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Abstract
Neural state-of-the-art sequence-to-sequence
(seq2seq) models often do not perform well
for small training sets. We address paradigm
completion, the morphological task of, given a
partial paradigm, generating all missing forms.
We propose two new methods for the minimal-
resource setting: (i) Paradigm transduction:
Since we assume only few paradigms available
for training, neural seq2seq models are able
to capture relationships between paradigm
cells, but are tied to the idiosyncracies of the
training set. Paradigm transduction mitigates
this problem by exploiting the input subset of
inflected forms at test time. (ii) Source selec-
tion with high precision (SHIP): Multi-source
models which learn to automatically select one
or multiple sources to predict a target inflection
do not perform well in the minimal-resource
setting. SHIP is an alternative to identify
a reliable source if training data is limited.
On a 52-language benchmark dataset, we
outperform the previous state of the art by up
to 9.71% absolute accuracy.

1 Introduction

Morphological generation of previously unen-
countered word forms is a crucial problem in
many areas of natural language processing (NLP).
High performance can lead to better systems
for downstream tasks, e.g., machine translation
(Tamchyna et al., 2017). Since existing lexicons
have limited coverage, learning morphological
inflection patterns from labeled data is an important
mission and has recently been the subject of
multiple shared tasks (Cotterell et al., 2016, 2017a).

In morphologically rich languages, words inflect,
i.e., they change their surface form in oder to ex-
press certain properties, e.g., number or tense. A
word’s canonical form, which can be found in a
dictionary, is called the lemma, and the set of all in-
flected forms is referred to as the lemma’s paradigm.

Figure 1: The paradigm of the German noun “Schneemann”
(“snowman”). In this running example, the input subset is bold,
the output subset italic.

In this work, we address paradigm completion (PC),
the morphological task of, given a partial paradigm
of a lemma, generating all of its missing forms. For
the partial paradigm represented by the input subset
{(“Schneemannes”, GEN;SG), (“Schneemännern”,
DAT;PL)} of the German noun “Schneemann”
shown in Figure 1, the goal of PC is to generate the
output subset consisting of the six remaining forms.

Neural seq2seq models define the state of the
art for morphological generation if training sets are
large; however, they have been less successful in the
low-resource setting (Cotterell et al., 2017a). In this
paper, we address an even more extreme minimal-
resource setting: for some of our experiments, our
training sets only contain k⇡10 paradigms. Each
paradigm has multiple cells, so the number of forms
(as opposed to the number of paradigms) is not
necessarily minimal. However, we will see that
generalizing from paradigm to paradigm is a key
challenge, making the number of paradigms a good
measure of the effective training set size.

We propose two PC methods for the minimal-
resource setting: paradigm transduction and source
selection with high precision (SHIP). We define a
learning algorithm as transductive1 if its goal is to
generalize from specific training examples to spe-
cific test examples (Vapnik, 1998). In contrast, in-

1In order to avoid ambiguity, “transduction” is never used
in the sense of string-to-string transduction in this paper.
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ductive inference learns a general model that is inde-
pendent of any test set. Predictions of transductive
inference for the same item are different for different
test sets. There is no such dependence in inductive
inference. Our motivation for transduction is that, in
the minimal-resource setting, neural seq2seq mod-
els capture relationships between paradigm cells
like affix substitution and umlauting, but are tied to
the idiosyncracies of the k training paradigms. For
example, if all source forms in the training set start
with “b” or “d”, a purely inductive model may then
be unable to generate targets with different initials.
By transductive inference on the information avail-
able in the input subset at test time, i.e., the given par-
tial paradigm, our model can learn idiosyncracies.
For example, if the input subset sources start with
“p”, we can learn to generate output subset targets
that start with “p”. Thus, we exploit the input subset
for learning idiosyncracies at test time and then gen-
erate the output subset using a modified model. This
setup employs standard inductive training (on the
training set) for learning general rules of inflectional
morphology and transductive inference (on the test
set) for learning idiosyncracies. Our use of trans-
duction is innovative in that most previous work has
addressed unstructured problems whereas our prob-
lem is structured: we complete a paradigm, a com-
plex structure of forms, each of them labeled with a
morphological tag. Thus, the test set contains labels,
whereas, in transduction for unstructured problems,
the test set is a flat set of unlabeled instances. We
view our work as an extension of transduction to the
structured case, even though not all elements of the
theory developed by Vapnik (1998) carry over.

The motivation for our second PC method for lim-
ited training data, SHIP, is as follows. Multi-source
models can learn which combination of sources
most reliably predicts the target in the high-resource,
but less well in the minimal-resource setting. SHIP
models the relationship between paradigm slots
using edit trees (Chrupała et al., 2008), in order to
measure how deterministic each transformation is.
Then, it identifies the most deterministic source slot
for the generation of each target inflection.

Paradigm transduction and SHIP can be
employed separately or in combination. Our exper-
iments show that, in an extreme minimal-resource
setting, a combination of SHIP and a non-neural
approach is most effective; for slightly more
data, a combination of a neural model, paradigm
transduction and SHIP obtains the best results.

Contributions. (i) We introduce neural paradigm
transduction, which exploits the structure of the
PC task to mitigate the negative effect of limited
training data. (ii) We propose SHIP, a new algorithm
for picking a single reliable source for PC in the
minimal-resource setting. (iii) On average over all
languages of a 52-language benchmark dataset, our
approaches outperform state-of-the-art baselines
by up to 9.71% absolute accuracy.

2 Paradigm Completion

In this section, we formally define our task,
developing the notation for the rest of the paper.

Given the set of morphological tags T (w) of a
lemma w, we define the paradigm of w as the set
of tuples of inflected form fk and tag tk:

⇡(w)=
��

fk[w],tk
� 

tk2T (w)
(1)

The example in Figure 1 thus corresponds to:
⇡(Schneemann) =

��
“Schneemann”, NOM;SG

�

. . .
�
“Schneemänner”, ACC;PL

� 
.

A training set in our setup consists of complete
paradigms, i.e., all inflected forms of each lemma
are available. This simulates a setting in which a lin-
guist annotates complete paradigms, as done, e.g.,
in Sylak-Glassman et al. (2016). In contrast, each el-
ement of the test set is a partial paradigm, which we
refer to as the input subset. This simulates a setting
in which we collect all forms of a lemma occurring
in a (manually or automatically) annotated input
corpus; this set will generally not be complete. The
PC task consists of generating the output subset of
the paradigm, i.e., the forms belonging to form-tag
pairs which are missing from the collected subset.

3 Method

Our approach for PC is based on MED (Morpholog-
ical Encoder-Decoder), a state-of-the-art model for
morphological generation in the high-resource case,
which was developed by Kann and Schütze (2016b).
In this section, we first cover required background
on MED and then introduce our new approaches.

3.1 MED
Input and output format. MED converts one
inflected form of a paradigm into another, given
the two respective tags. Thus, the input of MED is
a sequence of subtags of the source and the target
form (e.g., NOM and SG are subtags of NOM;SG),
as well as the characters of the source form. All
elements are represented by embeddings, which are
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trained together with the model. The output of MED
is the character sequence of the target inflected form.

An example from the paradigm in Figure 1 is:

INPUT: DATS PLS GENT SGT S c h n e e m ä n n e r n
OUTPUT: S c h n e e m a n n e s

Encoder. The model’s encoder consists of a
bidirectional gated recurrent neural network (GRU)
with a single hidden layer. It reads an input vector
sequence x=(x1,...,xXt) and encodes it from two
opposite directions into two hidden representations�!
ht and

 �
ht as

�!
ht=GRU(xt,

��!
ht�1) (2)

 �
ht=GRU(xt,

 ��
ht+1) (3)

which are concatenated to

ht=
h�!
ht ;
 �
ht
i

(4)

Decoder. The decoder, another GRU with a single
hidden layer, defines a probability distribution over
the output vocabulary, which, for paradigm comple-
tion, consists of the characters in the language, as

p(y)=

TyY

t=1

GRU(yt�1,st�1,ct) (5)

st denotes the state of the decoder at step t, and
ct is the sum of the hidden representations of the
encoder, weighted by an attention mechanism.

Additional background on the general model ar-
chitecture is given in Bahdanau et al. (2015); details
on MED can be found in Kann and Schütze (2016b).

3.2 Semi-supervised MED
In order to make use of unlabeled data with MED,
Kann and Schütze (2017) defined an auxiliary
autoencoding task and proposed a multi-task
learning approach.

For this extension, an additional symbol is added
to the input vocabulary. Each input is then of the
form (A |M+)⌃+, with A being a novel tag for
autoencoding, ⌃ being the alphabet of the language,
andM being the set of morphological subtags of the
source and the target. As for the basic MED model,
all parts of the input are represented by embeddings.

The training objective is to maximize the joint
likelihood for the tasks of paradigm completion and
autoencoding:

L(✓)=
P

(s,tS ,tT ,w)2D logp✓(w |e✓(tS ,tT ,s))
+
P

a2A logp✓(a |e✓(a))

where A is a set of autoencoding examples, e✓
is the encoder, and D is a labeled training set of
tuples of source s, morphological source tag tS ,
morphological target tag tT , and target w.

3.3 MED for Paradigm Completion
MED was originally developed for morphological
reinflection. Thus, it operates on pairs consisting
of a single source and a single target form. In order
to use it for paradigm completion, where multiple
source forms are given, and multiple target forms are
expected, we convert the given data into a suitable
format in the way described in the following.

For a lemma w, let J(w) be the set of tags in the
input subset. Recall that J(w) is a subset of T (w),
the set of all tags, at test time, but that training
paradigms are complete, i.e., J(w)=T (w) for the
training set.

For both training of the inductive model
and paradigm transduction, we generate
|J(w)|(|J(w)|�1) training examples

(ti,tj ,fi[w]) 7!fj [w]

one for each pair of different tags in J(w). We also
generate autoencoding training examples for all
tags in J(w) (removing duplicates):

�
A,fi[w]

�
7!fi[w]

For the German lemma “Schneemann”, assume:
J(Schneemann)={GEN;SG,DAT;PL}

at test time. We then produce the following
training examples for paradigm transduction:

(DATS PLS GENT SGT Schneemännern) 7! Schneemannes
(GENS SGS DATT PLT Schneemannes) 7! Schneemännern
(A Schneemannes) 7! Schneemannes
(A Schneemännern) 7! Schneemännern

For completing a partial paradigm, we then select
one source form per target slot (the lemma, unless
stated otherwise) and create all forms corresponding
to the tags in J(w)\T (w) one by one.

3.4 Paradigm Transduction
Motivation. In the minimal-resource setting,
parameter estimates are tied to the idiosyncracies
of the lemmas seen in training, due to overfitting.
Our example in §1 is that the model has difficulties
producing initial letters not seen during training.
However, within each paradigm, forms are gen-
erally similar; thus, input subset sources contain
valuable information about how to generate output



3257

Figure 2: Average amount of sources in the input subset for paradigm transduction, per language.

subset targets. Based on this observation, we solve
the problem of overfitting by transduction: we teach
the model test idiosyncracies by training it on the
input subset before generating the output subset.

Method description. We first train a general
model on the training set in the standard supervised
learning setup, i.e., the setup which is called
inductive inference by Vapnik (1998). At test
time, we take the general model as initialization
and continue training on examples generated from
the input subset as described in §3.3. We do this
separately for each lemma, satisfying the defining
criterion of transductive inference that predictions
depend on the test data. Also, different input subsets
(i.e., different subsets of the same paradigm) can
in general make different predictions on an output
subset target.

Paradigm transduction is expected to perform
best in a setting in which many forms of each
paradigm are given as input, i.e., when |J(w)| is
big. In Figure 2 we show the average sizes of the
input subsets for all languages in our experiments.

3.5 Source Selection with High Precision
During PC, some sources contain more information
relevant to generating certain targets than others.
For instance, the nominative singular and accusative
singular in German are generally identical (cf. Fig-
ure 1); thus, for generating the accusative singular,
we should use the nominative singular as source if
it is available—rather than, say, the dative plural.

Figure 3: Edit tree example. Each node gives lengths of the
parts before/after LCS, e.g., the root has LCS “Schneem”,
before part ✏ and after part “ann”, thus the lengths are “(0,3)”.
“sub” = “substitution”.

In fact, for many languages, the entire paradigm
of most lemmas is deterministic if the right source
forms are known and used for the right targets. A set
of forms that determines all other inflected forms
is called principal parts (Finkel and Stump, 2007).
Based on this theory, Cotterell et al. (2017b) induce
topologies and jointly decode entire paradigms,
thus making use of all available forms. However,
their method is only applicable if good estimates
of the probabilities p(fj [w]|fi[w]) for source fi[w]
and target fj [w] can be obtained, and they train on
hundreds of paradigms per part of speech (POS)
and language, which are not available in our setup.

We propose an alternative for the minimal-
resource setting: SHIP, which selects a single best
source for each target and is based on edit trees. An
edit tree e(fi[w],fj [w]) is a transformation from a
source fi[w] to a target fj [w] (Chrupała et al., 2008);
see Figure 3. It is constructed by first determining
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Figure 4: SHIP example for German plural forms (SET1). For the graph constructed in training (see §3.5), subgraphs are extracted
in testing for input subset sizes two (left) and three (right). Input subset: yellow and green. Output subset: white and red. For
generation of the target shown in red, SHIP selects the source shown in green.

the longest common substring (LCS) (Gusfield,
1997) of fi[w] and fj [w] and then modeling the
prefix and suffix pairs of the LCS recursively. In
the case of an empty LCS, e(fi[w],fj [w]) is the sub-
stitution operation that replaces fi[w] with fj [w].

We construct edit trees for each pair (fi[w],fj [w])
in the training set, count the number nij of different
edit trees for ti 7! tj , and construct a fully connected
graph. The tags are nodes of the graph, and the
counts nij are weights. Edges are undirected,
since edit trees are bijections (cf. Figure 4). We
then interpret the weight of an edge as a measure
of the (un)reliability of the corresponding two
source-target relationships. Our intuition is that the
fewer different edit trees relate source and target, the
more reliable the source is for generating the target.

At test time, we find for each target tj a source
tk such that nkjnij8i2J(w). We then use fk[w]
to generate fj [w]. Again, Figure 4 shows examples.

4 Experiments

4.1 Data

We run experiments on the datasets from task 2 of the
CoNLL–SIGMORPHON 2017 shared task, which
have been created using UniMorph (Kirov et al.,
2018). We give a short overview here; see (Cotterell
et al., 2017a) for details. The dataset contains, for
each of 52 languages, a development set of 50 partial
paradigms, a test set of 50 partial paradigms, and
three training sets of complete paradigms. Training
set sizes are 10 (SET1), 50 (SET2), and 200 (SET3).
Recall that we view the number of paradigms (not
the number of forms) as the best measure of the
amount of training data available. Even for SET3,
there are only 200 lemmas per language in the
training set, which are additionally distributed over
multiple POS tags, compared to >600 lemmas per
POS used by Cotterell et al. (2017b). We, thus,
want to emphasize that all settings—SET1, SET2,

and SET3—can be considered low-resource.
We produce training sets for our encoder-decoder

as described in §3.3, but limit the total number of
training examples to 200,000.

4.2 Hyperparameters
With our hyperparameters, we follow Kann and
Schütze (2016a). In particular, our encoder and
decoder GRUs have 100-dimensional hidden states.
Our embeddings are 300-dimensional. For training,
we use stochastic gradient descent, ADADELTA
(Zeiler, 2012), and minibatches of size 20. After
experiments on the development set, we decide on
training SET1, SET2, and SET3 models for 50, 30,
and 20 epochs, respectively. For paradigm transduc-
tion, we train all models for 25 additional epochs.

4.3 Baselines
In the following, we describe our baselines. COPY,
MED, and PT are used for ablation and SIG17 for
comparison with the state of the art.

COPY. As targets in many paradigm cells in many
languages are identical to the lemma, we consider
a copy baseline that simply copies the lemma.

MED. This is the model by Kann and Schütze
(2016b), which performed best at SIGMORPHON
2016. For decoding, the lemma is used. Since MED
is designed for the high-resource setting, we do not
expect good performance for our minimal-resource
scenario, but the comparison shows how much our
enhancements improve performance.

Pure paradigm transduction (PT). PT is a
seq2seq model exclusively trained on the input sub-
set. Its performance sheds light on the importance
of the initial inductive training.

SIG17. SIG17 is the official baseline of the
CoNLL–SIGMORPHON 2017 shared task, which
was developed to perform well with very little
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SET1 SET2 SET3
BL: COPY .0810 .0810 .0810
BL: MED .0004 .0432 .4211
BL: PT .0833 .0833 .0775
BL: SIG17 .5012 .6576 .7707
SIG17+SHIP .5971 .7355 .8008
MED+PT .5808 .7486 .8454
MED+PT+SHIP .5793 .7547 .8483

Table 1: Accuracy on PC for SIG17+SHIP (the shared task
baseline SIG17 with SHIP), MED+PT (MED with paradigm
transduction), MED+PT+SHIP (MED with paradigm trans-
duction and SHIP), as well as all baselines (BL). Results are
averaged over all languages, and best results are in bold; de-
tailed accuracies for all languages can be found in Appendix A.

training data. Its design follows Liu and Mao
(2016): SIG17 first aligns each input lemma and
output inflected form. Afterwards, it assumes that
each aligned pair can be split into a prefix, a stem,
and a suffix. Based on this alignment, the system
extracts prefix (resp. suffix) rules from the prefix
(resp. suffix) pairings. At test time, suitable rules
are applied to the input string to generate the target;
more details can be found in Cotterell et al. (2017a).

4.4 Results
Our results are shown in Table 1. For SET1,
SIG17+SHIP obtains the highest accuracy, while,
for SET2 and SET3, MED+PT+SHIP performs
best. This difference can be easily explained by
the fact that the performance of neural networks
decreases rapidly for smaller training sets, and,
while paradigm transduction strongly mitigates
this problem, it cannot completely eliminate it.
Overall, however, SIG17+SHIP, MED+PT, and
MED+PT+SHIP all outperform the baselines by
a wide margin for all settings.

Effect of paradigm transduction. On average,
MED+PT clearly outperforms SIG17, the strongest
baseline: by .0796 (.5808-.5012) on SET1, .0910
(.7486-.6576) on SET2, and .0747 (.8454-.7707)
on SET3.

However, looking at each language individually
(refer to Appendix A for those results), we find that
MED+PT performs poorly for a few languages,
namely Danish, English, and Norwegian (Bokmål
& Nynorsk). We hypothesize that this can most
likely be explained by the size of the input subset
of those languages being small (cf. Figure 2 for
average input subset sizes per language). Recall
that the input subset is explored by the model
during transduction. Most poorly performing

languages have input subsets containing only the
lemma; in this case paradigm transduction reduces
to autoencoding the lemma. Thus, we conclude that
paradigm transduction can only improve over MED
if two or more sources are given.

Conversely, if we consider only the languages
with an average input subset size of more than
15 (Basque, Haida, Hindi, Khaling, Persian, and
Quechua), the average accuracy of MED+PT for
SET1 is 0.9564, compared to an overall average
of 0.5808. This observation shows clearly that
paradigm transduction obtains strong results if
many forms per paradigm are given.

Effect of SHIP. Further, Table 1 shows that
SIG17+SHIP is better than SIG17 by .0959
(.5971-.5012) on SET1, .0779 (.7355-.6576) on
SET2, and .0301 (.8008-.7707) on SET3. Stronger
effects for smaller amounts of training data indicate
that SHIP’s strategy of selecting a single reliable
source is more important for weaker final models;
in these cases, selecting the most deterministic
source reduces errors due to noise.

In contrast, the performance of MED, the neural
model, is relatively independent of the choice of
source; this is in line with earlier findings (Cotterell
et al., 2016). However, even for MED+PT, adding
SHIP (i.e., MED+PT+SHIP) slightly increases
accuracy by .0061 (.7547-.7486) on SET2, and
.0029 (.8483-.8454) on SET3 (L53).

Ablation. MED does not perform well for either
SET1 or SET2. In contrast, on SET3 it even outper-
forms SIG17 for a few languages. However, MED
loses against MED+PT in all cases, highlighting
the positive effect of paradigm transduction.

Looking at PT next, even though PT does not
have a zero accuracy for any setting or language,
it performs consistently worse than MED+PT. For
SET3, PT is even lower than MED on average, by
.3436 (.4211-.0775). Note that, in contrast to the
other methods, PT’s performance is not dependent
on the size of the training set. The main determinant
for PT’s performance is the size of the input subset
during transductive inference. If the input subset
is large, PT can perform better than MED, e.g.,
for Hindi and Urdu. For Khaling SET1, PT even
outperforms both MED and SIG17. However, in
most cases, PT does not perform well on its own.

MED+PT outperforms both MED and PT.
This confirms our initial intuition: MED and PT
learn complementary information for paradigm
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input output
MED PT MED+PT

Schneemann N;GEN;PL GetGächen Scnneeeeennnnnnnnnnnnnnnnnnnnn Schneemänner
dish V;V.PTCP;PRS dising dish dishing
creer V;SBJV;PRS;1;PL crezcamos creyemos creamos

Table 2: Analysis of the outputs of MED, PT, and MED+PT for SET2. Top to bottom: German, English, Spanish. MED and
PT produce incorrect, MED+PT correct inflections.

Figure 5: Accuracy of MED+PT as a function of the average
input subset size. Red/diamonds: SET1; blue/circles: SET2;
green/triangles: SET3.

completion. The base model learns the general
structure of the language (i.e., correspondences
between tags and inflections) while paradigm
transduction teaches the model which character
sequences are common in a specific test paradigm.

5 Analysis

5.1 On the Size of the Input Subset

We expect paradigm transduction to become more
effective as the size of the input subset increases.
Figure 5 shows the accuracy of MED+PT as a
function of the average input subset size for SET1,
SET2, and SET3. Accuracy for languages with
input set sizes above 15 is higher than .8 in all
settings. In general, languages with larger input
set sizes perform better. The correlation is not
perfect because languages have different degrees
of morphological regularity. However, the overall
trend is clearly recognizable.

The organizers of CoNLL–SIGMORPHON
provided large input subsets in the development
and test sets of languages with large paradigms.
Thus, PT performs better for languages with many
inflected forms per paradigm, i.e., large |T (w)|.

5.2 On the Effect of Paradigm Transduction
We further analyze why paradigm transduction
improves the performance of the base model MED,
using the German, English, and Spanish SET2 exam-
ples for MED, PT, and MED+PT given in Table 2.

German. MED generates an almost random
sequence. However, it learns that the umlaut “ä”
must appear in the target. PT only produces correct
characters, but it produces far too many. The reason
may be that the model is trained on both a double
“e” and a double “n”, learning that “e” and “n” are
likely to appear repeatedly. MED+PT generates the
correct target.

English. MED fails to generate “h” because the
bigram “sh” did not occur in training, and so the
probability of “h” following “s” is estimated to be
low. PT fails to produce the suffix “ing”, since it
does not occur in the input subset, and, thus, PT has
no way of learning it. Again, MED+PT generates
the correct target.

Spanish. MED produces “crezcamos”, a form
that has the correct tag V;SBJV;PRS;1;PL, but
is a form of “crecer” (which appears in the
training set), not of “creer” (which does not). This
demonstrates the problems resulting from a lack
of lemma diversity during training. PT produces
a combination of several of the forms in the input
subset: subjunctive forms beginning with “crey”
and “creemos” V;IND;PRS;1;PL. Again, MED+PT
generates the correct target.

Overall, this analysis confirms that MED learns
relationships between paradigm cells, while
paradigm transduction adds knowledge about the
idiosyncracies of a partial test paradigm.

5.3 Comparison to Multi-Source Models
In this section, we explicitly compare our approach
to neural multi-source models for morphological
generation.

Following Kann et al. (2017a), we employ
attention-based RNN encoder-decoder networks
with two or four input sources. The input to a
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SET1 SET2 SET3
1 2 4 +PT 1 2 4 +PT 1 2 4 +PT

dutch .00 .00 .00 .49 .04 .01 .00 .78 .43 .65 .72 .87
german .00 .00 .00 .65 .00 .00 .01 .75 .44 .42 .59 .88
icelandic .00 .00 .00 .41 .03 .02 .02 .50 .24 .33 .35 .77
spanish .00 .00 .00 .92 .03 .09 .09 .98 .59 .63 .83 .99
welsh .00 .00 .00 .91 .05 .14 .15 .97 .35 .53 .70 .99

Table 3: MED accuracy on five randomly selected languages with 1, 2, and 4 sources and combined with paradigm transduction
(“+PT”). Best results in bold.

multi-source model is the concatenation of all
sources and corresponding tags. During training,
we randomly sample (with repetition) one or
three additional forms from the paradigm of each
example. At test time, we sample the additional
forms from the given partial paradigm; without
repetition first, but repeating if not enough inflected
forms are available. For autoencoding examples in
the training data, we simply concatenate two or four
copies of the source and the autoencoding tag. We
randomly select five languages for this experiment.

Table 3 shows that, for SET3, four sources
(column header “4”) are generally better than two
sources (“2”), which in turn are better than one
source (“1”); thus, as expected, making additional
sources available in training improves results. We
attribute one exception (German accuracy is .4391
for “1” and .4179 for “2”) to the noisiness of the
problem—training sets in terms of number of
paradigms are relatively small, even for SET3.

The improvements we see for SET3 are large.
This suggests that using more than four sources
would further improve results and perhaps reach
the level of performance of MED+PT, at the cost
of a long training time. However, for SET1 and
SET2, there is no consistent improvement from 1 to
2 to 4 sources. While it is possible that further opti-
mization could improve the best multi-source result
given in Table 3, the gap to MED+PT is very large,
and the improvement from 2 to 4 is small. This
indicates that multi-source methods cannot compete
with transductive learning for SET1 and SET2.

5.4 Qualitative Analysis of SHIP

For a qualitative analysis of SHIP, we look at the
sources it selects for French verbs on the develop-
ment set; the complete diagram is shown in Figure
6. For most verbs, future and conditional can be
predicted from COND;1;PL (e.g., “finirions”), and
indicative present, indicative imparfait and subjunc-
tive present from IND;PRS;3;PL (e.g., “finissent”).

Figure 6: Right: output set target to be generated. Left:
input set source selected by SHIP. Arrows for the two most
frequently selected sources are solid, arrows for the two least
frequently selected sources are dashed.

In case of ties, SHIP selects the alphabetically first
tag; this explains why COND;1;PL gets preference
over IND;PRS;3;PL for indicative present singular.
These two forms represent two of the principal
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parts of French conjugation, the infinitive (almost
always derivable from COND;1;PL) and the stem
that is used for plural indicative, imparfait, and
other paradigm cells—which is sometimes not
derivable from the infinitive as is the case for
“finir”. In comparison, IND;PST;3;SG;IPFV and
SBJV;PST;2;PL are less reliable sources. But they
are still reasonably accurate if no better alternative
is available; consider the following SBJV;PST;2;PL
! IND;PST;1;SG;PFV generations: “parlassiez”
7! “parlai”, “finissiez” 7! “finis”, “missiez” 7!
“mis”, “prissiez” 7! “pris”.

We thus conclude that SHIP indeed learns to
select appropriate source forms.

6 Related Work

Morphological generation. In the last two years,
most work on paradigm completion has been done
in the context of the SIGMORPHON 2016 and
the CoNLL–SIGMORPHON 2017 shared tasks
(Cotterell et al., 2016, 2017a). Due to the success of
neural seq2seq models in 2016 (Kann and Schütze,
2016b; Aharoni et al., 2016), systems developed for
the 2017 edition were mostly neural (Makarov et al.,
2017; Bergmanis et al., 2017; Zhou and Neubig,
2017). Besides the shared task systems, Kann and
Schütze (2017) presented a paradigm completion
model for a multi-source setting that made use of
an attention mechanism to decide which input form
to attend to at each time step. They used randomly
chosen, independent pairs of source and target
forms for training. This differs crucially from the
setting we consider in that no complete paradigms
were available in their training sets. Only Cotterell
et al. (2017b) addressed essentially the same task
we do, but they only considered the high-resource
setting: their models were trained on hundreds of
complete paradigms. The experiments reported
in §5.3 empirically confirm that inductive-only
models perform poorly in our setting.

Several ways to employ neural models for
morphological generation with limited data have
been proposed, e.g., semi-supervised training
(Zhou and Neubig, 2017; Kann and Schütze, 2017)
or simultaneous training on multiple languages
(Kann et al., 2017b). The total number of sources
in the training set in some of our settings may be
comparable to this earlier work, but our training
sets are less diverse since many forms come from
the same paradigm. We argue in §1 that the number
of paradigms (not the number of sources) measures

the effective size of the training set.
Other important work on morphological

generation—neural and non-neural—includes
Dreyer et al. (2008); Durrett and DeNero (2013);
Hulden et al. (2014); Nicolai et al. (2015); Faruqui
et al. (2016); Yin et al. (2016).

Seq2seq models in NLP. Even though neural
seq2seq models were originally designed for ma-
chine translation (Sutskever et al., 2014; Cho et al.,
2014; Bahdanau et al., 2015), their application has
not stayed limited to this area. Similar architectures
have been successfully applied to many seq2seq
tasks in NLP, e.g., syntactic parsing (Vinyals
et al., 2015), language correction (Xie et al.,
2016), normalization of historical texts (Bollmann
et al., 2017), or text simplification (Nisioi et al.,
2017). Transductive inference is similar to domain
adaptation, e.g., in machine translation (Luong and
Manning, 2015). One difference is that training set
and test set can hardly be called different domains
in paradigm completion. Another difference is that
explicit structured labels (the morphological tags
of the forms in the input subset) are available at test
time in paradigm completion.

7 Conclusion

We presented two new methods for minimal-
resource paradigm completion: paradigm transduc-
tion and SHIP. Paradigm transduction learns general
inflection rules through standard inductive training
and idiosyncracies of a test paradigm through trans-
duction. We showed that paradigm transduction
effectively mitigates the problem of overfitting due
to a lack of diversity in the training data. SHIP
is a robust non-neural method that identifies a
single reliable source for generating a target. In the
minimal-resource setting, this is an effective alter-
native to learning how to combine evidence from
multiple sources. Considering the average over all
languages of a 52-language benchmark dataset, we
outperform the previous state of the art by at least
7.07%, and up to 9.71% absolute accuracy.
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