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Abstract

Thanks to the success of object detection tech-
nology, we can retrieve objects of the speci-
fied classes even from huge image collections.
However, the current state-of-the-art object de-
tectors (such as Faster R-CNN) can only han-
dle pre-specified classes. In addition, large
amounts of positive and negative visual sam-
ples are required for training. In this paper, we
address the problem of open-vocabulary object
retrieval and localization, where the target ob-
ject is specified by a textual query (e.g., a word
or phrase). We first propose Query-Adaptive
R-CNN, a simple extension of Faster R-CNN
adapted to open-vocabulary queries, by trans-
forming the text embedding vector into an ob-
ject classifier and localization regressor. Then,
for discriminative training, we then propose
negative phrase augmentation (NPA) to mine
hard negative samples which are visually sim-
ilar to the query and at the same time seman-
tically mutually exclusive of the query. The
proposed method can retrieve and localize ob-
jects specified by a textual query from one mil-
lion images in only 0.5 seconds with high pre-
cision.

1 Introduction

Our goal is to retrieve objects from large-scale
image database and localize their spatial lo-
cations given a textual query. The task of
object retrieval and localization has many ap-
plications such as spatial position-aware im-
age searches (Hinami et al., 2017) and it re-
cently has gathered much attention from re-
searchers. While much of the previous work
mainly focused on object instance retrieval
wherein the query is an image (Shen et al.,
2012; Tao et al., 2014; Tolias et al., 2016), re-
cent approaches (Aytar and Zisserman, 2014;
Hinami and Satoh, 2016) enable retrieval of more
generic concepts such as an object category. Al-
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Figure 1: Training examples in open-vocabulary ob-
ject detection. (a) positive example of skier classifier.
(b) examples without positive annotation, which can be
positive. (c) examples without positive annotation from
an image that contains a positive example. (d) proposed
approach to select hard and true negative examples by
using linguistics knowledge.

though such approaches are built on the recent
successes of object detection including that of
R-CNN (Girshick et al., 2014), object detection
methods can generally handle only closed sets
of categories (e.g., PASCAL 20 classes), which
severely limits the variety of queries when they
are used as retrieval systems. Open-vocabulary
object localization is also a hot topic and many
approaches are proposed to solve this prob-
lem (Plummer et al., 2015; Chen et al., 2017).
However, most of them are not scalable to make
them useful for large-scale retrieval.

We first describe Query-Adaptive R-CNN as an
extension of the Faster R-CNN (Ren et al., 2015)
object detection framework to open-vocabulary
object detection simply by adding a component
called a detector generator. While Faster R-CNN
learns the class-specific linear classifier as learn-
able parameters of the neural network, we gen-
erate the weight of the classifier adaptively from
text descriptions by learning the detector generator
(Fig. 2b). All of its components can be trained in
an end-to-end manner. In spite of its simple archi-
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tecture, it outperforms all state-of-the-art methods
in the Flickr30k Entities phrase localization task.
It can also be used for large-scale retrievals in the
manner presented in (Hinami and Satoh, 2016).

However, training a discriminative classifier is
harder in the open-vocabulary setting. Closed-
vocabulary object detection models such as Faster
R-CNN are trained using many negative examples,
where a sufficient amount of good-quality nega-
tive examples is shown to be important for learn-
ing a discriminative classifier (Felzenszwalb et al.,
2010; Shrivastava et al., 2016). While closed-
vocabulary object detection can use all regions
without positive labels as negative data, in open-
vocabulary detection, it is not guaranteed that a
region without a positive label is negative. For ex-
ample, as shown in Fig. 1b, a region with the anno-
tation a man is not always negative for skier.
Since training data for open-vocabulary object de-
tection is generally composed of images, each
having region annotations with free descriptions,
it is nearly impossible to do an exhaustive anno-
tation throughout the dataset for all possible de-
scriptions. Another possible approach is to use the
regions without positive labels in the image that
contains positive examples, as shown in Fig. 1c.
Although they can be guaranteed to be positive by
carefully annotating the datasets, negative exam-
ples are only limited to the objects that cooccur
with the learned class.

To exploit negative data in open-vocabulary ob-
ject detection, we use mutually exclusive relation-
ships between categories. For example, an object
with a label dog is guaranteed to be negative for
the cat class because dog and cat are mutually
exclusive. In addition, we propose an approach
to select hard negative phrases that are difficult to
discriminate (e.g., selecting zebra for horse).
This approach, called negative phrase augmenta-
tion (NPA), significantly improves the discrimina-
tive ability of the classifier and improves the re-
trieval performance by a large margin.

Our contributions are as follows. 1) We propose
Query-Adaptive R-CNN, an extension of Faster
R-CNN to open vocabulary, that is a simple yet
strong method of open-vocabulary object detec-
tion and that outperforms all state-of-the-art meth-
ods in the phrase localization task. 2) We pro-
pose negative phrase augmentation (NPA) to ex-
ploit hard negative examples when training for
open-vocabulary object detection, which makes

the classifier more discriminative and robust to
distractors in retrieval. Our method can accurately
find objects amidst one million images in 0.5 sec-
ond.

2 Related work

Phrase localization. Object grounding with nat-
ural language descriptions has recently drawn
much attention and several tasks and approaches
have been proposed for it (Guadarrama et al.,
2014; Hu et al., 2016; Kazemzadeh et al., 2014;
Mao et al., 2016; Plummer et al., 2015). The most
related task to ours is the phrase localization intro-
duced by Plummer et al. (Plummer et al., 2015),
whose goal is to localize objects that corresponds
to noun phrases in textual descriptions from an im-
age. Chen et al. (Chen et al., 2017) is the closest
to our work in terms of learning region propos-
als and performing regression conditioned upon a
query. However, most phrase localization meth-
ods are not scalable and cannot be used for re-
trieval tasks. Some approaches (Plummer et al.,
2017b; Wang et al., 2016a) learn a common sub-
space between the text and image for phrase lo-
calization. Instead of learning the subspace be-
tween the image and sentence as in standard cross-
modal searches, they learn the subspace between
a region and a phrase. In particular, Wang et
al. (Wang et al., 2016a) use a deep neural network
to learn the joint embedding of images and text;
their training uses structure-preserving constraints
based on structured matching. Although these ap-
proaches can be used for large-scale retrieval, their
accuracy is not as good as recent state-of-the-art
methods.

Object retrieval and localization. Object re-
trieval and localization have been researched in the
context of particular object retrieval (Shen et al.,
2012; Tao et al., 2014; Tolias et al., 2016), where
a query is given as an image. Aytar et
al. (Aytar and Zisserman, 2014) proposed re-
trieval and localization of generic category ob-
jects by extending the object detection tech-
nique to large-scale retrieval. Hinami and
Satoh (Hinami and Satoh, 2016) extended the R-
CNN to large-scale retrieval by using approxi-
mate nearest neighbor search techniques. How-
ever, they assumed that the detector of the cate-
gory is given as a query and require many sample
images with bounding box annotations in order to
learn the detector. Several other approaches have
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used the external search engines (e.g., Google im-
age search) to get training images from textual
queries (Arandjelovi et al., 2012; Chatfield et al.,
2015). Instead, we generate an object detector di-
rectly from the given textual query by using a neu-
ral network.

Parameter prediction by neural network.
Query-Adaptive R-CNN generates the weights of
the detector from the query instead of learning
them by backpropagation. The dynamic filter net-
work (De Brabandere et al., 2016) is one of the
first methods that generate neural network pa-
rameters dynamically conditioned on an input.
Several subsequent approaches use this idea in
zero-shot learning (Ba et al., 2016) and visual
question answering (Noh et al., 2016). Zhang et
al. (Zhang et al., 2017) integrates this idea into the
Fast R-CNN framework by dynamically generat-
ing the classifier from the text in a similar manner
to (Ba et al., 2016). We extend this work to the
case of large-scale retrieval. The proposed Query-
Adaptive R-CNN generates the regressor weights
and learn the region proposal network following
Faster R-CNN. It enables precise localization with
fewer proposals, which makes the retrieval system
more memory efficient. In addition, we propose a
novel hard negative mining approach, called nega-
tive phrase augmentation, which makes the gener-
ated classifier more discriminative.

3 Query-Adaptive R-CNN

Query-adaptive R-CNN is a simple extension of
Faster R-CNN to open-vocabulary object detec-
tion. While Faster R-CNN detects objects of fixed
categories, Query-Adaptive R-CNN detects any
objects specified by a textual phrase. Figure 2
illustrates the difference between Faster R-CNN
and Query-Adaptive R-CNN. While Faster R-
CNN learns a class-specific classifier and regres-
sor as parameters of the neural networks, Query-
Adaptive R-CNN generates them from the query
text by using a detector generator. Query-Adaptive
R-CNN is a simple but effective method that sur-
passes state-of-the-art phrase localization methods
and can be easily extended to the case of large-
scale retrieval. Furthermore, its retrieval accu-
racy is significantly improved by a novel train-
ing strategy called negative phrase augmentation
(Sec. 3.2).
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Figure 2: Difference in network architecture between
(a) Faster R-CNN and (b) Query-Adaptive R-CNN.
While Faster R-CNN learns the classifier of a closed
set of categories as learnable parameters of neural net-
works, Query-Adaptive R-CNN generates a classifier
and regressor adaptively from a query text by learning
a detector generator that transforms the text into a clas-
sifier and regressor.

3.1 Architecture

The network is composed of two subnetworks: a
region feature extractor and detector generator,
both of which are trained in an end-to-end man-
ner. The region feature extractor takes an im-
age as input and outputs features extracted from
sub-regions that are candidate objects. Following
Faster R-CNN (Ren et al., 2015), regions are de-
tected using a region proposal network (RPN) and
the features of the last layer (e.g., fc7 in VGG net-
work) are used as region features. The detector
generator takes a text description as an input and
outputs a linear classifier and regressor for the de-
scription (e.g., if a dog is given, a dog clas-
sifier and regressor are output). Finally, a confi-
dence and a regressed bounding box are predicted
for each region by applying the classifier and re-
gressor to the region features.

Detector generator. The detector generator
transforms the given text t into a classifier wc

and regressor (wr
x,w

r
y,w

r
w,w

r
h), where wc is the

weight of a linear classifier and (wr
x,w

r
y,w

r
w,w

r
h)

is the weight of a linear regressor in terms of x, y,
width w, and height h, following (Girshick et al.,
2014). We first transform a text t of variable
length into a text embedding vector v. Other
phrase localization approaches uses the Fisher
vector encoding of word2vec (Klein et al., 2015;
Plummer et al., 2015) or long-short term memory
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(LSTM) (Chen et al., 2017) for the phrase embed-
ding. However, we found that the simple mean
pooling of word2vec (Mikolov et al., 2013) per-
forms better than these methods for our model
(comparisons given in the supplemental material).
The text embedding is then transformed into a de-
tector, i.e., wc = Gc(v) and (wr

x,w
r
y,w

r
w,w

r
h) =

Gr(v). Here, we use a linear transformation for
Gc (i.e., wc = Wv, where W is a projection
matrix). For the regressor, we use a multi-layer
perceptron with one hidden layer to predict each
of (wr

x,w
r
y,w

r
w,w

r
h) = Gr(v). We tested var-

ious architectures for Gr and found that sharing
the hidden layer and reducing the dimension of the
hidden layer (up to 16) does not adversely affect
the performance, while at the same time it sig-
nificantly reduces the number of parameters (see
Sec. 5.2 for details).

3.2 Training with Negative Phrase
Augmentation

All components of Query-Adaptive R-CNN can
be jointly trained in an end-to-end manner. The
training strategy basically follows that of Faster
R-CNN. The differences are shown in Figure 3.
Faster R-CNN is trained with the fixed closed set
of categories (Fig. 3a), where all regions with-
out a positive label can be used as negative exam-
ples. On the other hand, Query-Adaptive R-CNN
is trained using the open-vocabulary phrases an-
notated to the regions (Fig. 3b), where sufficient
negative examples cannot be used for each phrase
compared to Faster R-CNN because a region with-
out a positive label is not guaranteed to be negative
in open-vocabulary object detection. We solve this
problem by proposing negative phrase augmenta-
tion (NPA), which enables us to use good quality
negative examples by using the linguistic relation-
ship (e.g., mutually exclusiveness) and the confu-
sion between the categories (Fig. 3c). It signif-
icantly improves the discriminative ability of the
generated classifiers.

3.2.1 Basic Training
First, we describe the basic training strategy with-
out NPA (Fig. 3b). Training a Query-Adaptive R-
CNN requires the phrases and their corresponding
bounding boxes to be annotated. For the ith image
(we use one image as a minibatch), let us assume
that Ci phrases are associated with the image. The
Ci phrases can be considered as the classes to train
in the minibatch. The labels Li ∈ {0, 1}Ci×nr

person 1 0 0 0 1 0 0 ..
dog 0 1 0 0 0 0 0 ..
... .. .. .. .. .. .. .. ..
horse 0 0 0 0 0 1 0 ..
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Ground 
truth Training labels

Ground
truth

minibatch

a man 1 0 0 0
dog 0 1 0 0
person 0 1 0
brown horse 1 0 0
.. .. ..

(c) Negative phrase augmentation

Training labels

a man 1 0 0 0
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dog 0 1 0 0
cat 0

iteration

a man 1 0 0 0
dog 0 1 0 0
..

man:{woman:0.3, girl:0.2, ...}
dog: {cat: 0.4, horse:0.1, ...}

Confusion
table ...

brown horse
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dog

horse

person
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Figure 3: Difference in training between (a) closed-
vocabulary and (b) open-vocabulary object detection.
The approach of NPA is illustrated in (c).

are assigned to the region proposals generated by
RPN (each of the dotted rectangles in Fig 3b); a
positive label is assigned if the box overlaps the
ground truth box by more than 0.5 in IoU and neg-
ative labels are assigned to other RoIs under the
assumption that all positive objects of Ci classes
are annotated (i.e., regions without annotations are
negative within the image).1 We then compute the
classification loss by using the training labels and
classification scores.2 The loss in terms of RPN
and bounding box regression is computed in the

1Although this assumption is not always true for datasets
such as Flickr30k Entities, it nonetheless works well for them
because exceptions are rare.

2 Whereas Faster R-CNN uses the softmax cross entropy
over the C + 1 (background) classes, where C is the number
of closed sets of a category, we use the sigmoid cross entropy
because the Ci classes are not always mutually exclusive and
a background class cannot be defined in the context of open-
vocabulary object detection.
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same way as Faster R-CNN (Ren et al., 2015).

3.2.2 Negative Phrase Augmentation
Here, we address the difficulty of using nega-
tive examples in the training of open-vocabulary
object detection. As shown in Fig. 1b, our
generated classifier is not discriminative enough.
The reason is the scarcity of negative exam-
ples when using the training strategy described
in Sec. 3.2.1; e.g., the horse classifier is not
learned with the zebra as a negative example
except for the rare case that both a zebra and
a horse are in the same image. Using hard
negative examples has proven to be effective in
the object detection to train a discriminative de-
tector (Felzenszwalb et al., 2010; Girshick et al.,
2014; Shrivastava et al., 2016). However, adding
negative examples is usually not easy in the open-
vocabulary setting, because it is not guaranteed
that a region without a positive label is negative.
For example, an object with the label man is not a
negative of person even though person is not
annotated. There are an infinite number of cate-
gories in open-vocabulary settings, which makes
it difficult to exhaustively annotate all categories
throughout the dataset.

How can we exploit hard examples that are
guaranteed to be negative? We can make use of
the mutually exclusive relationship between cat-
egories: e.g., an object with a dog label is neg-
ative for cat because dog and cat are mutu-
ally exclusive. There are two ways we can add
to a minibatch: add negative images (regions) or
negative phrases. Adding negative phrases (as in
Fig. 3c) is generally better because it involves a
much smaller additional training cost than adding
images in terms of the both computational cost
and GPU memory usage. In addition, to im-
prove the discriminative ability of the classifier,
we select only hard negative phrases by mining
the confusing categories. This approach, called
negative phrase augmentation (NPA), is a generic
way of exploiting hard negative examples in open-
vocabulary object detection and leads to large im-
provements in accuracy, as we show in Sec. 5.3.

Confusion table. We create a confusion ta-
ble that associates a category with its hard nega-
tive categories, from which negative phrases are
picked as illustrated in Fig. 3c. To create the en-
try for category c, we first generate the candidate
list of hard negative categories by retrieving the
top 500 scored objects from all objects in the vali-

dation set of Visual Genome (Krishna et al., 2016)
(using c as a query). After that, we remove the
mutually non-exclusive category relative to c from
the list. Finally, we aggregate the list by category
and assign a weight to each category. Each of the
registered entries becomes like dog:{cat:0.5,
horse:0.3, cow:0.2}. The weight corresponds
to the probability of selecting the category in NPA,
which is computed based on the number of appear-
ances and their ranks in the candidate list.3

Removal of mutually non-exclusive phrases.
To remove non-mutually exclusive phrases from
the confusion table, we use two approaches that
estimate whether the two categories are mutually
exclusive or not. 1) The first approach uses the
WordNet hierarchy: if two categories have parent-
child relationships in WordNet (Miller, 1995),
they are not mutually exclusive. However, the
converse is not necessarily true; e.g., man and
skier are not mutually exclusive but do not have
the parent-child relationship in the WordNet hi-
erarchy. 2) As an alternative approach, we pro-
pose to use Visual Genome annotation: if two cat-
egories co-occur more often in the Visual Genome
dataset (Krishna et al., 2016), these categories are
considered to be not mutually exclusive.4 These
two approaches are complementary, and they im-
prove detection performance by removing the mu-
tually non-exclusive words (see Sec. 5.3).

The training pipeline with NPA is as follows:

(1) Update the confusion table: The confusion ta-
ble is updated periodically (after every 10k it-
erations in our study). Entries were created for
categories that frequently appeared in 10k suc-
cessive batches (or the whole training set if the
size of the dataset is not large).

(2) Add hard negative phrases: Negative phrases
are added to each of the Ci phrases in a mini-
batch. We replace the name of the category
in each phrase with its hard negative cate-
gory (e.g., generate a running woman for a
running man), where the category name is
obtained by extracting nouns. A negative phrase
is randomly selected from the confusion table
on the basis of the assigned probability.
3We compute the weight of each category as the sum of

500 minus the rank for all ranked results in the candidate lists
normalized over all categories in order to sum to one.

4 We set the ratio at 1% of objects in either category.
For example, if there are 1000 objects with the skier la-
bel and 20 of those objects are also annotated with man
(20/1000=2%), we consider that skier and man are not mu-
tually exclusive.
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(3) Add losses: As illustrated in Fig. 3c, we only
add negative labels to the regions where a posi-
tive label is assigned to the original phrase. The
classification loss is computed only for the re-
gions, which is added to the original loss.

4 Large-Scale Object Retrieval

Query-Adaptive R-CNN can be used for large-
scale object retrieval and localization, because
it can be decomposed into a query-independent
part and a query-dependent part, i.e., a re-
gion feature extractor and detector generator.
We follow the approach used in large-scale R-
CNN (Hinami and Satoh, 2016), but we overcome
its two critical drawbacks. First, a large-scale R-
CNN can only predict boxes included in the region
proposals; these are detected offline even though
the query is unknown at the time; therefore, to
get high recall, a large number of object propos-
als should be used, which is memory inefficient.
Instead, we generate a regressor as well as a classi-
fier, which enables more accurate localization with
fewer proposals. Second, a large-scale R-CNN as-
sumes that the classifier is given as a query, and
learning a classifier requires many samples with
bounding annotations. We generate the classifier
from a text query directly by using the detector
generator of Query-Adaptive R-CNN. The result-
ing system is able to retrieve and localize objects
from a database with one million images in less
than one second.

Database indexing. For each image in the
database, the region feature extractor extracts re-
gion proposals and corresponding features. We
create an index for the region features in order
to speed up the search. For this, we use the IV-
FADC system (Jégou et al., 2011) in the manner
described in (Hinami and Satoh, 2016).

Searching. Given a text query, the detector gen-
erator generates a linear classifier and bounding
box regressor. The regions with high classifica-
tion scores are then retrieved from the database by
making an IVFADC-based search. Finally, the re-
gressor is applied to the retrieved regions to obtain
the accurately localized bounding boxes.

5 Experiments

5.1 Experimental Setup
Model: Query-Adaptive R-CNN is based on
VGG16 (Simonyan and Zisserman, 2015), as in
other work on phrase localization. We first

initialized the weights of the VGG and RPN
by using Faster R-CNN trained on Microsoft
COCO (Lin et al., 2014); the weights were then
fine-tuned for each dataset of the evaluation. In
the training using Flickr30k Entities, we first pre-
trained the model on the Visual Genome dataset
using the object name annotations. We used
Adam (Kingma and Ba, 2015) with a learning rate
starting from 1e-5 and ran it for 200k iterations.

Tasks and datasets: We evaluated our ap-
proaches on two tasks: phrase localization and
open-vocabulary object detection and retrieval.
The phrase localization task was performed
on the Flickr30k Entities dataset (Plummer et al.,
2015). Given an image and a sentence that de-
scribes the image, the task was to localize re-
gion that corresponds to the phrase in a sentence.
Flickr30k datasets contain 44,518 unique phrases,
where the number of words of each phrase is 1–8
(2.1 words on average). We followed the evalu-
ation protocol of (Plummer et al., 2015). We did
not use Flickr30k Entities for the retrieval task
because the dataset is not exhaustively annotated
(e.g., not all men appearing in the dataset are anno-
tated with man), which makes it difficult to eval-
uate with a retrieval metric such as AP, as dis-
cussed in Plummer et al. (Plummer et al., 2017b).
Although we cannot evaluate the retrieval perfor-
mance directly on the phrase localization task, we
can make comparisons with other approaches and
show that our method can handle a wide variety of
phrases.

The open-vocabulary object detection and re-
trieval task was evaluated in the same way as the
standard object detection task. The difference was
the assumption that we do not know the target cat-
egory at training time in open-vocabulary settings;
i.e., the method does not tune in to a specific cate-
gory, unlike the standard object detection task. We
used the Visual Genome dataset (Krishna et al.,
2016) and selected the 100 most frequently object
categories as queries among its 100k or so cate-
gories.5 6 We split the dataset into training, valida-
tion, and test sets following (Johnson et al., 2016).
We also evaluated our approaches on the PASCAL
VOC 2007 dataset, which is a widely used dataset

5Since the WordNet synset ID is assigned to each object,
we add objects with labels of hyponyms as positives (e.g.,
man is positive for the person category).

6We exclude the background (e.g., grass, sky,
field), multiple objects (e.g., people, leaves), and am-
biguous categories (e.g, top, line).
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Approach People Clothing Body Animals Vehicles Instruments Scene Other All

Non-scalable methods
GroundeR (Rohrbach et al., 2016) 61.00 38.12 10.33 62.55 68.75 36.42 58.18 29.08 47.81
Multimodal compact bilinear (Fukui et al., 2016) - - - - - - - - 48.69
PGN+QRN (Chen et al., 2017) 75.08 55.90 20.27 73.36 68.95 45.68 65.27 38.80 60.21

Non-scalable and joint localization methods
Structured matching (Wang et al., 2016b) 57.89 34.61 15.87 55.98 52.25 23.46 34.22 26.23 42.08
SPC+PPC (Plummer et al., 2017a) 71.69 50.95 25.24 76.25 66.50 35.80 51.51 35.98 55.85
QRC net (Chen et al., 2017) 76.32 59.58 25.24 80.50 78.25 50.62 67.12 43.60 65.14

Scalable methods
Structure-preserving embedding (Wang et al., 2016a) - - - - - - - - 43.89
CCA+Detector+Size+Color (Plummer et al., 2017b) 64.73 46.88 17.21 65.83 68.75 37.65 51.39 31.77 50.89
Query-Adaptive R-CNN (proposed) 78.17 61.99 35.25 74.41 76.16 56.69 68.07 47.42 65.21

Table 1: Phrase localization accuracy on Flickr30k Entities dataset.

IoU
Architecture Params 0.5 0.6 0.7 0.8 0.9

w/o regression - 65.21 53.19 35.70 14.32 1.88

300–16(–4096) 0.3M 64.14 57.66 48.22 33.04 9.29
300–64(–4096) 1.1M 63.87 57.43 49.05 33.84 10.55
300–256(–4096) 4.3M 63.84 57.70 48.71 33.87 10.05
300–1024(–4096) 17M 64.29 58.05 48.49 33.94 10.09
300(–256–4096) 4.5M 62.82 56.28 48.02 32.71 9.89
300–4096 1.2M 63.23 56.92 48.17 32.66 9.20

Table 2: Comparison of various bounding box regres-
sors on Flickr30k Entities for different IoU thresholds.
The number of parameters in Gr is also shown.

for object detection.7 As metrics, we used top-
k precision and average precision (AP), computed
from the region-level ranked list as in the standard
object detection task.8

5.2 Phrase localization

Comparison with state-of-the-art. We compared
our method with state-of-the-art methods on the
Flickr30k Entities phrase localization task. We
categorized the methods into two types, i.e., non-
scalable and scalable methods (Tab. 1). 1) Non-
scalable methods cannot be used for large-scale
retrieval because their query-dependent compo-
nents are too complex to process a large amount
of images online, and 2) Scalable methods can be
used for large-scale retrieval because their query-
dependent components are easy to scale up (e.g.,
the L2 distance computation); these include com-
mon subspace-based approaches such as CCA.
Our method also belongs to the scalable category.
We used a simple model without a regressor and

7 We used the model trained on Visual Genome even for
the evaluation on the PASCAL dataset because of the assump-
tion that the target category is unknown.

8 We did not separately evaluate the detection and retrieval
tasks because both can be evaluated with the same metric.

NPA in the experiments.
Table 1 compares Query-Adaptive R-CNN with

the state-of-the-art methods. Our model achieved
65.21% in accuracy and outperformed all of
the previous state-of-the-art models including the
non-scalable or joint localization methods. More-
over, it significantly outperformed the scalable
methods, which suggests the approach of predict-
ing the classifier is better than learning a common
subspace for the open-vocabulary detection prob-
lem.

Bounding box regressor. To demonstrate the
effectiveness of the bounding box regressor for
precise localization, we conducted evaluations
with the regressor at different IoU thresholds. As
explained in Sec. 3.1, the regressor was generated
using Gr, which transformed 300-d text embed-
dings x into 4096-d regressor weights wr

x, wr
y,

wr
w, and wr

h. We compared three network archi-
tectures for Gr: 1) 300-n(-4096) MLP hav-
ing a hidden layer with n units that is shared
across the four outputs, 2) 300(-n-4096) MLP
having a hidden layer that is not shared, and 3)
300(-4096) linear transformation (without a
hidden layer).

Table 2 shows the results with and without re-
gressor. The regressor significantly improved the
accuracy with high IoU thresholds, which demon-
strates that the regressor improved the localiza-
tion accuracy. In addition, the accuracy did not
decrease as a result of sharing the hidden layer
or reducing the number of units in the hidden
layer. This suggests that the regressor lies in a very
low-dimensional manifold because the regressor
for one concept can be shared by many concepts
(e.g., the person regressor can be used for man,
woman, girl, boy, etc.). The number of pa-
rameters was significantly reduced by these tricks,
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Figure 4: Qualitative results with and without NPA. Top-k retrieved results for two queries are shown (sorted by
rank) and false alarms are depicted with a red border.
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Figure 5: AP gain by negative phrase augmentation (NPA) for individual queries. The bars show the relative AP
gain and points shows the absolute AP with and without NPA.

Visual Genome VOC
NPA WN VG mAP PR@10 PR@100 mAP

CCA 3.18 20.40 15.64 28.23

Query-
Adaptive
R-CNN

9.15 52.60 36.85 29.14
3 10.90 60.10 43.21 36.74
3 3 11.53 61.80 45.91 37.07
3 3 11.65 65.40 46.85 41.32
3 3 3 12.19 65.70 48.45 42.81

Table 3: Open-vocabulary object detection perfor-
mance on Visual Genome and PASCAL VOC 2007
datasets. WN and VG are the strategies to remove mu-
tually non-exclusive phrases.

to even fewer than in the linear transformation.
The accuracy slightly decreased with a threshold
of 0.5, because the regressor was not learned prop-
erly for the categories that did not frequently ap-
pear in the training data.

5.3 Open-Vocabulary Object Retrieval

Main comparison. Open-vocabulary object de-
tection and retrieval is a much more difficult task
than phrase localization, because we do not know
how many objects are present in an image. We
used NPA to train our model. As explained in
Sec. 3.2.2, we used two strategies, Visual Genome
annotation (VG) and WordNet hierarchy (WN), to
remove mutually non-exclusive phrases from the
confusion table. As a baseline, we compared with

Query Most confusing class 2nd most confusing class

girl man 19 → 3 boy 4 → 2
skateboard surfboard 12 → 0 snowboard 11 → 0
train bus 17 → 1 oven 3 → 0
helmet hat 18 → 1 cap 6 → 4
elephant bear 14 → 0 horse 6 → 0

Table 4: Number of false alarms in top 100 results for
five queries (w/o NPA → w/ NPA). The top 2 confusing
categories are shown for each query.

region-based CCA (Plummer et al., 2017b), which
is scalable and shown to be effective for phrase lo-
calization; for a fair comparison, the subspace was
learned using the same dataset as ours. An approx-
imate search was not used to evaluate the actual
performance at open-vocabulary object detection.

Table 3 compares different training strate-
gies. NPA significantly improved the perfor-
mance: more than 25% relative improvement for
all metrics. Removing mutually non-exclusive
words also contributed the performance: WN and
VG both improved performance (5.8% and 6.9%
relative AP gain, respectively). Performance im-
proved even further by combining them (11.8%
relative AP gain), which shows they are comple-
mentary. AP was much improved by NPA for
the PASCAL dataset as well (47% relative gain).
However, the performance was still much poorer
than those of the state-of-the-art object detection
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Query: black dog

Query: blue jeans

Query: shark

Figure 6: Retrievals from one million images. Top-k results for three queries are shown.

methods (Redmon and Farhadi, 2017; Ren et al.,
2015), which suggests that there is a large gap be-
tween open-vocabulary and closed-vocabulary ob-
ject detection.

Detailed results of NPA. To investigate the ef-
fect of NPA, we show the AP with and with-
out NPA for individual categories in Figure 5,
which are sorted by relative AP improvement.
It shows that AP improved especially for ani-
mals (elephant, cow, horse, etc.) and per-
son (skier, surfer, girl), which are visually
similar within the same upper category. Table 4
shows the most confused category and its total
count in the top 100 search results for each query,
which shows what concept is confusing for each
query and how much the confusion is reduced by
NPA.9 This shows that visually similar categories
resulted in false positive without NPA, while their
number was suppressed by training with NPA.
The reason is that these confusing categories were
added for negative phrases in NPA, and the net-
work learned to reject them. Figure 4 shows the
qualitative search results for each query with and
without NPA (and CCA as a baseline), which also
showed that NPA can discriminate confusing cat-
egories (e.g., horse and zebra). These re-
sults clearly demonstrate that NPA significantly
improves the discriminative ability of classifiers
by adding hard negative categories.

Large-scale experiments. Finally, we evalu-
ated the scalability of our method on a large im-
age database. We used one million images from
the ILSVRC 2012 training set for this evaluation.
Table 5 show the speed and memory. The mean

9For each query, we scored all the objects in the Visual
Genome testing set and counted the false alarms in the top
100 scored objects.

Database size 10K 50K 100K 500K 1M

Time (ms) 183±16 196±21 242±28 314±90 484±165
Memory (GB) 0.46 1.23 2.19 9.87 19.47

Table 5: Speed/memory in large-scale experiments.

and standard deviation of speed are computed over
20 queries in PASCAL VOC dataset. Our system
could retrieve objects from one million images in
around 0.5 seconds. We did not evaluate accuracy
because there is no such large dataset with bound-
ing box annotations.10 Figure 6 shows the retrieval
results from one million images, which demon-
strates that our system can accurately retrieve and
localize objects from a very large-scale database.

6 Conclusion

Query-Adaptive R-CNN is a simple yet strong
framework for open-vocabulary object detection
and retrieval. It achieves state-of-the-art perfor-
mance on the Flickr30k phrase localization bench-
mark and it can be used for large-scale object re-
trieval by textual query. In addition, its retrieval
accuracy can be further increased by using a novel
training strategy called negative phrase augmenta-
tion (NPA) that appropriately selects hard negative
examples by using their linguistic relationship and
confusion between categories. This simple and
generic approach significantly improves the dis-
criminative ability of the generated classifier.

Acknowledgements: This work was supported
by JST CREST JPMJCR1686 and JSPS KAK-
ENHI 17J08378.

10 adding distractors would also be difficult, because we
cannot guarantee that relevant objects are not in the images.
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Hervé Jégou, Matthijs Douze, and Cordelia Schmid.
2011. Product quantization for nearest neighbor
search. PAMI, 33(1):117–128.

Justin Johnson, Andrej Karpathy, and Li Fei-Fei. 2016.
Densecap: fully convolutional localization networks
for dense captioning. In CVPR.

Sahar Kazemzadeh, Vicente Ordonez, Mark Matten,
and Tamara L Berg. 2014. Referitgame: refer-
ring to objects in photographs of natural scenes. In
EMNLP.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: a
method for stochastic optimization. In ICLR.

Benjamin Klein, Guy Lev, Gil Sadeh, and Lior Wolf.
2015. Fisher vectors derived from hybrid gaussian-
laplacian mixture models for image annotation. In
CVPR.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin John-
son, Kenji Hata, Joshua Kravitz, Stephanie Chen,
Yannis Kalanditis, Li-Jia Li, David A. Shamma,
Michael S. Bernstein, Li Fei-Fei, Yannis Kalantidis,
Li-Jia Li, David A. Shamma, Michael S. Bernstein,
and Fei-Fei Li. 2016. Visual genome: connecting
language and vision using crowdsourced dense im-
age annotations. IJCV, page 44.

Tsung-Yi Lin, Michael Maire, Serge Belongie,
Lubomir Bourdev, Ross Girshick, James Hays,
Pietro Perona, Deva Ramanan, C. Lawrence Zitnick,
and Piotr Dollár. 2014. Microsoft coco: common
objects in context. In ECCV.

Junhua Mao, Jonathan Huang, Alexander Toshev, Oana
Camburu, Alan Yuille, and Kevin Murphy. 2016.
Generation and comprehension of unambiguous ob-
ject descriptions. In CVPR.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Distributed representations of words
and phrases and their compositionality. In NIPS.

George A. Miller. 1995. Wordnet: a lexical
database for English. Communications of the ACM,
38(11):39–41.

Hyeonwoo Noh, Paul Hongsuck Seo, and Bohyung
Han. 2016. Image question answering using con-
volutional neural network with dynamic parameter
prediction. In CVPR.

Bryan A Plummer, Christopher M Cervantes, and C V
Aug. 2017a. Phrase localization and visual re-
lationship Detection with Comprehensive Image-
Language Cues. In ICCV.

Bryan A. Plummer, Liwei Wang, Chris M. Cervantes,
Juan C. Caicedo, Julia Hockenmaier, and Svet-
lana Lazebnik. 2015. Flickr30k entities: collecting
region-to-phrase correspondences for richer image-
to-sentence models. In ICCV.

Bryan A. Plummer, Liwei Wang, Chris M. Cervantes,
Juan C. Caicedo, Julia Hockenmaier, and Svet-
lana Lazebnik. 2017b. Flickr30k Entities: Collect-
ing Region-to-Phrase Correspondences for Richer
Image-to-Sentence Models. International Journal
of Computer Vision, 123(1):74–93.



2615

Joseph Redmon and Ali Farhadi. 2017. YOLO9000:
better, faster, stronger. In CVPR.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun. 2015. Faster r-cnn: towards real-time object
detection with region proposal networks. In NIPS.

Anna Rohrbach, Marcus Rohrbach, Ronghang Hu,
Trevor Darrell, and Bernt Schiele. 2016. Ground-
ing of textual phrases in images by reconstruction.
In ECCV.

Xiaohui Shen, Zhe Lin, Jonathan Brandt, Shai Avi-
dan, and Ying Wu. 2012. Object retrieval and local-
ization with spatially-constrained similarity measure
and k-nn re-ranking. In CVPR.

Abhinav Shrivastava, Abhinav Gupta, and Ross Gir-
shick. 2016. Training region-based object detectors
with online hard example mining. In CVPR.

Karen Simonyan and Andrew Zisserman. 2015. Very
deep convolutional networks for large-scale image
recognition. In ICLR.

Ran Tao, Efstratios Gavves, Cees G M Snoek, and
Arnold W M Smeulders. 2014. Locality in generic
instance search from one example. In CVPR.

Giorgos Tolias, Ronan Sicre, and Hervé Jégou. 2016.
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