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Abstract

Due to the benefits of model compactness,
multilingual translation (including many-to-
one, many-to-many and one-to-many) based
on a universal encoder-decoder architecture at-
tracts more and more attention. However, pre-
vious studies show that one-to-many transla-
tion based on this framework cannot perform
on par with the individually trained models.
In this work, we introduce three strategies to
improve one-to-many multilingual translation
by balancing the shared and unique features.
Within the architecture of one decoder for all
target languages, we first exploit the use of
unique initial states for different target lan-
guages. Then, we employ language-dependent
positional embeddings. Finally and especially,
we propose to divide the hidden cells of the
decoder into shared and language-dependent
ones. The extensive experiments demonstrate
that our proposed methods can obtain remark-
able improvements over the strong baselines.
Moreover, our strategies can achieve compa-
rable or even better performance than the indi-
vidually trained translation models.

1 Introduction

Encoder-decoder based neural machine translation
(NMT) has achieved the new state-of-the-art due
to powerful end-to-end modeling (Sutskever et al.,
2014; Bahdanau et al., 2015; Wu et al., 2016; Has-
san et al., 2018). Under this end-to-end frame-
work, many researchers attempt to improve the
translation quality between two languages by ex-
ploiting monolingual data (Sennrich et al., 2016;
Zhang and Zong, 2016), taking advantage of both
NMT and statistical machine translation (Wang
et al., 2017a; Tang et al., 2016; Zhao et al., 2018;
Zhou et al., 2017) and so on.
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is done while Yining Wang is doing research intern at Sogou
Inc.

Another research direction about how to per-
form multilingual translation within this encoder-
decoder architecture has recently drawn more and
more attention (Zoph and Knight, 2016; Dong
et al., 2015; Luong et al., 2016; Johnson et al.,
2017; Firat et al., 2016b).

In multilingual translation scenarios, one can
employ multi-task learning framework to per-
form many-to-one or one-to-many translation us-
ing multiple encoders or multiple decoders (Luong
et al., 2016; Dong et al., 2015). Firat et al. (2016a)
and Lu et al. (2018) further propose to share a
universal attention mechanism for many-to-many
translations. In these methods, encoder or decoder
is language dependent and network parameters in-
crease linearly with the number of languages.

Johnson et al. (2017) and Ha et al. (2016)
present an appealing approach in which a universal
encoder-decoder framework is designed for many-
to-one, many-to-many and one-to-many multilin-
gual translation tasks. The network model is com-
pact and the model size does not grow as the
number of languages increases. However, John-
son et al. (2017) observe that only the many-to-
one paradigm can achieve better translation results
than the individually trained models. For the other
two paradigms, there are various degrees of qual-
ity degradation. In this work, we focus on one-to-
many multilingual translation under the universal
encoder-decoder framework and attempt to boost
its performance while maintaining the model com-
pactness.

To this end, we propose three strategies which
exploit the unique features of each target language
and keep as many parameters shared as possible.
First, we design two special labels at the tail of
encoder and the head of decoder to mark the tar-
get language and guide the generation of different
target languages. Then, we introduce language-
dependent positional embeddings into the bottom
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layer of the decoder network and correspondingly
the structural difference between target languages
can be well captured. Finally and especially, we
propose a new parameter-sharing mechanism in
which we divide the hidden units of each decoder
layer into shared and language-dependent ones.

We verify the effectiveness of our proposed
methods on two one-to-many tasks: Chinese-
to-English/Japanese translation and English-to-
German/French translation. The experimental re-
sults demonstrate that the three strategies can
significantly outperform the baseline multilingual
models and they can achieve comparable or even
better performance than the individually trained
translation models.

Specifically, our contributions in this paper are
two-fold:

• The proposed three strategies can take advan-
tage of unique features of each target lan-
guage while sharing the network parameters
as many as possible.

• The extensive experiments on multiple trans-
lation tasks show that the three proposed
strategies improve the translation quality.
Moreover, the effects of the strategies are
complementary and the combined one can
perform on par with or better than the indi-
vidually optimized translation models.

2 Background

Our proposed approach can be applied to any
encoder-decoder architecture. Considering the
excellent translation performance of Transformer
network (Vaswani et al., 2017), we implement our
method entirely based on it in this work. Trans-
former consists of stacked encoder and decoder
layers. The encoder maps an input sequence
x = (x1, x2, · · · , xn) to a sequence of continuous
representations z = (z1, z2, · · · , zn) whose size
varies with respect to the source sentence length.
The decoder generates an output sequence y =
(y1, y2, · · · , ym) from the continuous representa-
tions z. Since the Transformer network contains
no recurrence, positional embeddings are used in
model to make use of sequence order. The encoder
and decoder are trained to maximize the condi-
tional probability of target sequence given a source
sequence:

L(θ) =

N∑
t=1

logP (yt|y<t, x; θ) (1)

For the sake of brevity, we refer the reader to
Vaswani et al. (2017) for more details regarding
the architecture.

3 Method Description

In this section, we introduce our general strategies
for extending the transformer network to one-to-
many translation task. We decompose the proba-
bility of the target sequences into the products of
per token probabilities in all translation forms:

L(θ) =
M∑
t=1

Nl∑
l=1

log(P (ylt|x, yl<t; θ)) (2)

where M is number of target languages, and
P (ylt|x, yl<t; θ) denotes the translation probability
of t-th word of the l-th target language. Note that
the translation process for all target languages uses
the same parameter set θ.

Our methods mainly concentrate on improv-
ing one-to-many multilingual translation by de-
signing new decoder structure under the univer-
sal encoder-decoder framework. The idea is to
exploit the shared and unique features of differ-
ent target languages, and we respectively pro-
pose three strategies including special label initial-
ization, language-dependent positional embedding
and a new parameter-sharing mechanism.

3.1 Special Label Initialization
In the universal encoder-decoder network for one-
to-many multilingual translation (Johnson et al.,
2017), a special token (e.g. en2fr) is added at the
end of the source sentence to indicate the transla-
tion direction. Although it is an effective mecha-
nism, we find that the initial states of the decoder
are very important to guide the generation process
for different target languages. In order to enhance
the model, we utilize another special language-
dependent label at the beginning of the decoder
and we regard it as the first generated token of the
target language (e.g. 2fr).

3.2 Language-dependent Positional
Embedding

Positional embeddings give the model the sense of
which part of the sequence is currently being dealt
with. Intuitively, different target languages should
have different positional embeddings to distin-
guish the structural difference between multiple
target languages. Therefore, we design language-
dependent positional embeddings in the universal
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Figure 1: The hidden units of decoder network. Blue
part represents the shared units, and yellow, green and
red parts denote different language-dependent units re-
spectively.

encoder-decoder multilingual translation. For the
fixed embedding method (Vaswani et al., 2017),
sine(x) and cosine(x) functions are used to gen-
erate positional embeddings. In this case, we in-
troduce trigonometric functions with different or-
ders or offsets on the decoder to distinguish differ-
ent target languages. For the dynamic embedding
method (Gehring et al., 2017), we equip the tar-
get inputs by embedding the absolute position of
different languages separately.

3.3 Shared and Language-dependent Hidden
Units per Layer

In the universal encoder-decoder multilingual
translation, the hidden layers of the decoder are re-
sponsible for generating different target language
sentences. As a result, the hidden layers should
embody some language-dependent information.

In this work, we propose to divide the hid-
den units of each decoder layer into shared units
and language-dependent ones. On the one hand,
shared units can learn the commonality of lan-
guages and enable one-to-many translation to
share the network parameters as many as possi-
ble. On the other hand, language-dependent units
are capable of capturing the characteristic of each
specific language.

Figure 1 gives a brief description of our pro-
posed strategy. For instance, in training step for
one target language (tar-1), we tune the shared
units and the language-dependent units of tar-1,
and mask out other parts. In decoding step, we
only use the shared and language-dependent hid-
den units of target language tar-1 to predict trans-
lation results.

4 Experiments Settings

In this section, we test the proposed methods
on two one-to-many translation tasks, including
(i) Chinese→English/Japanese in general domain,
and (ii) English→French/German in WMT14

task.
Chinese→English/Japanese For this transla-

tion task, the training sets of Chinese-to-English
(briefly, Zh→En) and Chinese-to-Japanese
(briefly, Zh→Ja) both contain about 10 million
parallel corpora. We evaluate our methods on
NIST03-06 (MT03-06) for Zh→En translation
and 400 sentences extracted from our general
corpus for Zh→Ja translation.

English→French/German The training set
consists of about 4.5 million bilingual sen-
tence pairs in WMT14 English-German (briefly,
En→De) task and about 36 million sentence
pairs in WMT14 English-French (briefly, En→Fr)
task1. We use the combination of newstest2012
and newstest2013 as our validation set, and we
use newstest2014 as our test set on En→De and
En→Fr tasks.

We adopt the tensor2tensor2 library for train-
ing and evaluating our basic Transformer transla-
tion model. We use wordpiece method (Wu et al.,
2016; Schuster and Nakajima, 2012) to encode
source side sentences and the combination of tar-
get side sentences. The vocabulary size is 37,000
for both sides. We train our models using config-
uration transformer big adopted by Vaswani et al.
(2017), which contains a 6-layer encoder and a 6-
layer decoder with 1024-dimensional hidden rep-
resentations. During training, each mini-batch on
one GPU contains a set of sentence pairs with
roughly 3,072 source and 3,072 target tokens. We
use Adam optimizer (Kingma and Ba, 2014) with
β1=0.9, β2=0.98, and ε=10−9. For our model,
we train for 400,000 steps on one machine with
8 NVIDIA Tesla M40 GPUs.

5 Results and Analysis

We show the results of one-to-many transla-
tion experiments using our proposed strategies.
The translation performance is evaluated by
case-insensitive BLEU4 for Zh→En translation,
character-level BLEU5 for Zh→Ja translation, and
case-sensitive BLEU4 (Papineni et al., 2002) for
En→De/Fr translation task.

5.1 Our Strategies vs. Baseline

Table 1 reports the main translation results of
Zh→En/Ja and En→De/Fr translation tasks. We
conduct universal one-to-many translation using

1http://www.statmt.org/wmt14/translation-task.html
2https://github.com/tensorflow/tensor2tensor
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Methods Zh→En Zh→Ja En→De En→Fr

MT03 MT04 MT05 MT06 Ave test test test

Indiv 43.59 43.95 45.34 44.05 44.23 40.71 27.84 41.50

O2M 43.20 43.55 44.68 43.93 43.84 42.09 26.42 41.32

O2M + 1 43.91 44.01 45.12 44.14 44.30 42.54 26.78 41.56
O2M + 1 + 2 (Dyn) 44.24 44.45 45.43 44.51 44.66 42.77 26.98 41.78
O2M + 1 + 2 (Fixed) 44.13 44.57 45.22 44.68 44.65 42.70 26.90 41.75
O2M + 1 + 3 44.78 45.23 45.78 45.22 45.25 42.97 27.11 41.98
O2M + 1 + 2 (Dyn)+ 3 44.85 45.51 45.91 45.38 45.41 43.03 27.23 41.92

Table 1: Translation performance of our methods on Zh→En/Ja and En→De/Fr tasks. Indiv means translation
model of individual pair. O2M is the our baseline system. 1 , 2 and 3 denote our proposed three strategies
of special label initialization, language-dependent positional embedding and the new parameter-sharing mecha-
nism separately. 2 (Dyn) and 2 (Fixed) represent the two ways of language-dependent positional embedding
method. For shared and language-dependent method, we set one-half of hidden units as shared units, and for
another half, we use a quarter hidden units to denote two output languages respectively.

Johnson et al. (2017) method on Transformer
framework as our baseline system (briefly, O2M
method). From the first two lines, we can see that
the O2M method cannot perform on par with the
individually trained systems in most cases.

We mentioned before that our goal is to improve
the universal one-to-many multilingual translation
framework while maintaining the parameter shar-
ing property. We can observe from the table that
all our proposed strategies (last part in Table 1) im-
prove the translation performance compared to the
baseline (O2M). Specifically, the combined use of
three strategies performs best and it can achieve
the improvements up to 1.96 BLEU points (45.51
vs. 43.55 on Zh→En MT04). As for language-
dependent positional embedding, we find that both
fixed and dynamic styles perform similarly.

Our ultimate goal is to make the universal one-
to-many framework as good as or better than the
individually trained systems. Table 1 demon-
strates some encouraging results. It is shown in
the table that the universal one-to-many architec-
ture enhanced with our strategies can outperform
the individually trained models on three out of four
language translations (Zh→En, Zh→Ja, En→Fr).
The results verify the effectiveness of our pro-
posed methods.

5.2 Comparison of Shared Unit Size

For the new parameter-sharing mechanism, it is an
open question to decide how many hidden units
should be shared and how many ones should be
language dependent. To figure out this question,
we further conduct an experiment to investigate
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Figure 2: The comparison of different shared units.

different settings. For example, we keep a quarter
of the hidden units of each decoder layer as shared
and make the left three quarters evenly distributed
to different target languages.

Figure 2 reports the results. We can observe
different trends for different language pairs. On
the En→De/Fr translation task, the performance is
best when we share one-half of the hidden units. In
contrast, it obtains the best results when we share
only 37.5% of hidden units on Zh→En/Ja trans-
lation. It indicates that similar languages (De/Fr)
can share more hidden units and languages with
a great difference (En/Ja) may share less hidden
units.

6 Related Work

In this work, we explore the balancing problem
of shared and unique parameters, and attempt to
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incorporate the language-dependent presentation
features to distinguish different target languages
under the scenario of one-to-many multilingual
translation.

Multilingual translation has been extensively
studied in Dong et al. (2015), Firat et al. (2016a),
Luong et al. (2016) and Johnson et al. (2017).
Owing to excellent translation performance and
ease of use, many researchers (Blackwood et al.,
2018; Lakew et al., 2018) have conduct transla-
tion of multiple languages based on the framework
of Johnson et al. (2017) and Ha et al. (2016). As
for low-resource translation scenario (Zoph et al.,
2016; Chen et al., 2017; Wang et al., 2017b),
similar to above method, Gu et al. (2018) en-
able sharing of lexical and sentence representa-
tion across multiple languages especially for low-
resource multilingual NMT. Different from pre-
vious methods, our work mainly focuses on im-
proving the one-to-many multilingual translation
framework while sharing as many parameters as
possible.

7 Conclusion

In this paper, we have proposed three effective
strategies to improve the universal one-to-many
multilingual translation, including special label
initialization, language-dependent positional em-
bedding and a new parameter-sharing mechanism.
The empirical experiments on four language pairs
demonstrate that our strategies can obtain signif-
icant improvement over the strong baseline, and
can achieve comparable or even better results than
the individually trained models.

For future work, we plan to extend our strategies
on many-to-many multilingual translation scenar-
ios, and explore other effective strategies to bal-
ance parameter sharing.
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