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Abstract

The task of thread popularity prediction and
tracking aims to recommend a few popular
comments to subscribed users when a batch of
new comments arrive in a discussion thread.
This task has been formulated as a reinforce-
ment learning problem, in which the reward
of the agent is the sum of positive responses
received by the recommended comments. In
this work, we propose a novel approach to
tackle this problem. First, we propose a deep
neural network architecture to model the ex-
pected cumulative reward (Q-value) of a rec-
ommendation (action). Unlike the state-of-
the-art approach, which treats an action as a
sequence, our model uses an attention mech-
anism to integrate information from a set of
comments. Thus, the prediction of Q-value is
invariant to the permutation of the comments,
which leads to a more consistent agent behav-
ior. Second, we employ a greedy procedure
to approximate the action that maximizes the
predicted Q-value from a combinatorial action
space. Different from the state-of-the-art ap-
proach, this procedure does not require an ad-
ditional pre-trained model to generate candi-
date actions. Experiments on five real-world
datasets show that our approach outperforms
the state-of-the-art.

1 Introduction

Online discussion forums allow people to join in-
depth conversations about different topics in form
of threads. Each thread corresponds to one con-
versation, which is initiated by a post and users
respond to it with comments. In addition, a com-
ment can be further replied by another comment,
forming a discussion tree. Users who are inter-
ested in a particular thread will subscribe to it. Af-
ter the subscription, users will receive a notifica-
tion when a new comment arrives in that thread.
However, the speed of content generation in a

well-known discussion forum is breakneck. For
instance, in Reddit1, there were more than 900
million comments posted in 2017 (Reddit, 2017).
Hence, merely pushing every new comment to the
subscribers leads to a poor user experience. Mo-
tivated by this issue, He et al. (2016c) proposed
the task of thread popularity prediction and track-
ing. When N new comments arrive in a thread,
the system performs one step of recommendation
by pushing K comments to the subscribers. We
want to maximize the sum of popularities of the
recommended comments over all recommendation
steps. The popularity of a comment is measured
by the number of positive reactions it received,
e.g., the rating. With the assumption that a user
needs to know the prior context in order to under-
stand a comment, the system can only recommend
new comments that are in the subtrees of previ-
ously recommended comments. Thus, the selec-
tion of comments at the current recommendation
step will affect the comments that we can choose
in the future recommendation steps.

To incorporate the long-term consequences of
recommendations, the task of thread popularity
prediction and tracking has been formulated as a
reinforcement learning problem, in which an agent
selects an action (a set of K comments) according
to its current state (previous recommended com-
ments), with the goal of maximizing the cumula-
tive reward (total popularities of the recommended
comments over all recommendation steps). The
optimal action of the agent at each step is the
action that maximizes the Q-function, Q(s, a),
which denotes the long-term reward of choosing
action a in state s. In practice, we learn this Q-
function using a parametric function, Q(s, a; θ),
where θ is the model parameter vector. Thus, the
predicted optimal action of the agent is the action

1https://www.reddit.com/
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that maximizes Q(s, a; θ).

This reinforcement learning problem has two
main challenges. First, we need to develop a para-
metric model, Q(s, a; θ), to approximate the Q-
function. Second, finding the action that maxi-
mizes Q(s, a; θ) requires the prediction of all

(
N
K

)
possible actions, which is intractable. Thus, we
need a procedure to approximate the predicted op-
timal action from a combinatorial action space.

To address the first challenge, He et al.
(2016c) proposed a neural network model, DRRN-
BiLSTM, to approximate the Q-function. In this
model, a bi-directional long short-term memory
(LSTM) (Graves and Schmidhuber, 2005) is used
to encode the set of K comments in an action.
To address the second challenge, they proposed
the two-stage Q-learning procedure to approxi-
mate the predicted optimal action (He et al., 2017).
In this procedure, the agent uses a pre-trained and
less-sophisticated model to rank all possible ac-
tions, then it uses the DRRN-BiLSTM to re-rank
the top-M actions and selects the best one. How-
ever, this approach has two limitations. First of all,
bi-directional LSTM is a sequence model, which
treats the set of K comments in an action as a
sequence. Although they tried to fix this prob-
lem by feeding randomly-permuted comments to
the model, a different permutation of the same set
of comments leads to a different Q-value predic-
tion. Thus, the agent may not consistently select
the predicted optimal action. Secondly, the two-
stage Q-learning procedure requires an additional
pre-trained model to generate candidate actions.

Our work addresses these two limitations as
follows. We propose a novel neural network
model, DRRN-Attention, to approximate the Q-
function. In our model, we use an attention mech-
anism (Bahdanau et al., 2014) to integrate the
information from a set of comment into an ac-
tion embedding vector. In a nutshell, the atten-
tion mechanism outputs a weighted sum of the
comment representations, where the weights are
learned by a subnetwork to indicate the impor-
tance of each comment. Thus, the action embed-
ding is invariant to the permutation of the com-
ments, which leads to a permutation invariant Q-
value prediction. Next, we employ a greedy pro-
cedure to approximate the action that maximizes
Q(s, a; θ). This procedure only requires the pre-
diction of O(NK) actions, which is significantly
lower than

(
N
K

)
. Moreover, it does not require an

additional pre-trained model to generate candidate
actions.

In our experiments, we evaluate the perfor-
mance of our DRRN-Attention model and the
greedy approximation procedure against the base-
lines on five real-world datasets. Experimental re-
sults demonstrate that our approach beats the base-
lines on four of the datasets and achieves a com-
petitive performance on one of the datasets. Fur-
thermore, we analyze the performance of our ap-
proach across four action sizes (K = 2, 3, 4, 5).
Our approach consistently achieves a higher cu-
mulative reward than the baselines across all these
action sizes.

We summarize our contributions as follow: (1)
a new neural network architecture to model the Q-
value of the agent which is invariant to the per-
mutation of sub-actions; (2) a greedy procedure
for the agent to select an action from the com-
binatorial action space without an additional pre-
trained model; and (3) the new state-of-the-art per-
formances on five real-world datasets.

2 Related Work

2.1 Reinforcement Learning in Text-based
Tasks

Reinforcement learning has been widely applied
in various text-based tasks. There are several ar-
ticles in literature studying the tasks of mapping
instruction manuals to a sequence of commands,
such as game commands (Branavan et al., 2011),
software commands (Branavan et al., 2010), and
navigation directions (Vogel and Jurafsky, 2010).
In the task of text-based game, an agent selects
a textual command from a set of feasible com-
mands at every time step. Narasimhan et al.
(2016) considered a special case that all the tex-
tual commands have a fixed structure, while He
et al. (2016b) and Chen et al. (2017) considered
another case that all commands are free text.

In the task of thread popularity prediction and
tracking, the agent selects a set of K comments
from N available comments at every time step,
where each comment is a free text. He et al.
(2016c) proposed two different approaches to
tackle this task. In their first approach, the agent
uses the Deep Reinforcement Relevance Network
(DRRN) (He et al., 2016b) to model the Q-
function of selecting a comment. In their second
approach, the agent uses the DRRN-BiLSTM (He
et al., 2016c) to model the Q-function of an ac-
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tion. To due with the combinatorial action space,
the agent uses uniform sampling to generate a set
of M candidate actions. To improve this random
sampling scheme, they proposed the two-stage Q-
learning procedure in their later work (He et al.,
2017), which used a pre-trained model to gener-
ate M candidate actions. Their experimental re-
sults showed that using DRRN-BiLSTM with two-
stage Q-learning procedure outperforms all other
existing methods. The difference between our
model and DRRN-BiLSTM is that we use atten-
tion to encode a set of comments rather than using
a bi-directional LSTM. Besides, the greedy pro-
cedure in our approach does not require any extra
pre-trained model. He et al. (2017) also consid-
ered a special case that the agent can access an ex-
ternal knowledge source to augment the state rep-
resentation. This setting is orthogonal to this work
since we focus on the action encoding and the ap-
proximation of predicted optimal action.

One line of research focused on the in-
tegration of sequence-to-sequence (SEQ2SEQ)
model (Sutskever et al., 2014) and reinforcement
learning framework, examples including dialogue
generation (Dhingra et al., 2017; Li et al., 2016;
Su et al., 2016), question answering system (Buck
et al., 2017), and machine translation (He et al.,
2016a). In these tasks, the agent selects an action
by generating a free text using a SEQ2SEQ model.

2.2 Deep Learning on Sets

Most of the deep learning models on sets em-
ployed attention to integrate information from a
set of input. This idea was first introduced in
the read-process-and-write network (Vinyals et al.,
2016), which uses a process module to perform
multiple steps of attention over a set of vectors
to obtain a permutation-invariant embedding. Our
work adapts this idea to aggregate a set of com-
ment embedding vectors. In the domain of graph
learning, several models (Sukhbaatar et al., 2015;
Zhang et al., 2017) learn an embedding of a node
by attending over its neighboring nodes. All of
the above models can be interpreted as a special
case of memory network (Weston et al., 2015;
Sukhbaatar et al., 2015; Zhang et al., 2017), if we
view the set of feature vectors as external mem-
ory. Max-pooling is another promising technique
for the problem of learning on sets. Qi et al. (2017)
used max-pooling to aggregate the feature vectors
of a set of 3D geometry points. Recently, Zaheer

et al. (2017) derived the necessary and sufficient
conditions for a neural network layer to be permu-
tation invariant.

2.3 Popularity Prediction

Another related line of research is popularity
prediction problem in a supervised learning set-
ting. Yano and Smith (2010) used the LDA topic
model (Blei et al., 2003) to predict the number
of comments of a blog post in a political blog.
There are also several studies focused on the task
of predicting the number of reshares on Face-
book (Cheng et al., 2014) and the number of
retweets in tweeter based on the text content (Tan
et al., 2014; Hong et al., 2011). Recently, Cheng
et al. (2017) proposed a neural network model to
learn comment embeddings for the task of com-
munity endorsement prediction in a supervised
learning setting.

3 Preliminary

3.1 Discussion Tree

A discussion thread in an online forum can be rep-
resented as a tree. Each node in the tree stores a
free text. The root node represents the post of the
thread and each non-root node represents a com-
ment of the thread. There is a directed edge from
node u to node v if and only if a comment (or post)
u is replied by comment v. This tree keeps grow-
ing as new comments are submitted to the thread.

3.2 Problem Definition

The task of thread popularity prediction and track-
ing is formally defined as a reinforcement learning
problem. We use Mt to denote the set of com-
ments that are being tracked at time t. Given a
discussion thread, we start an episode as follows.
First, we initialize M1 to be the post of a thread.
Then, at each time step t the agent performs the
following operations:

• Read the current state st, which is all the pre-
viously tracked comments {M1, . . . ,Mt}.

• Read N new comments, ct =
{ct,1, . . . , ct,N}, in the subtree of Mt.

• Select a set of K comments from ct to rec-
ommend, at = {c1t , . . . , cKt }, where cit ∈ ct
for i = 1, . . . ,K and cit 6= cjt for i 6= j.
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• Receive a reward, rt+1 =
∑K

i=1 ηcit , where
ηcit is the number of positive reactions re-
ceived by comment cit.

• Track the set of recommended comments in
the next time step, Mt+1 = at.

The episode terminates when no more new com-
ments appear in the subtree of Mt. The goal of the
agent is to maximize the cumulative reward.

3.3 Q-function
The state-action value function (or Q-function),
Q(s, a), is defined as the expected cumulative re-
ward starting from state s and taking action a.
More formally, Q(s, a) = E[

∑+∞
l=0 γ

lrt+1+l|st =
s, at = a], where γ ∈ (0, 1] is a discount factor
for future rewards. Since the goal of the agent
is to maximize the cumulative reward, the opti-
mal action for each state is the action that achieves
the highest Q-value. Thus, the Q-function is as-
sociated with an optimal policy: in every state,
the agent selects the action that maximizes the
Q-function, i.e., at = argmaxaQ(st, a), ∀t.
Since this Q-function is unknown to the agent,
we approximate the Q-function using a paramet-
ric model, Q(s, a; θ), and update the parameters θ
using received rewards.

3.4 Exploration-Exploitation Trade-off
The agent needs to balance the exploration-
exploitation trade-off when selecting an action.
On one hand, the agent can choose the action with
the highest estimated Q-value to exploit its cur-
rent knowledge of the Q-function. On the other
hand, the agent can choose a non-greedy action to
get more information about the Q-value of other
actions. The balance between exploration and ex-
ploitation can be achieved by using the ε-greedy
policy, in which the agent selects a random action
with probability ε, and selects a greedy action with
probability 1 − ε. Note that the term “greedy” in
the ε-greedy policy means that the agent selects
the action that is predicted to be optimal, i.e., se-
lect at = argmaxaQ(st, a; θ). It does not refer
to the greedy procedure, which is used to approxi-
mate the predicted optimal action in a combinato-
rial action space.

4 DRRN-Attention Model

In this work, we propose a new deep neural net-
work model, named DRRN-Attention, to approxi-

mate the Q-function for the task of thread popular-
ity prediction and tracking. The input to our model
is a state, st, and an action, at = {c1t , . . . , cKt }, as
defined in Section 3.2. The output is the prediction
of Q-value, i.e., Q(st, at; θ) ∈ R. Figure 1 illus-
trates the overall architecture of DRRN-Attention.
We divide our model into three modules as fol-
lows.

4.1 Text Representation Module

The text representation module reads st and
at = {c1t , . . . , cKt }. We first convert st, c1t , . . . , c

K
t

into bag-of-words (BOW) representations,
bst , bc1t , . . . , bcKt . Then, we use a 2-layer feed-
forward neural network to embed bst into a
d-dimensional state embedding vector, mst ∈ Rd.
After that, we use another 2-layer feedforward
neural network to embed bcit into a d-dimensional
comment embedding vector, mcit

∈ Rd, for
i = 1, . . . ,K. This module outputs mst and
{mc1t

, . . . ,mcKt
}.

4.2 Set Embedding Module

The input to this module is a set of d-dimensional
comment embeddings, {mc1t

, . . . ,mcKt
}. The out-

put is an action embedding vector, mat ∈ Rh+d,
which is invariant to the ordering of comment em-
beddings. The module consists of a single-layer
LSTM with a hidden size of h, and a shared atten-
tion mechanism, f : Rh × Rd → R. The initial
hidden state, q0 ∈ Rh, of the LSTM is a trainable
vector. Inspired by (Vinyals et al., 2016), we per-
form L steps of computations over the comment
embedding vectors. More specifically, at each step
of computation l = 0, 1, . . . , L− 1:

• The query vector, ql ∈ Rh, is the current hid-
den state of the LSTM.

• Apply the attention mechanism to compute
an attention coefficient, ei,l, between the
query, ql, and a comment embedding, mcit

,
for i = 1, . . . ,K. In general, this framework
is agnostic to the underlying attention mech-
anism. In this work, we closely follow the
attentional setup in (Bahdanau et al., 2014),
as shown in the following equation.

ei,l = vT tanh(Wemcit
+Ueql), (1)

where v ∈ Rh′
, We ∈ Rh′×d, and Ue ∈

Rh′×h.
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Figure 1: Architecture of DRRN-Attention model. The text representation module first converts state st and each
comment cit in action at into embedding vectors. Then, the comment embedding vectors are passed to the set
embedding module to learn an action embedding vector. Finally, the state embedding and the action embedding
are passed to the output module to output a prediction of Q-value.

• Apply softmax function to normalize the at-
tention coefficients,

αi,l =
exp(ei,l)∑K
j=1 exp(ej,l)

. (2)

• Use the normalized attention coefficients to
compute a weighted sum of the comment em-
bedding vectors, as the readout in this com-
putation step,

rl =
K∑
i=1

αi,lmcit
. (3)

• The LSTM takes ql and rl as input and com-
putes the next hidden state, ql+1,

ql+1 = LSTM([ql, rl]). (4)

Note that swapping any two comment embed-
ding vectors, mcit

and m
cjt

, will not affect the
query vector ql as well as the attention readout
rl. After L steps of computation, this module con-
catenates qL and rL to yield the final output action
embedding, mat = [qL, rL] ∈ Rh+d.

4.3 Output Module
The input to this module is a state embedding vec-
tor, mst ∈ Rd, and an action embedding vec-
tor, mat ∈ Rh+d. We simply concatenate mst

and mat and pass them through a fully-connected
layer. The output is Q(st, at; θ) ∈ R, which is the
prediction of Q(st, at).

Algorithm 1 Greedy(st, ct, Q(·, ·; θ),K)

1: a = ∅
2: for i = 1→ K do
3: c∗ = argmaxc∈ct\aQ(st, a ∪ c; θ)
4: a = a ∪ c∗
5: return a

5 Greedy Procedure

The next challenge that we need to address is
to approximate the predicted optimal action in a
combinatorial action space. Finding the predicted
optimal action, argmaxaQ(st, a; θ), is intractable
since it requires the prediction of all

(
N
K

)
actions.

In this work, we use a greedy procedure to com-
pute an approximation. The complete procedure
is shown in Algorithm 1. We start from an empty
action, at = ∅, and then iteratively adds into at
the comments that leads to the largest increase in
Q(st, at; θ), until |at| = K. The procedure con-
sists of K iterations. In each iteration i, we need
to predict the Q-value for n − i actions. In total,
it only requires the prediction of O(NK) actions,
which is tractable. The advantage of this proce-
dure over existing methods is that it does not re-
quire another pre-trained model to generate candi-
date actions.

6 Parameter Learning

We use the deep Q-learning algorithm (Mnih et al.,
2015), which is a variant of the traditional Q-
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learning algorithm (Watkins and Dayan, 1992), to
learn the model parameters of Q(s, a; θ) from the
received rewards. The complete training proce-
dure is shown in Algorithm 2 in the Appendix.
The network parameters θ are first initialized ar-
bitrarily. At each time step t, the agent selects
an action at according to the ε-greedy policy, re-
ceives a reward rt+1, and transits to the next state
st+1. Thus, it yields a transition tuple, ζt =
(st, at, rt+1, st+1). Instead of using the current
transition tuple, ζt, to update the parameters, we
first store ζt into an experience memory, D. This
experience memory has a limited capacity, |D|,
and the stored transition tuples are rewritten in a
first-in-first-out manner. Then, we sample mini-
batches of transition tuples (s, a, r, s′) fromD uni-
formly at random. Using the sampled transition
tuples, we perform a step of stochastic gradient de-
scent to minimize the following loss function,

L(θ) = E(s,a,r,s′)∼U(D)[(y −Q(s, a; θ))2], (5)

where y = r + γmaxa′ Q(s′, a′; θ−) is the Q-
learning target, θ− are the network parameters of
the Q-learning target. We update θ− to match the
network parameters, θ, after every F time steps,
where F is a hyperparameter.

7 Experimental Setup

In the experiments, we analyze the performances
of different neural network models and differ-
ent approximation procedures. First, their perfor-
mances are evaluated on five real-world datasets,
with a fix action size K. Then, we evaluate their
performances with different action sizes, on one
dataset. For each experiment setting, we do the
following comparative analysis:

• Compare the performance of our DRRN-
Attention model with the baseline models us-
ing different approximation procedures.

• Compare the performance of the greedy pro-
cedure with the baseline approximation pro-
cedures using different neural network mod-
els.

• Find the approach (combination of neural
network model and approximation proce-
dure) that achieves the best performance.

Finally, we conduct a case study to better illus-
trate the difference between our DRRN-Attention
model and the DRRN-BiLSTM baseline.

Subreddit # Posts # Comments
askscience 0.94k 0.15M
askmen 4.45k 0.94M
todayilearned 9.44k 4.65M
worldnews 8.00k 4.28M
nfl 11.73k 5.72M

Table 1: Basic statics of discussion threads data from
five subreddits.

7.1 Datasets

All the experiments are conducted on discussion
thread data from the Reddit discussion forum. In
Reddit, threads are grouped into different cate-
gories, called subreddits, according to different
discussion themes. Registered users are allowed to
give up-votes or down-votes to a comment, these
votes are then aggregated to compute a karma
score for the comment. We use it as the re-
ward for recommending that comment. Using
the post IDs provided by He et al. (2016c), we
crawl five datasets from five different subreddits
respectively, including askscience, askmen, today-
ilearned, worldnews, and nfl. These subreddits
cover a wide range of discussion topics and lan-
guage styles. The basic statistics of the datasets
are presented in Table 1. Since some of the posts
and comments were deleted by Reddit, we re-
move all the deleted posts and comments from the
datasets. Thus, the statistics of our datasets are
different from that in He et al. (2016c). For each
dataset, we use the simulator provided by He et al.
(2016c) to partition 90% of the data as a training
set, and 10% of the data as a testing set.

7.2 Evaluation

The evaluation metric is the cumulative reward per
episode averaged over 1,000 episodes (He et al.,
2016c). For each setting, we evaluate an agent as
follows. First, we train the agent on the training
set using Algorithm 2 in the Appendix for 3,500
episodes. Then, we test the agent using the test-
ing set for 1,000 episodes and choose every action
according to the ε-greedy policy, but the agent can-
not use the received rewards to update the model
parameters. We repeat the testing for five repe-
titions and report the mean and the standard de-
viation of the evaluation metric. Throughout the
training and testing, we fix ε = 0.1.
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Models Procedure Askscience Askmen Todayilearned Worldnews NFL

DRRN-
BiLSTM

Random 546.9±21.8 183.1±7.2 654.9±27.3 427.4±21.9 438.7±16.1
Two-stage 643.2±28.2 184.3±9.2 659.0±25.6 424.0±14.0 455.9±18.7

Greedy 672.2±22.2 190.2±11.5 665.7±11.4 428.8±21.0 459.7±9.3

DRRN-
Mean

Random 594.5±21.9 184.7±6.9 649.6±21.7 413.9±11.7 434.1±22.9
Two-stage 581.1±13.0 183.3±5.6 670.4±29.7 426.7±24.2 441.9±20.3

Greedy 732.3±25.7 194.2±7.8 680.0±31.0 435.4±18.5 452.3±22.6

Our
model

Random 648.6±19.6 186.1±8.2 670.5±26.5 429.4±20.8 452.5±17.9
Two-stage 685.6±24.6 184.7±7.5 672.2±37.8 426.1±18.2 460.3±15.7

Greedy 757.4±10.9 210.6±11.3 689.5±13.3 436.0±21.9 454.2±12.0

Table 2: Comparison of average episodic reward on different datasets.

7.3 Baselines

Our DRRN-Attention model is compared with two
baselines. The first one is DRRN-BiLSTM, which
is the current state-of-the-art model to approxi-
mate the Q-value for this task (He et al., 2016c).
We modify the DRRN-BiLSTM model by replac-
ing the Bi-directional LSTM with a mean opera-
tor and call this new model DRRN-Mean. This
DRRN-mean is used as the second baseline model.
In addition, we compare the greedy procedure
with two baseline approximation procedures. The
first is random sampling procedure in (He et al.,
2016c). The second is the two-stage Q-learning
procedure in (He et al., 2017), which is the state-
of-the-art approximation procedure for this task.

7.4 Implementation Details

In preprocessing, we remove all punctuations and
lowercase all alphabetic characters. To construct
the bag-of-words representations, we use the dic-
tionary provided by He et al. (2016c). This dictio-
nary contains the most frequent 5,000 words in the
data. All model parameters are initialized by a uni-
form distribution within the interval [−0.1, 0.1].
In our DRRN-Attention model, we set the com-
ment embedding size d to 16, the hidden size of
the LSTM h to 16, the hidden size of the atten-
tion mechanism h′ to 16, and the steps of atten-
tion L to 2. In the text embedding module of
DRRN-Attention, each fully-connected layer has
a hidden size of 16. In the baseline models, we
set the hidden size of the bidirectional LSTM to
20, the comment embedding size to 20. The text
embedding module of the baselines has two lay-
ers and each layer has a hidden size of 20. For
the deep Q-learning algorithm, we set F = 1000.
We update the model parameters using stochas-
tic gradient descent with RMSprop (Tieleman and

Hinton, 2012). We set different initial learning
rates for different datasets (askscience: 0.00001;
askmen: 0.00008; todayilearned, worldnews, and
nfl: 0.00002). The mini batch size is 100. All
the above hyperparameters are tuned by five-fold
cross-validation. We also found that the model
performances tuned by five-fold cross-validation
are similar to that tuned by the testing set. We set
the remaining hyperparameters according to (He
et al., 2017). The memory size |D| is set to 10000.
The discount factor γ is set to 0.9. The candidate
size m of the baseline approximation procedures
is set to 10.

8 Experimental Results

8.1 Agent Performances on Various Datasets
In this section, the performances of different neu-
ral network models and approximation procedures
are evaluated on five datasets with N = 10, K =
3. The results are shown in Table 2. We analyze
the performances of our DRRN-Attention model
in each approximation procedure. With the ran-
dom sampling procedure, our model achieves a
higher cumulative reward than the baseline mod-
els across all datasets. When using the two-
stage Q-learning procedure, or the greedy pro-
cedure, our model outperforms the baselines on
four of the datasets; its performance is compet-
itive to the baselines in the remaining dataset.
Next, we analyze the performances of the greedy
procedure in each neural network model. When
using the DRRN-BiLSTM model or the DRRN-
Mean model to parameterize the Q-function, the
greedy procedure achieves a higher cumulative re-
ward than other two baseline procedures across all
datasets. When using the DRRN-Attention model,
the greedy procedure outperforms the baseline
procedures in four of the datasets. In sum up, us-
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Models Procedure K=2 K=3 K=4 K=5

DRRN-BiLSTM
Random 431.6±18.8 546.9±21.8 743.7±15.9 899.5±53.9

Two-stage 484.3±10.6 643.2±28.2 765.7±32.8 928.6±20.5
Greedy 467.8±24.5 672.2±22.2 772.9±28.2 929.2±18.6

Our model
Random 482.7±18.1 648.6±19.6 806.0±13.5 941.2±7.3

Two-stage 537.5±26.1 685.6±24.6 772.8±22.8 903.5±22.4
Greedy 545.2±27.3 757.4±10.9 820.1±24.2 944.1±29.6

Table 3: Comparison of average episodic reward with different action sizes on askscience dataset.

ing DRRN-Attention model with the greedy pro-
cedure outperforms all the baselines in four of the
datasets.

8.2 Agent Performances on Various Action
Sizes

We evaluate all the neural network models and
approximation procedures across various action
sizes with K = 2, 3, 4, 5 and fix N = 10 on
the askscience dataset. The results are presented
in Table 3. Our DRRN-Attention model outper-
forms the baselines across all the action sizes form
K = 2 to K = 5 with the random sampling pro-
cedure or the greedy procedure. With the two-
stage Q-learning procedure, our model achieves a
higher cumulative reward than the baseline mod-
els when K = 2, 3, 4. Then, we analyze the per-
formance of the greedy procedure in each neural
network model. When using the DRRN-BiLSTM
to parameterize the Q-function, the greedy pro-
cedure outperforms the baseline procedures when
K = 3, 4, 5. When using our DRRN-Attention,
the greedy procedure achieves a higher cumulative
reward than the baselines whenK = 2, 3, 5. Over-
all, using the DRRN-Attention model with the
greedy procedure achieves the best performances
across all the action sizes form K = 2 to K = 5.

8.3 Case Study

Table 4 presents an example of Q-value prediction
of a state and three sub-actions on the askscience
dataset. In this study, we enumerate every per-
mutation of these three sub-actions, e.g., (1, 3, 2)
denotes a permutation of comments that we place
comment (1) in the first position, comment (3) in
the second position, and comment (2) in the third
position. Then, we use a trained DRRN-BiLSTM
model and a trained DRRN-Attention model to
predict the Q-value of each permutation of com-
ments. When we use the DRRN-BiLSTM model,
a different permutation of comments yields a dif-

State
Is the heat I feel when I face a bonfire trans-
mitted to me mostly by infrared radiation or by
heated air?
Sub-actions (comments)
(1) Should it also be taken into consideration,
that electromagnetic radiation is received dif-
ferently depending on it’s wavelength?
(2) Are the light from the fire and it’s heat one
in the same? Because when I’m sitting at a
campfire and it starts making my face feel hot...
(3) The infrared radiation of a hot object is pro-
portional to the fourth power of T, where T is
the centigrade temperature + 273, ...

Permutation
Q(s, a; θ) by

DRRN-
BiLSTM

Q(s, a; θ) by
DRRN-

Attention
(1, 2, 3) 131.3 117.0
(1, 3, 2) 132.1 117.0
(2, 1, 3) 67.1 117.0
(2, 3, 1) 45.6 117.0
(3, 1, 2) 84.5 117.0
(3, 2, 1) 60.4 117.0

Table 4: A Q-value prediction example using DRRN-
BiLSTM and DRRN-Attention.

ferent Q-value prediction. The Q-value predic-
tion of the permutation (1, 3, 2) almost triples
that of the permutation (2, 3, 1). On the other
hand, any permutation of the comments does not
change the Q-value prediction when we use our
DRRN-Attention model. This example demon-
strates that the ordering of the comments can sig-
nificantly affect the predicted Q-value when we
use the DRRN-BiLSTM model.

8.4 Discussions

As mentioned in Section 7.1, the datasets that we
use have a fewer number of comments than the
datasets used by previous work. Table 5 com-
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Subreddit # Cmts (their) # Cmts (our)
askscience 0.32M 0.15M
askmen 1.06M 0.94M
todayilearned 5.11M 4.65M
worldnews 5.99M 4.28M
nfl 6.12M 5.72M

Table 5: The number of comments in the datasets used
by He et al. (2016c) and us.

Subreddit Reward (their) Reward (our)
askscience 833.9 643.2
askmen 148.0 184.3
todayilearned 697.9 659.0

Table 6: The cumulative reward achieved by the
DRRN-BiLSTM + two-stage Q-learning baseline re-
ported by He et al. (2017) and us.

pares the number of comments in the datasets used
by (He et al., 2016c) and us. The experiments
in (He et al., 2017) used three of the datasets
(askscience, askmen, and todayilearned) from (He
et al., 2016c). We compare our results and the re-
sults reported in (He et al., 2017) of the DRRN-
BiLSTM + two-stage Q-learning baseline on these
three datasets in Table 6. On the askscience and to-
dayilearned datasets, the results of our implemen-
tation are worse than the results reported by them.
Since the number of comments in our askscience
dataset is only half of that in (He et al., 2017), the
results of our implementation on the askscience
dataset are significantly worse than the results re-
ported by them. On the askmen dataset, the num-
ber of comments that we use is slightly less than
the askmen dataset used by them. However, the
results of our implementation on askmen are bet-
ter than the results reported by them. We suspect
that the deleted comments may have low karma
scores, which cause the agent to achieve a higher
cumulative reward.

9 Conclusion

In this work, we propose a new approach to the
task of thread popularity prediction and tracking.
In our approach, we propose a new neural network
architecture, DRRN-Attention, to approximate the
Q-function, which well respect the permutation in-
variance of the comments in an action. Moreover,
our approach employs the greedy procedure to
approximate the predicted optimal action, which
does not require an additional pre-trained model

to generate candidate actions. Empirical studies
on real data demonstrate that our approach beats
the current state-of-the-art in most of the experi-
mental settings.
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