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Abstract

Several recent papers investigate Active
Learning (AL) for mitigating the data-
dependence of deep learning for natural lan-
guage processing. However, the applicability
of AL to real-world problems remains an open
question. While in supervised learning, prac-
titioners can try many different methods, eval-
uating each against a validation set before se-
lecting a model, AL affords no such luxury.
Over the course of one AL run, an agent anno-
tates its dataset exhausting its labeling budget.
Thus, given a new task, an active learner has
no opportunity to compare models and acqui-
sition functions. This paper provides a large-
scale empirical study of deep active learning,
addressing multiple tasks and, for each, multi-
ple datasets, multiple models, and a full suite
of acquisition functions. We find that across all
settings, Bayesian active learning by disagree-
ment, using uncertainty estimates provided ei-
ther by Dropout or Bayes-by-Backprop signif-
icantly improves over i.i.d. baselines and usu-
ally outperforms classic uncertainty sampling.

1 Introduction

While over the past several years, deep learning
has pushed the state of the art on numerous tasks,
its extreme data-dependence presents a formidable
obstacle under restricted annotation budgets. Ac-
tive Learning (AL) presents one promising ap-
proach to reduce deep learning’s data require-
ments (Cohn et al., 1996). Strategically selecting
points to annotate over alternating rounds of label-
ing and learning, an active learner is hoped to out-
perform budget-matched i.i.d. labeling. Typical
acquisition functions select examples for which
the current predictor is most uncertain. However,
how precisely to quantify uncertainty, especially
for neural networks, remains an open question.

Classical approaches interpret either the en-
tropy or the negative argmax of the predictive (e.g.

softmax) distribution as the model’s uncertainty,
yielding the maximum entropy and least confi-
dence heuristics, respectively. These approaches
account for aleatoric but not epistemic uncertainty
(Kendall and Gal, 2017). Several recent Bayesian
formulations of deep learning provide alternative
techniques for extracting uncertainty estimates
from deep networks, including a dropout-based
approach (Gal and Ghahramani, 2016b), previ-
ously employed in Deep Active Learning (DAL)
for image classification (Gal et al., 2017) and
named entity recognition (Shen et al., 2018), and
Bayes-by-Backprop (Blundell et al., 2015). To our
knowledge, our paper is the first to apply Bayes-
by-Backprop in the context of DAL.

While the results in recent papers hint at DAL’s
potential, its suitability in practice has yet to be
proven. That’s because papers often address just
a single task, just a single model, and sometimes
just one or two datasets. However, it’s not enough
to look back retrospectively after a final round of
experiments and declare that one acquisition func-
tion outperforms an i.i.d. baseline. To apply DAL
in practice, we must be confident that the tech-
nique will work correctly—the first time—on a
dataset that we have never seen before. Otherwise,
we might exhaust the annotation budget while per-
forming worse than an i.i.d. baseline. Once we’ve
exhausted our resources for labeling, there’s no
going back. Moreover, many DAL papers suffer
from implicit target leaks. The architectures and
hyper-parameters are often tuned using the full
dataset, before concealing the labels and simulat-
ing AL.

In this paper, we present a large-scale study1,
comparing various acquisition functions across
multiple tasks: Sentiment Classification (SC),

1Code for all of our models and for running active learn-
ing experiments can be found at https://github.com/
asiddhant/Active-NLP

https://github.com/asiddhant/Active-NLP
https://github.com/asiddhant/Active-NLP
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Named Entity Recognition (NER), and Semantic
Role Labeling (SRL). For each task we consider,
with multiple datasets, multiple models, and mul-
tiple acquisition functions. Moreover, in all ex-
periments, we set hyper-parameters on warm-start
data, allowing for a more honest assessment. This
paper does not seek to champion any one approach
but instead to ask, is there any single method that
we can reliably expect to work out-of-the-box on a
new problem?

To our surprise, we find that BALD (Houlsby
et al., 2011), which measures uncertainty by the
frequency over multiple Monte Carlo draws from
a stochastic model with which the drawn models
disagree with the plurality, proved effective across
all combinations of task, dataset, and model.
Moreover both variants of the approach, draw-
ing samples according to the dropout method (Gal
et al., 2017) and from a Bayes-by-Backprop net-
work (Blundell et al., 2015), performed similarly
well across most tasks, datasets, and models.

Related Work Only a few papers have ad-
dressed DAL for NLP, notably Shen et al. (2018)
for NER and Zhang et al. (2017) who address
text classification, proposing to select examples
according to the expected magnitude of updates
to word embeddings. In this paper, we do not
consider the latter heuristic because we address
sequence tagging tasks, where the difficulty of
marginalizing over all possible labels blows up ex-
ponentially with sequence length. While both pre-
vious papers do conduct experiments on multiple
datasets (2 and 3, respectively) they each consider
just one task and just one model.

Gal et al. (2017) apply the dropout-based un-
certainty estimates due to (Gal and Ghahramani,
2016a) together with the BALD framework due
to (Houlsby et al., 2011) for image classification
with convolutional neural networks. They obtain
significant improvement over classic uncertainty-
based acquisition functions on the MNIST dataset
and for diagnosing skin cancer from lesion images
(ISIC2016 task). Our work builds on theirs, both
by offering a large-scale evaluation of BALD for
NLP tasks and models, and by exploring BALD
with another method for estimating uncertainty:
the uncertainty of the weights as modeled by a
Bayes-by-Backprop network.

2 Bayesian Deep Learning

While space constraints preclude an extensive dis-
cussion of the various Bayesian formulations of
neural nets, we briefly summarize the methods
compared in this paper, pointing out various de-
sign decisions that are important for reproducing
our results.

Monte Carlo Dropout According to (Gal and
Ghahramani, 2016b), the dropout regularization
techniques for neural networks can be interpreted
as a Bayesian approximation to Gaussian pro-
cesses (Rasmussen, 2004). Here, unlike standard
uses of dropout, we apply it at prediction time.
Uncertainty estimates are produced by compar-
ing the output of a trained neural network using
T different stochastic passes through the neural
network. The extension to CNNs is straightfor-
ward. To apply dropout to RNNs, we follow the
approach due to (Gal and Ghahramani, 2016c),
who extended their variational analysis to RNNs,
arguing that dropout ought to be applied to the re-
current layers (and not just the synchronous con-
nections, per previous standard practice (Zaremba
et al., 2014)) by applying identical dropout masks
at each sequence step.

Bayes by Backprop In this approach due to
Blundell et al. (2015), instead of maintaining
a point estimate for each weight, we main-
tain a probability distribution over the weights.
A standard L-layer MLP model P (y|x,w) is
parametrized by weights w = {Wl, bl}Ll=1 ∈ Rd.
Then, ŷ = φ(WL · ... ·+φ(W1 · x+ b1) + ..+ bL)
where φ is an activation function such as tanh or
ReLU. Bayes-by-Backprop represents imposes a
prior over the weights, p(w) and seeks to learn
the posterior distribution p(w|D) given training
data D = {xi, yi}Ni=1. To deal with intractability,
Bayes-by-Backprop approximates p(w|D) by a
variational distribution q(w|θ), typically choosing
q to be a Gaussian with diagonal covariance and
each weight sampled from N (µi, σ

2
i ). To enforce

non-negativity, the σi are further parametrized via
the softplus function σi = log(1+exp(ρi)) giving
variational parameters θ = {µi, ρi}di=1.

Our objective in optimizing the variational
parameters is to minimize the KL divergence
between q(θ) and p(w|D). Some simpli-
fication of the objective gives L(D, θ) =∑N

j=1

[
log q(wj |θ)− log p(wj)− log p(D|wj)

]
,

where wj denotes the j-th Monte Carlo sam-
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ple drawn from q(w|θ) (we use N = 1). In
Bayes-by-Backprop, the parameters are opti-
mized by stochastic gradient descent, using the
re-parameterization trick popularized by Kingma
and Welling (2014). Extending Bayes-by-
Backprop to CNNs and RNNs is straightforward
with the latter requiring minor adjustments
for truncated back-propagation through time
(Fortunato et al., 2017). Uncertainty estimates
calculated via Bayes-by-Backprop have been
shown to be useful for efficient exploration in
reinforcement learning (Lipton et al., 2018).

3 Experimental Setup

3.1 Acquisition functions
In this work, we consider only uncertainty-based
acquisition. In particular, we consider least
confidence (LC) for classification and maximum
length-normalized log probability (MNLP) for se-
quence labeling tasks (Shen et al., 2018). LC
chooses that example with for which the predic-
tion has lowest predicted probability. MNLP ex-
tends this to sequences, selecting by log probabil-
ity normalized by length, removing the bias for the
model to preferentially select longer sequences.

BALD We briefly articulate the details of
the Bayesian Active Learning by Disagreement
(BALD) approach due to Houlsby et al. (2011),
upon which both our Bayesian approaches are
based. We denote Monte Carlo Dropout Disagree-
ment by DO-BALD and its Bayes-by-Backprop
counterpart as BB-BALD. BALD originally se-
lects samples that maximise the information
gained about the model parameters. This boils
down to choosing data points which each stochas-
tic forward pass through the model would have
the highest probability assigned to a different class
(Gal et al., 2017). Our measure of uncertainty is
the fraction of models, across MC samples from
the network, that that disagree with most popular
choice. This can be mathematically represented as

argmax
j

(
1−

count(mode(ỹ
(1)
j , ..., ỹ

(T )
j ))

T

)

Here ỹ(t)j represents the prediction (argmax) ap-

plied to the tth forward pass on jth sample ỹ(t)j =

argmax(ŷ
(t)
j ). We resolve ties by choosing the

least confident predictions as determined by the
mean probability assigned to the consensus class.

For sequences, we look at agreement on the entire
sequence tag, noting that this may exhibit a bias to
preferentially sample longer sentences. Because
we measure the budget at each round in words
(not sentences), while this constitutes a bias, it
does not constitute an unfair advantage. Moreover,
we note that all AL necessarily consists of biased
sampling.

3.2 Training details
The active learning process begins with a ran-
dom acquisition of 2% warmstart samples from
the dataset. We train an initial model on this data.
Then based on this model’s uncertainty estimates,
we apply our chosen acquisition function to sam-
ple an additional 2% of examples and train a new
model based on this data In each round, we train
from scratch to avoid badly overfitting the data
collected in earlier rounds per observations by Hu
et al. (2018). We continue with alternating rounds
of labeling and training until we have annotated
50% of the dataset. For classification tasks, the
we measure the budget in sentences while for se-
quence labeling, we measure the budget by the
number of words because the annotator must pro-
vide one tag per word.

In each iteration, we train each model to con-
vergence, decided based on early stopping with
a patience of 1 epoch, or 25 epochs (whichever
comes earlier). For datasets with fixed validation
sets such as Conll 2003, instead of using the en-
tire validation set for early stopping, we use the
percentage of validation data equivalent to that in
our current training pool. Our motivation here is
to keep the simulation realistic. Essentially, we as-
sume that given a large annotation budget, one will
collect both a larger training set and a larger vali-
dation set. As a motivating example, it seems un-
reasonable that a practitioner might have only 500
training examples but 10,000 examples available
for early stopping. Our reported results are aver-
aged over 3 runs with different warmstart samples.

3.3 Sentence Classification
We use two datasets for simulation: one question
classification dataset TrecQA (Roth et al., 2002)
and one sentiment analysis dataset (Pang and Lee,
2005) and two architectures for training: CNNs
and BiLSTMs. For implementation of the CNNs
on both these datasets, we follow the setup of Kim
(2014) and for BiLSTMs, we use a single layer
model with 300 hidden units for both datasets. We
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Figure 1: Performance of various models and acquisition functions for two SC datasets
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Figure 2: Performance of various models and acquisition functions for two NER datasets
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use 300-dimensional glove embeddings (Penning-
ton et al., 2014) pretrained on 6B tokens for all 4
settings, a dropout rate of 0.5, and the Adam opti-
mizer (Kinga and Adam, 2015) with initial learn-
ing rate 1e-3. We use a batch size set to be either
50 or the number required for at least 10 updates
whichever is lower. This is done to ensure that
when the training pool is small, the batch size is
not too large and models get sufficient number of
updates in an epoch. We also train a Unigram +
Bigram + Linear SVM model with LC acquisition
as a shallow AL baseline.

3.4 Named Entity Recognition
Again, we use two datasets: CoNLL 2003 (Tjong
Kim Sang and De Meulder, 2003) and OntoNotes
5.0. The two architectures used for training are
CNN-BiLSTM-CRF (CNN for character-level en-
coding, BiLSTM for word-level encoding, and
CRF for decoding) (Ma and Hovy, 2016) and
CNN-CNN-LSTM (CNN for character-level en-
coding, CNN for word-level encoding, and LSTM
for decoding) (Shen et al., 2018). We follow the
exact experimental settings of these papers ex-
cept that batch size is 16 for CoNLL and 80 for
OntoNotes (minimum 10 updates heuristic is fol-
lowed here too).

We note that our NER models consist of multi-
ple modular components, and that we only train
a subset of those units in a Bayesian fashion.
In both DO-BALD and BB-BALD, we apply
dropout/stochastic weights on the word-level lay-
ers, but not on the character-level encoders or de-
coding layers. For example, with DO-BALD, we
apply recurrent dropout in the BiLSTM word-level
component of CNN-BiLSTM-CRF and we apply
normal dropout in the word-level (middle) CNN
layer of the CNN-CNN-LSTM. For NER, as a
shallow AL baseline, we have a linear chain CRF
model with MNLP acquisition.

3.5 Semantic Role Labeling
We consider two datasets: CoNLL 2005 (Carreras
and Màrquez, 2005) and CoNLL 2012, focusing
only on an LSTM-based model this time. Our
model resembles He et al. (2017), but instead of
using contained A* decoding, we use a CRF de-
coder, noting that while this causes a 2% drop in
performance (at 100% annotation), our goal is to
compare acquisition functions, not achieve record-
setting performance. We follow the experimental
setup of the paper but use a higher dropout rate

of 0.25, adjusting the batch size according to the
minimum update heuristic.

3.6 Results

We plot the performance for various annotation
budgets for all combinations of dataset, model,
and acquisition function, for the SC, NER, and
SRL tasks in Figures 1, 2, and 3, respectively. In
all cases, the active learning methods perform bet-
ter than random i.i.d. baseline. We note that across
the board, DAL methods show significant im-
provement over shallow baselines. The Bayesian
acquisition functions, DO-BALD and BB-BALD
consistently outperform classic uncertainly sam-
pling, although in a few cases including the setting
considered by Shen et al. (2018), the improvement
is only marginal. This finding underscores the im-
portance of examining proposed AL methods on a
broad set of representative tasks and with a broad
set of representative models.

In general, we find that the advantages of DAL
can be substantial. For example, on NER tasks, we
achieve roughly 98-99% of the full-dataset perfor-
mance while labeling only 20% of the samples for
both CNN-BiLSTM-CRF and CNN-CNN-LSTM
models. By comparison, the i.i.d. baseline re-
quires 50% of the data to achieve comparable F
score. While the reduction in the percentage of
data required is not as dramatic in the classifi-
cation datasets (possibly owing to their compar-
atively small size), the relative improvement over
i.i.d. baselines remains significant.

4 Conclusion

This paper set out to investigate the practical util-
ity of DAL for NLP. Our study consisted of over
40 experiments, each repeated for 3 times to av-
erage results and consisting of roughly 25 rounds
of retraining, adding up to 3000 training runs to
completion. Our goal was not to champion any
one approach, but to ask if there was any consis-
tent story at all: can active learning be applied
on a new dataset with an arbitrarily architecture,
without peeking at the labels to perform hyper-
parameter tuning? To our surprise, we found that
across many tasks, both classic uncertainty sam-
pling and Bayesian approaches outperform i.i.d.
baselines and that DO-BALD and BB-BALD con-
sistently perform best.
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