grams.
Logistic Regression (LR): We implement the Lo-
gistic Regression model with L2 regularization.
The penalty parameter C is set to 1. Similar to
the SVM model, we use TF-IDF values of up to
2-grams as features.
Character-level Convolutional Neural Network
(Char-CNN): We implement the character-level
CNN model for text classification as described in
(Zhang et al., 2015). It is 9 layers deep with 6
convolutional layers and 3 fully-connected layers.
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Dataset Complete Subset
Metric Macro-F1 Micro-F1 Weighted-F1 Macro-F1 Micro-F1 Weighted-F1
upper bound .697 .904 .881 – – –
SVM + tf-idf .653 .834 .835 .521 .771 .772
LR + tf-idf .586 .787 .792 .494 .727 .736
Char-CNN .604 .840 .853 .457 .730 .744
Bi-LSTM .627 .767 .745 .353 .599 .570
CVAE .520 .799 .830 .453 .774 .784
HCVAE (our) .664 .844 .858 .469 .787 .799

Table 1: Experimental results. Complete: The performance achieved when 90% of the entire dataset is used for
training. Subset: The performance achieved when only 10% of the dataset is used for training. The best results are
in bold.

The configurations of the convolutional layers are
kept the same as those in (Zhang et al., 2015).
Bi-LSTM: The model consists of a bidirectional
LSTM layer followed by a linear layer. The em-
bedded tweet text x is fed into the LSTM layer and
the output at the last time step is then fed into the
linear layer to predict ŷg.
Upper Bound: The upper bound model also con-
sists of a bidirectional LSTM layer followed by
a linear layer. The difference between this model
and Bi-LSTM is that it takes the tweet text x along
with the ground truth category label yc as input
during both training and testing. The LSTM layer
is used to encode x. The encoding result is con-
catenated with the ground truth category label and
then fed into the linear layer to give the prediction
of the hate group ŷg. Since it utilizes yc for predic-
tion during testing, this model sets an upper bound
performance for our method.

For the baseline CVAE, Bi-LSTM, the upper
bound model, and the HCVAE, we use randomly
initialized word embeddings with size 200. All the
neural network models are optimized by the Adam
optimizer with learning rate 1e-4. The batch size
is 20. The hidden size of all the LSTM layers in
these models is 64 and all the MLPs are three-
layered with non-linear activation function Tanh.
For the CVAE and the HCVAE, the size of the la-
tent variables is set to 256.

All the baseline models and our model are eval-
uated on two datasets. We first use the complete
dataset for training and testing. 90% of the in-
stances are used for training and the rest for test-
ing. In order to evaluate the robustness of the base-
line models and our model, we also randomly se-
lected a subset (10%) of the original dataset for
training while the testing dataset is fixed. Since
the upper bound model is used to set an upper
bound on performance, we do not evaluate it on

the smaller training dataset. We use Macro-F1,
Micro-F1, and Weighted-F1 to evaluate the classi-
fication results. As shown in Figure 4, the dataset
is highly imbalanced, which causes problems for
training the above models. In order to alleviate
this problem, we use a weighted random sampler
to sample instances from the training data. How-
ever, the testing dataset is not sampled, so the dis-
tribution of the testing dataset remains the same as
that of the original dataset. This allows us to eval-
uate the models’ performance on the data with a
realistic distribution.

5.3 Experimental Results
The experimental results are shown in Table 1.
The testing dataset keeps the imbalanced distribu-
tion of the original data, so the Macro-F1 score of
each method is significantly lower than the Micro-
F1 score and the Weighted-F1 score. Comparing
the performance of the Bi-LSTM model and that
of the baseline CVAE model shows that although
CVAE is traditionally used as a generative model,
it can also achieve competitive performance as a
discriminative model. All the methods achieve
lower F1 scores when using the smaller training
dataset. Due to the imbalanced distribution of
our dataset, half of the 40 groups has less than
1k tweets in the smaller training dataset, which
leads to the sharp decline in the Macro-F1 scores
of all the methods. However, the performance of
both CVAE-based models degrades less than that
of the other two neural network models (the Bi-
LSTM model and the Char-CNN model) accord-
ing to the Micro-F1 Weighted-F1 scores. These
two CVAE-based models tend to be more robust
when the size of the training dataset is smaller.
The difference between the CVAE-based models
and the other two models is that both the Bi-
LSTM model and the Char-CNN model directly
compress the input text into a fixed-length latent
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Figure 5: This figure compares a subset (17 hate groups
of 6 categories) of the predictions made by the baseline
CVAE and the HCVAE. The X and Y axes are the in-
dex of each hate group. The hate groups of the same
category are grouped together as shown in the dashed
squares. The color of the grid (i, j) is mapped from
rhcvae(i, j)−rcvae(i, j), where r(i, j) is the fraction of
the group i’s instances among the instances predicted
as the group j. A higher difference value corresponds
to a lighter color. A grid darker than the background is
mapped from a negative value while a grid lighter than
the background is mapped from a positive one.

variable while the CVAE model explicitly mod-
els the posterior and likelihood distributions over
the latent variable. The result is that, during test-
ing, the inference strategy of the Bi-LSTM model
and the Char-CNN model is actually comparing
the compressed text to the compressed instances
in the training dataset while the strategy of the
CVAE-based models is to compare the prior dis-
tributions over the latent variable. Compared with
the compressed text, prior distributions may cap-
ture higher level semantic information and thus
enable better generalization.

By further utilizing the hate category label for
training, the HCVAE outperforms the baseline
CVAE on all three metrics. Figure 5 illustrates
the difference between the predictions made by
the HCVAE and the CVAE. As shown in the fig-
ure, most of the lighter girds are in the dashed
squares while most of the darker girds are out-
side. This indicates that the HCVAE model tends
to correct the prediction of the CVAE’s misclas-
sified instances to be closer to the ground truth.
In most cases, the misclassified instances can be
directly corrected to the ground truth (the diago-

Figure 6: The F1 score achieved by our method on each
hate group. The Y-axis is the F1 score. The X-axis is
the hate group sorted by the number of instances in the
dataset from larger to smaller. The dashed line shows
the F1 scores and the solid line is the corresponding
trendline.

nal). In other cases, they are not corrected to the
ground truth but are corrected to the hate groups of
the same categories as the ground truth (the dashed
squares). This shows that additional ideology in-
formation is useful for the model to better capture
the subtle differences among tweets posted by dif-
ferent hate groups.

Although our method outperforms the baseline
methods, there is still a gap between its perfor-
mance and the upper bound performance. We an-
alyze this in the following section.

5.4 Error Analysis

As mentioned above, in some cases our model
misclassified the tweet as a group under the same
category as the ground truth. Take, for instance,
the tweet from Group1: The only good #muslim
is a #dead #muslim. Our HCVAE model predicts
it as from Group2. But both Group1 and Group2
are under the category “neo nazi”. One possible
reason for this kind of error is that the imbalance
of the dataset adversely affects the performance
of our method. Figure 6 shows the F1 scores
achieved by the HCVAE on each group. The per-
formance of the model tends to be much lower
when the number of the group’s training instances
decreases. Although we use the weighted random
sampler to alleviate the problem of the imbalanced
dataset, repeating the very limited data instances
(less than 3k) of a group during training cannot re-
ally help the posterior and prior networks to give a
reasonable distribution that can generalize well on
unseen inputs. Therefore, when the model comes
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into the instances in the testing dataset, the perfor-
mance can be less satisfactory. This is a common
problem for all the methods, which is the cause of
the significantly lower Macro-F1 scores.

Another type of error is caused by the noisy
dataset. Take, for instance, the tweet from Group3
under the category “ku klux klan”: we must secure
the existence of our people and future for the White
Children !! Our model classifies it as from Group4
under the category “neo nazi”, which makes sense
but is an error.

6 Conclusion

In this paper, we explore the CVAE as a discrimi-
native model and find that it can achieve compet-
itive results. In addition, the performance of the
CVAE-based models tend to be more stable than
that of the others when the dataset gets smaller.
We further propose an extension of the basic dis-
criminative CVAE model to incorporate the hate
group category (ideology) information for train-
ing. Our proposed model has a hierarchical struc-
ture that mirrors the hierarchical structure of the
hate groups and the ideologies. We apply the HC-
VAE to the task of fine-grained hate speech clas-
sification, but this Hierarchical CVAE framework
can be easily applied to other tasks where the hier-
archical structure of the data can be utilized.
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