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Abstract

We propose to decompose instruction exe-
cution to goal prediction and action genera-
tion. We design a model that maps raw vi-
sual observations to goals using LINGUNET,
a language-conditioned image generation net-
work, and then generates the actions required
to complete them. Our model is trained
from demonstration only without external re-
sources. To evaluate our approach, we intro-
duce two benchmarks for instruction follow-
ing: LANI, a navigation task; and CHAI, where
an agent executes household instructions. Our
evaluation demonstrates the advantages of our
model decomposition, and illustrates the chal-
lenges posed by our new benchmarks.

1 Introduction

Executing instructions in interactive environments
requires mapping natural language and observa-
tions to actions. Recent approaches propose learn-
ing to directly map from inputs to actions, for ex-
ample given language and either structured obser-
vations (Mei et al., 2016; Suhr and Artzi, 2018) or
raw visual observations (Misra et al., 2017; Xiong
et al., 2018). Rather than using a combination
of models, these approaches learn a single model
to solve language, perception, and planning chal-
lenges. This reduces the amount of engineering
required and eliminates the need for hand-crafted
meaning representations. At each step, the agent
maps its current inputs to the next action using a
single learned function that is executed repeatedly
until task completion.

Although executing the same computation at
each step simplifies modeling, it exemplifies cer-
tain inefficiencies; while the agent needs to de-
cide what action to take at each step, identifying
its goal is only required once every several steps
or even once per execution. The left instruction in
Figure 1 illustrates this. The agent can compute its
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Put the cereal, the sponge,
and the dishwashing soap
into the cupboard above
the sink.

After reaching the hydrant
head towards the blue
fence and pass towards the
right side of the well.

Figure 1: Example instructions from our two tasks:
LANTI (left) and CHAT (right). LANT is a landmark nav-
igation task, and CHALI is a corpus of instructions in the
CHALET environment.

goal once given the initial observation, and given
this goal can then generate the actions required.
In this paper, we study a new model that explic-
itly distinguishes between goal selection and ac-
tion generation, and introduce two instruction fol-
lowing benchmark tasks to evaluate it.

Our model decomposes into goal prediction and
action generation. Given a natural language in-
struction and system observations, the model pre-
dicts the goal to complete. Given the goal, the
model generates a sequence of actions.

The key challenge we address is designing the
goal representation. We avoid manually designing
a meaning representation, and predict the goal in
the agent’s observation space. Given the image of
the environment the agent observes, we generate a
probability distribution over the image to highlight
the goal location. We treat this prediction as image
generation, and develop LINGUNET, a language
conditioned variant of the U-NET image-to-image
architecture (Ronneberger et al., 2015). Given the
visual goal prediction, we generate actions using a
recurrent neural network (RNN).

Our model decomposition offers two key advan-
tages. First, we can use different learning methods
as appropriate for the goal prediction and action
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generation problems. We find supervised learning
more effective for goal prediction, where only a
limited amount of natural language data is avail-
able. For action generation, where exploration is
critical, we use policy gradient in a contextual ban-
dit setting (Misra et al., 2017). Second, the goal
distribution is easily interpretable by overlaying it
on the agent observations. This can be used to in-
crease the safety of physical systems by letting the
user verify the goal before any action is executed.
Despite the decomposition, our approach retains
the advantages of the single-model approach. It
does not require designing intermediate represen-
tations, and training does not rely on external re-
sources, such as pre-trained parsers or object de-
tectors, instead using demonstrations only.

We introduce two new benchmark tasks with
different levels of complexity of goal prediction
and action generation. LANT is a 3D navigation
environment and corpus, where an agent navigates
between landmarks. The corpus includes 6,000
sequences of natural language instructions, each
containing on average 4.7 instructions. CHALI is
a corpus of 1,596 instruction sequences, each in-
cluding 7.7 instructions on average, for CHALET,
a 3D house environment (Yan et al., 2018). In-
structions combine navigation and simple manipu-
lation, including moving objects and opening con-
tainers. Both tasks require solving language chal-
lenges, including spatial and temporal reasoning,
as well as complex perception and planning prob-
lems. While LANT provides a task where most in-
structions include a single goal, the CHAI instruc-
tions often require multiple intermediate goals.
For example, the household instruction in Fig-
ure 1 can be decomposed to eight goals: opening
the cupboard, picking each item and moving it to
the cupboard, and closing the cupboard. Achiev-
ing each goal requires multiple actions of differ-
ent types, including moving and acting on objects.
This allows us to experiment with a simple varia-
tion of our model to generate intermediate goals.

We compare our approach to multiple recent
methods. Experiments on the LANI navigation
task indicate that decomposing goal prediction
and action generation significantly improves in-
struction execution performance. While we ob-
serve similar trends on the CHAI instructions, re-
sults are overall weaker, illustrating the complex-
ity of the task. We also observe that inherent
ambiguities in instruction following make exact

goal identification difficult, as demonstrated by
imperfect human performance. However, the gap
to human-level performance still remains large
across both tasks. Our code and data are available
atgithub.com/clic-lab/ciff.

2 Technical Overview

Task Let X be the set of all instructions, S the
set of all world states, and A the set of all actions.
An instruction € X is a sequence (X1, ..., Ty,
where each z; is a token. The agent executes
instructions by generating a sequence of actions,
and indicates execution completion with the spe-
cial action STOP.

The sets of actions .4 and states S are domain
specific. In the navigation domain LANI, the ac-
tions include moving the agent and changing its
orientation. The state information includes the po-
sition and orientation of the agent and the differ-
ent landmarks. The agent actions in the CHALET
house environment include moving and changing
the agent orientation, as well as an object interac-
tion action. The state encodes the position and ori-
entation of the agent and all objects in the house.
For interactive objects, the state also includes their
status, for example if a drawer is open or closed.
In both domains, the actions are discrete. The do-
mains are described in Section 6.

Model The agent does not observe the world
state directly, but instead observes its pose and an
RGB image of the environment from its point of
view. We define these observations as the agent
context s. An agent model is a function from an
agent context § to an action a € A. We model
goal prediction as predicting a probability distri-
bution over the agent visual observations, repre-
senting the likelihood of locations or objects in the
environment being target positions or objects to be
acted on. Our model is described in Section 4.

Learning We assume access to training data
with N examples {(z(*), sgl), sél))}ﬁil, where z(%)
18 an instruction, ng) is a start state, and sg) is the
goal state. We decompose learning; training goal
prediction using supervised learning, and action
generation using oracle goals with policy gradient
in a contextual bandit setting. We assume an in-
strumented environment with access to the world
state, which is used to compute rewards during

training only. Learning is described in Section 5.
Evaluation We evaluate task performance on a
test set {(z®, sV, s$)1M  where 20 is an in-
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struction, ng) is a start state, and sg) is the goal

state. We evaluate task completion accuracy and

the distance of the agent’s final state to séi).

3 Related Work

Mapping instruction to action has been studied
extensively with intermediate symbolic represen-
tations (e.g., Chen and Mooney, 2011; Kim and
Mooney, 2012; Artzi and Zettlemoyer, 2013; Artzi
et al., 2014; Misra et al., 2015, 2016). Recently,
there has been growing interest in direct mapping
from raw visual observations to actions (Misra
et al., 2017; Xiong et al., 2018; Anderson et al.,
2018; Fried et al., 2018). We propose a model that
enjoys the benefits of such direct mapping, but ex-
plicitly decomposes that task to interpretable goal
prediction and action generation. While we focus
on natural language, the problem has also been
studied using synthetic language (Chaplot et al.,
2018; Hermann et al., 2017).

Our model design is related to hierarchical re-
inforcement learning, where sub-policies at differ-
ent levels of the hierarchy are used at different fre-
quencies (Sutton et al., 1998). Oh et al. (2017)
uses a two-level hierarchy for mapping synthetic
language to actions. Unlike our visual goal rep-
resentation, they use an opaque vector representa-
tion. Also, instead of reinforcement learning, our
methods emphasize sample efficiency.

Goal prediction is related to referring expres-
sion interpretation (Matuszek et al., 2012a; Krish-
namurthy and Kollar, 2013; Kazemzadeh et al.,
2014; Kong et al., 2014; Yu et al., 2016; Mao et al.,
2016; Kitaev and Klein, 2017). While our model
solves a similar problem for goal prediction, we
focus on detecting visual goals for actions, includ-
ing both navigation and manipulation, as part of
an instruction following model. Using formal goal
representation for instruction following was stud-
ied by MacGlashan et al. (2015). In contrast, our
model generates a probability distribution over im-
ages, and does not require an ontology.

Our data collection is related to existing work.
LANTI is inspired by the HCRC Map Task (An-
derson et al., 1991), where a leader directs a fol-
lower to navigate between landmarks on a map.
‘We use a similar task, but our scalable data collec-
tion process allows for a significantly larger cor-
pus. We also provide an interactive navigation
environment, instead of only map diagrams. Un-
like Map Task, our leaders and followers do not
interact in real time. This abstracts away inter-

action challenges, similar to how the SAIL nav-
igation corpus was collected (MacMahon et al.,
2006). CHAI instructions were collected using
scenarios given to workers, similar to the ATIS
collection process (Hemphill et al., 1990; Dahl
et al., 1994). Recently, multiple 3D research envi-
ronments were released. LANT has a significantly
larger state space than existing navigation envi-
ronments (Hermann et al., 2017; Chaplot et al.,
2018), and CHALET, the environment used for
CHALI, is larger and has more complex manipu-
lation compared to similar environments (Gordon
et al., 2018; Das et al., 2018). In addition, only
synthetic language data has been released for these
environment. An exception is the Room-to-Room
dataset (Anderson et al., 2018) that makes use of
an environment of connected panoramas of house
settings. Although it provides a realistic vision
challenge, unlike our environments, the state space
is limited to a small number of panoramas and ma-
nipulation is not possible.

4 Model

We model the agent policy as a neural network.
The agent observes the world state s; at time ¢ as
an RGB image I;. The agent context sy, the infor-
mation available to the agent to select the next ac-
tion ay, is a tuple (z,Ip, ((I1,p1),-.., (s, pt)))s
where T is the natural language instructions,
Ip is a panoramic view of the environment
from the starting position at time ¢ = 1, and
((I1,p1)s .-, (I, pe)) is the sequence of observa-
tions I; and poses p; up to time ¢. The panorama
Ip is generated through deterministic exploration
by rotating 360° to observe the environment at the
beginning of the execution.'

The model includes two main components: goal
prediction and action generation. The agent uses
the panorama I p to predict the goal location [,. At
each time step ¢, a projection of the goal location
into the agent’s current view My is given as input
to an RNN to generate actions. The probability of
an action a; at time ¢ decomposes to:

Pa: |5) = Y (P(y | 7,1p)

lg
Plac | gy (T,p1); - (Tpn))
where the first term puts the complete distribution
mass on a single location (i.e., a delta function).
Figure 2 illustrates the model.
'The panorama is a concatenation of deterministic obser-

vations along the width dimension. For simplicity, we do not
include these deterministic steps in the execution.
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Instruction z
Turn left and go to the red oil drum
—i—i i

Panorama Image I,

_

Instr uctlon Repl esentation X

Goal Distribution Py,

——1 Goal Location [,

K3. K4M Text Kernels

LingUNet

H;
4

p3  Poses
Softmax- M,
H, f Goal Masks
]
-------- >
TURNLEFT TURNLEFT FORWARD Actions

Figure 2: An illustration for our architecture (Section 4) for the instruction turn left and go to the red oil drum
with a LINGUNET depth of m = 4. The instruction z is mapped to X with an RNN, and the initial panorama
observation Ip to Fy with a CNN. LINGUNET generates Hy, a visual representation of the goal. First, a sequence

of convolutions maps the image features F( to feature maps Fi,...
,K4, which are convolved to generate the text-conditioned feature maps Gu,...
,H,. The goal probability distribution P, is computed from H;.

generate the kernels Kj,...
These feature maps are de-convolved to Hy,...

JF4. The text representation X is used to

Gy

The goal location is the inferred from the max of F,. Given [, and p;, the pose at step ¢, the goal mask M, is
computed and passed into an RNN that outputs the action to execute.

Goal Prediction To predict the goal location,
we generate a probability distribution P, over
a feature map F( generated using convolutions
from the initial panorama observation Ip. Each
element in the probability distribution P corre-
sponds to an area in Ip. Given the instruction
z and panorama Ip, we first generate their rep-
resentations. From the panorama Ip, we gener-
ate a feature map Fo = [CNN(Ip); FP|, where
CNNj is a two-layer convolutional neural net-
work (CNN; LeCun et al., 1998) with rectified
linear units (ReLU; Nair and Hinton, 2010) and
F? are positional embeddings.” The concatena-
tion is along the channel dimension. The instruc-
tion z = (z1,---x,) is mapped to a sequence
of hidden states I, = LSTM, (¢ (x;),1i—1), i =
1,...,n using a learned embedding functlon (.
and a long short-term memory (LSTM; Hochre-
iter and Schmidhuber, 1997) RNN LSTM,. The
instruction representation is X = 1,,.

We generate the probability distribution P over
pixels in Fg using LINGUNET. The architecture
of LINGUNET is inspired by the U-NET image
generation method (Ronneberger et al., 2015), ex-
cept that the reconstruction phase is conditioned
on the natural language instruction. LINGUNET
first applies m convolutional layers to generate a
sequence of feature maps F; = CNN;(F;_1),

2We generate F? by creating a channel for each determin-
istic observation used to create the panorama, and setting all
the pixels corresponding to that observation location in the
panorama to 1 and all others to 0. The number of observa-
tions depends on the agent’s camera angle.

Jj = 1...m, where each CNN; is a convolutional
layer with leaky ReL.U non-linearities (Maas et al.,
2013) and instance normalization (Ulyanov et al.,

2016). The instruction representation X is split
evenly into m vectors {X;},, each is used to

create a 1 x 1 kernel K; = AFFINE;(X;), where
each AFFINE; is an affine transformation followed
by normalizing and reshaping. For each F;, we
apply a 2D 1 x 1 convolution using the text ker-
nel K; to generate a text-conditioned feature map
G, = CoNvOLVE(K;,F;), where CONVOLVE
convolves the kernel over the feature map. We
then perform m deconvolutions to generate a se-
quence of feature maps H,,,,... ,H;:

H,, DECONV, (DROPOUT(G,))

H; DECONV; ([Hj11; Gj) -

DROPOUT is dropout regularization (Srivastava
et al., 2014) and each DECONV; is a decon-
volution operation followed a leaky ReLU non-
linearity and instance norm.> Finally, we gener-
ate P, by applying a softmax to H; and an ad-
ditional learned scalar bias term b, to represent
events where the goal is out of sight. For example,
when the agent already stands in the goal position
and therefore the panorama does not show it.

We use P, to predict the goal position in the
environment. We first select the goal pixel in F as
the pixel corresponding to the highest probability
element in ;. We then identify the corresponding
3D location [ in the environment using backward
camera projection, which is computed given the

3DECONV1 does deconvolution only.
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camera parameters and p;, the agent pose at the
beginning of the execution.

Action Generation Given the predicted goal [/,
we generate actions using an RNN. At each time
step ¢, given p;, we generate the goal mask My,
which has the same shape as the observed image
I;. The goal mask M, has a value of 1 for each
element that corresponds to the goal location [, in
I;. We do not distinguish between visible or oc-
cluded locations. All other elements are set to 0.
We also maintain an out-of-sight flag o, that is set
to 1 if (a) [, is not within the agent’s view; or (b)
the max scoring element in P, corresponds to by,
the term for events when the goal is not visible in
Ip. Otherwise, o, is set to 0. We compute an ac-
tion generation hidden state 3; with an RNN:

yt = LSTM 4 (AFFINE 4 ([FLAT(M4); 0¢]), yt—1)

where FLAT flattens IM; into a vector, AFFINE 4
is a learned affine transformation with ReLU, and
LSTM 4 is an LSTM RNN. The previous hidden
state y;—1 was computed when generating the pre-
vious action, and the RNN is extended gradually
during execution. Finally, we compute a probabil-
ity distribution over actions:

P(ai |l9>(11,p1)7"'7(1i7pt)) =
SOFTMAX(AFFINE,, ([y¢; Y7 (t)]))

where 17 is a learned embedding lookup table
for the current time (Chaplot et al., 2018) and
AFFINE,, is a learned affine transformation.

Model Parameters The model parameters 6 in-
clude the parameters of the convolutions CNNj
and the components of LINGUNET: CNNj,
AFFINE;, and DECONV; for 5 = 1,...,m.
In addition we learn two affine transformations
AFFINE4 and AFFINE,, two RNNs LSTM, and
LSTM4, two embedding functions v, and ¢,
and the goal distribution bias term b,. In our ex-
periments (Section 7), all parameters are learned
without external resources.

5 Learning

Our modeling decomposition enables us to choose
different learning algorithms for the two parts.
While reinforcement learning is commonly de-
ployed for tasks that benefit from exploration (e.g.,
Peters and Schaal, 2008; Mnih et al., 2013), these
methods require many samples due to their high
sample complexity. However, when learning with
natural language, only a relatively small number
of samples is realistically available. This problem

was addressed in prior work by learning in a con-
textual bandit setting (Misra et al., 2017) or mix-
ing reinforcement and supervised learning (Xiong
et al., 2018). Our decomposition uniquely offers
to tease apart the language understanding prob-
lem and address it with supervised learning, which
generally has lower sample complexity. For action
generation though, where exploration can be au-
tonomous, we use policy gradient in a contextual
bandit setting (Misra et al., 2017).

We assume access to training data with NV ex-
amples {(z(V, sgi), sg))}i]\il, where () is an in-
struction, sgi) is a start state, and sgi) is the goal
state. We train the goal prediction component by
minimizing the cross-entropy of the predicted dis-
tribution with the gold-standard goal distribution.
The gold-standard goal distribution is a determin-
istic distribution with probability one at the pixel
corresponding to the goal location if the goal is in
the field of view, or probability one at the extra
out-of-sight position otherwise. The gold location
is the agent’s location in s(gz). We update the model
parameters using Adam (Kingma and Ba, 2014).

We train action generation by maximizing the
expected immediate reward the agent observes
while exploring the environment. The objective
for a single example ¢ and time stamp ¢ is:

J=> mlal )R (sr,a) + NH(x(. | 51)) ,
acA
where R() : S x A — R is an example-specific

reward function, H (-) is an entropy regularization
term, and A is the regularization coefficient. The
reward function R details are described in de-
tails in Appendix B. Roughly speaking, the re-
ward function includes two additive components:
a problem reward and a shaping term (Ng et al.,
1999). The problem reward provides a positive re-
ward for successful task completion, and a nega-
tive reward for incorrect completion or collision.
The shaping term is positive when the agent gets
closer to the goal position, and negative if it is
moving away. The gradient of the objective is:
VJ = > m(a|3)Viegn(al|s:)R(s:,a)
acA
FAVH(r(. | &) .

We approximate the gradient by sampling an ac-
tion using the policy (Williams, 1992), and use the
gold goal location computed from sél). We per-
form several parallel rollouts to compute gradients
and update the parameters using Hogwild! (Recht

et al., 2011) and Adam learning rates.

2671



Dataset Statistic LANI | CHAI
Number paragraphs 6,000 | 1,596
Mean instructions per paragraph 4.7 7.70
Mean actions per instruction 24.6 54.5
Mean tokens per instruction 12.1 8.4

Vocabulary size 2,292 | 1,018

Table 1: Summary statistics of the two corpora.

6 Tasks and Data
6.1 LANI

The goal of LANTI is to evaluate how well an agent
can follow navigation instructions. The agent task
is to follow a sequence of instructions that specify
a path in an environment with multiple landmarks.
Figure 1 (left) shows an example instruction.

The environment is a fenced, square, grass
field. Each instance of the environment con-
tains between 6—13 randomly placed landmarks,
sampled from 63 unique landmarks. The agent
can take four types of discrete actions: FORWARD,
TURNRIGHT, TURNLEFT, and STOP. The field is
of size 50x50, the distance of the FORWARD ac-
tion is 1.5, and the turn angle is 15°. The en-
vironment simulator is implemented in Unity3D.
At each time step, the agent performs an action,
observes a first person view of the environment
as an RGB image, and receives a scalar reward.
The simulator provides a socket API to control the
agent and the environment.

Agent performance is evaluated using two met-
rics: task completion accuracy, and stop distance
error. A task is completed correctly if the agent
stops within an aerial distance of 5 from the goal.

We collect a corpus of navigation instructions
using crowdsourcing. We randomly generate en-
vironments, and generate one reference path for
each environment. To elicit linguistically interest-
ing instructions, reference paths are generated to
pass near landmarks. We use Amazon Mechanical
Turk, and split the annotation process to two tasks.
First, given an environment and a reference path,
a worker writes an instruction paragraph for fol-
lowing the path. The second task requires another
worker to control the agent to perform the instruc-
tions and simultaneously mark at each point what
part of the instruction was executed. The record-
ing of the second worker creates the final data of
segmented instructions and demonstrations. The
generated reference path is displayed in both tasks.
The second worker could also mark the paragraph
as invalid. Both tasks are done from an over-
head view of the environment, but workers are in-
structed to provide instructions for a robot that ob-

[Go around the pillar on the right hand side] [and head
towards the boat, circling around it clockwise.] [When
you are facing the tree, walk towards it, and the pass on
the right hand side,] [and the left hand side of the cone.
Circle around the cone,] [and then walk past the hydrant
on your right,] [and the the tree stump.] [Circle around
the stump and then stop right behind it.]

Figure 3: Segmented instructions in the LANI domain.
The original reference path is marked in red (start) and
blue (end). The agent, using a drone icon, is placed at
the beginning of the path. The follower path is coded in
colors to align to the segmented instruction paragraph.
serves the environment from a first person view.
Figure 3 shows a reference path and the written
instruction. This data can be used for evaluating
both executing sequences of instructions and sin-
gle instructions in isolation.

Table 1 shows the corpus statistics.* Each para-
graph corresponds to a single unique instance of
the environment. The paragraphs are split into
train, test, and development, with a 70% / 15% /
15% split. Finally, we sample 200 single devel-
opment instructions for qualitative analysis of the
language challenge the corpus presents (Table 2).

6.2 CHAI

The CHAI corpus combines both navigation and
simple manipulation in a complex, simulated
household environment. We use the CHALET sim-
ulator (Yan et al., 2018), a 3D house simulator
that provides multiple houses, each with multi-
ple rooms. The environment supports moving be-
tween rooms, picking and placing objects, and
opening and closing cabinets and similar contain-
ers. Objects can be moved between rooms and
in and out of containers. The agent observes the
world in first-person view, and can take five ac-
tions: FORWARD, TURNLEFT, TURNRIGHT, STOP,
and INTERACT. The INTERACT action acts on ob-
jects. It takes as argument a 2D position in the
agent’s view. Agent performance is evaluated with
two metrics: (a) stop distance, which measures the
distance of the agent’s final state to the final an-
notated position; and (b) manipulation accuracy,
which compares the set of manipulation actions

* Appendix A provides statistics for related datasets.
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Count
Category LANI | CHAI | Example
Spatial relations 123 52 LANTI: go to the right side of the rock
between locations CHALI pick up the cup next to the bathtub and place iton ...
Conjunctions of two 36 5 LANI: fly between the mushroom and the yellow cone
more locations CHAL: ... set it on the table next to the juice and milk.
Temporal coordination 65 68 LANTI: at the mushroom turn right and move forward towards the statue
of sub-goals CHAL: go back to the kitchen and put the glass in the sink.
g::;?jﬁﬁj?cl tt(ii, 94 0 LANI: go past the house by the right side of the apple

LANTI: turn around it and move in front of fern plant

Co-reference 32 18 CHAL turn left, towards the kitche];l doorf c{nd rf;ove through it.
Comparatives 2 0 LANTI: ... the small stone closest to the blue and white fences stop

Table 2: Qualitative analysis of the LANI and CHAI corpora. We sample 200 single development instructions from
each corpora. For each category, we count how many examples of the 200 contained it and show an example.

Scenario

You have several hours before guests begin to arrive for
a dinner party. You are preparing a wide variety of meat
dishes, and need to put them in the sink. In addition,
you want to remove things in the kitchen, and bathroom
which you don’t want your guests seeing, like the soaps
in the bathroom, and the dish cleaning items. You can
put these in the cupboards. Finally, put the dirty dishes
around the house in the dishwasher and close it.

Written Instructions

[In the kitchen, open the cupboard above the sink.] [Put
the cereal, the sponge, and the dishwashing soap into the
cupboard above the sink.] [Close the cupboard.] [Pick
up the meats and put them into the sink.] [Open the dish-
washer, grab the dirty dishes on the counter, and put the
dishes into the dishwasher.]

Figure 4: Scenario and segmented instruction from the
CHALI corpus.

to a reference set. When measuring distance, to
consider the house plan, we compute the minimal
aerial distance for each room that must be visited.
Yan et al. (2018) provides the full details of the
simulator and evaluation. We use five different
houses, each with up to six rooms. Each room
contains on average 30 objects. A typical room
is of size 6x6. We set the distance of FORWARD to
0.1, the turn angle to 90°, and divide the agent’s
view to a 32x32 grid for the INTERACT action.
We collected a corpus of navigation and ma-
nipulation instructions using Amazon Mechanical
Turk. We created 36 common household scenar-
ios to provide a familiar context to the task.” We
use two crowdsourcing tasks. First, we provide
workers with a scenario and ask them to write in-
structions. The workers are encouraged to explore
the environment and interact with it. We then seg-
ment the instructions to sentences automatically.
In the second task, workers are presented with the
segmented sentences in order and asked to execute
them. After finishing a sentence, the workers re-

>We observed that asking workers to simply write instruc-
tions without providing a scenario leads to combinations of
repetitive instructions unlikely to occur in reality.

quest the next sentence. The workers do not see
the original scenario. Figure 4 shows a scenario
and the written segmented paragraph. Similar to
LANI, CHAI data can be used for studying com-
plete paragraphs and single instructions.

Table 1 shows the corpus statistics.® The para-
graphs are split into train, test, and development,
witha70% / 15% / 15% split. Table 2 shows qual-
itative analysis of a sample of 200 instructions.

7 Experimental Setup

Method Adaptations for CHATI We apply two
modifications to our model to support interme-
diate goal for the CHAI instructions.  First,
we train an additional RNN to predict the se-
quence of intermediate goals given the instruc-
tion only. There are two types of goals:
NAVIGATION, for action sequences requiring
movement only and ending with the STOP action;
and INTERACTION, for sequence of movement ac-
tions that end with an INTERACT action. For ex-
ample, for the instruction pick up the red book
and go to the kitchen, the sequence of goals will
be (INTERACTION,NAVIGATION,NAVIGATION).
This indicates the agent must first move to the
object to pick it up via interaction, move to the
kitchen door, and finally move within the kitchen.
The process of executing an instruction starts with
predicting the sequence of goal types. We call our
model (Section 4) separately for each goal type.
The execution concludes when the final goal is
completed. For learning, we create a separate ex-
ample for each intermediate goal and train the ad-
ditional RNN separately. The second modification
is replacing the backward camera projection for
inferring the goal location with ray casting to iden-

The number of actions per instruction is given in the
more fine-grained action space used during collection. To
make the required number of actions smaller, we use the more
coarse action space specified.
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LANI CHAI
Method SD [ TC SD [ MA
Stop 1537 | 820 | 2.99 | 37.53
RANDOMWALK 14.80 | 9.66 2.99 | 28.96
MOSTFREQUENT 19.31 294 | 3.80 | 37.53
MISRA17 1054 | 229 | 2.99 | 32.25
CHAPLOT18 9.05 31.0 | 299 | 37.53
Our Approach (OA) | 8.65 | 35.72 | 2.75 | 37.53
OA w/o RNN 9.21 31.30 | 3.75 | 37.43
OA w/o Language 10.65 | 23.02 | 3.22 | 37.53
OA w/joint 11.54 | 21.76 | 2.99 | 36.90

OA wioracle goals | 2.13 [ 94.60 [ 2.19 [ 41.07

Table 3: Performance on the development data.

tify INTERACTION goals, which are often objects
that are not located on the ground.

Baselines We compare our approach against the
following baselines: (a) STOP: Agent stops im-
mediately; (b) RANDOMWALK: Agent samples
actions uniformly until it exhausts the horizon
or stops; (c) MOSTFREQUENT: Agent takes the
most frequent action in the data, FORWARD for
both datasets, until it exhausts the horizon; (d)
MISRA17: the approach of Misra et al. (2017);
and (e) CHAPLOT18: the approach of Chaplot
et al. (2018). We also evaluate goal prediction and
compare to the method of Janner et al. (2018) and
a CENTER baseline, which always predict the cen-
ter pixel. Appendix C provides baseline details.

Evaluation Metrics We evaluate using the met-
rics described in Section 6: stop distance (SD) and
task completion (TC) for LANI, and stop distance
(SD) and manipulation accuracy (MA) for CHAL
To evaluate the goal prediction, we report the real
distance of the predicted goal from the annotated
goal and the percentage of correct predictions. We
consider a goal correct if it is within a distance of
5.0 for LANT and 1.0 for CHAL. We also report
human evaluation for LANT by asking raters if the
generated path follows the instruction on a Likert-
type scale of 1-5. Raters were shown the gener-
ated path, the reference path, and the instruction.

Parameters We use a horizon of 40 for both
domains. During training, we allow additional
5 steps to encourage learning even after errors.
When using intermediate goals in CHALI, the hori-
zon is used for each intermediate goal separately.
All other parameters and detailed in Appendix D.

8 Results

Tables 3 and 4 show development and test re-
sults. Both sets of experiments demonstrate sim-
ilar trends. The low performance of STOP, RAN-
DOMWALK, and MOSTFREQUENT demonstrates

LANI CHAI

Method SD [ TC | SD [ MA

Stop 15.18 | 8.29 | 3.59 | 39.77
RANDOMWALK 14.63 | 9.76 | 3.59 | 33.29
MOSTFREQUENT | 19.14 | 3.15 | 4.36 | 39.77
MISRA17 10.23 | 23.2 | 3.59 | 36.84
CHAPLOT18 8.78 319 | 3.59 | 39.76
Our Approach 843 | 36.9 | 3.34 | 39.97

Table 4: Performance on the held-out test dataset.
LANI CHAI

Method Dist Acc Dist | Acc
CENTER 12.0 | 19.51 | 341 | 19.0
Janner et al. (2018) | 9.61 | 30.26 | 2.81 | 28.3
Our Approach 8.67 | 3583 | 2.12 | 40.3

Table 5: Development goal prediction performance.
We measure distance (Dist) and accuracy (Acc).

the challenges of both tasks, and shows the tasks
are robust to simple biases. On LANI, our ap-
proach outperforms CHAPLOT18, improving task
completion (TC) accuracy by 5%, and both meth-
ods outperform MISRA17. On CHAI, CHAP-
LOT18 and MISRA17 both fail to learn, while
our approach shows an improvement on stop dis-
tance (SD). However, all models perform poorly
on CHALI, especially on manipulation (MA).

To isolate navigation performance on CHAI, we
limit our train and test data to instructions that in-
clude navigation actions only. The STOP baseline
on these instructions gives a stop distance (SD) of
3.91, higher than the average for the entire data
as these instructions require more movement. Our
approach gives a stop distance (SD) of 3.24,a 17%
reduction of error, significantly better than the 8%
reduction of error over the entire corpus.

We also measure human performance on a sam-
ple of 100 development examples for both tasks.
On LANI, we observe a stop distance error (SD)
of 5.2 and successful task completion (TC) 63%
of the time. On CHAI, the human distance er-
ror (SD) is 1.34 and the manipulation accuracy is
100%. The imperfect performance demonstrates
the inherent ambiguity of the tasks. The gap to
human performance is still large though, demon-
strating that both tasks are largely open problems.

The imperfect human performance raises ques-
tions about automated evaluation. In general,
we observe that often measuring execution qual-
ity with rigid goals is insufficient. We conduct
a human evaluation with 50 development exam-
ples from LANI rating human performance and
our approach. Figure 5 shows a histogram of the
ratings. The mean rating for human followers is
4.38, while our approach’s is 3.78; we observe
a similar trend to before with this metric. Using
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Category Present | Absent | p-value
Spatial relations 8.75 10.09 262
Location conjunction 10.19 9.05 327
Temporal coordination 11.38 8.24 .015
Trajectory constraints 9.56 8.99 .607
Co-reference 12.88 8.59 .016
Comparatives 10.22 9.25 .906

Table 6: Mean goal prediction error for LANI instruc-
tions with and without the analysis categories we used
in Table 2. The p-values are from two-sided t-tests
comparing the means in each row.

60*‘ |

407|:||ZI Human

0 0Our Approach D
20 -
0l =] mm B0

T
1 2 3

Figure 5: Likert rating histogram for expert human fol-
lower and our approach for LANT.

Percentage

judgements on our approach, we correlate the hu-
man metric with the SD measure. We observe a
Pearson correlation -0.65 (p=5e-7), indicating that
our automated metric correlates well with human
judgment.” This initial study suggests that our au-
tomated evaluation is appropriate for this task.

Our ablations (Table 3) demonstrate the impor-
tance of each of the components of the model.
We ablate the action generation RNN (w/o RNN),
completely remove the language input (w/o Lan-
guage), and train the model jointly (w/joint Learn-
ing).® On CHATI especially, ablations results in
models that display ineffective behavior. Of the
ablations, we observe the largest benefit from
decomposing the learning and using supervised
learning for the language problem.

We also evaluate our approach with access to
oracle goals (Table 3). We observe this im-
proves navigation performance significantly on
both tasks. However, the model completely fails
to learn a reasonable manipulation behavior for
CHAI This illustrates the planning complexity
of this domain. A large part of the improvement
in measured navigation behavior is likely due to
eliminating much of the ambiguity the automated
metric often fails to capture.

Finally, on goal prediction (Table 5), our ap-
proach outperforms the method of Janner et al.
(2018). Figure 6 and Appendix Figure 7 show ex-
ample goal predictions. In Table 6, we break down
LANI goal prediction results for the analysis cate-

"We did not observe this kind of clear anti-correlation
comparing the two results for human performance (Pearson
correlation of 0.09 and p=0.52). The limited variance in hu-
man performance makes correlation harder to test.

8 Appendix C provides the details of joint learning.

’ curve around big rock keeping it to your left . ‘

‘ walk over to the cabinets and open the cabinet doors up ‘

Figure 6: Goal prediction probability maps P, overlaid
on the corresponding observed panoramas Ip. The top
example shows a result on LANI, the bottom on CHAL

gories we used in Table 2 using the same sample of
the data. Appendix E includes a similar table for
CHAI. We observe that our approach finds instruc-
tions with temporal coordination or co-reference
challenging. Co-reference is an expected limita-
tion; with single instructions, the model can not
resolve references to previous instructions.

9 Discussion

We propose a model for instruction following with
explicit separation of goal prediction and action
generation. Our representation of goal prediction
is easily interpretable, while not requiring the de-
sign of logical ontologies and symbolic represen-
tations. A potential limitation of our approach is
cascading errors. Action generation relies com-
pletely on the predicted goal and is not exposed
to the language otherwise. This also suggests a
second related limitation: the model is unlikely
to successfully reason about instructions that in-
clude constraints on the execution itself. While
the model may reach the final goal correctly, it is
unlikely to account for the intermediate trajectory
constraints. As we show (Table 2), such instruc-
tions are common in our data. These two limita-
tions may be addressed by allowing action genera-
tion access to the instruction. Achieving this while
retaining an interpretable goal representation that
clearly determines the execution is an important
direction for future work. Another important open
question concerns automated evaluation, which re-
mains especially challenging when instructions do
not only specify goals, but also constraints on how
to achieve them. Our resources provide the plat-
form and data to conduct this research.
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