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Abstract

Character-based neural models have recently
proven very useful for many NLP tasks. How-
ever, there is a gap of sophistication between
methods for learning representations of sen-
tences and words. While, most character
models for learning representations of sen-
tences are deep and complex, models for learn-
ing representations of words are shallow and
simple. Also, in spite of considerable re-
search on learning character embeddings, it
is still not clear which kind of architecture
is the best for capturing character-to-word
representations. To address these questions,
we first investigate the gaps between meth-
ods for learning word and sentence represen-
tations. We conduct detailed experiments and
comparisons on different state-of-the-art con-
volutional models, and also investigate the
advantages and disadvantages of their con-
stituents. Furthermore, we propose IntNet, a
funnel-shaped wide convolutional neural ar-
chitecture with no down-sampling for learn-
ing representations of the internal structure of
words by composing their characters from lim-
ited, supervised training corpora. We evaluate
our proposed model on six sequence labeling
datasets, including named entity recognition,
part-of-speech tagging, and syntactic chunk-
ing. Our in-depth analysis shows that IntNet
significantly outperforms other character em-
bedding models and obtains new state-of-the-
art performance without relying on any exter-
nal knowledge or resources.

1 Introduction

Sequence labeling is the task of assigning a label
or class to each element of a sequence of data, and
is one of the first stages in many natural language
processing (NLP) tasks. For example, named en-
tity recognition (NER) aims to classify words in a
sentence into several predefined categories of in-
terest such as person, organization, location, etc.

Part-of-speech (POS) tagging assigns a part of
speech to each word in an input sentence. Syn-
tactic chunking divides text into syntactically re-
lated, non-overlapping groups of words. Sequence
labeling is a challenging problem because human
annotation is very expensive and typically only a
small amount of tagging data is available.

Most traditional sequence labeling systems
have been dominated by linear statistical models
which heavily rely on feature engineering. As
a result, carefully constructed hand-crafted fea-
tures and domain-specific knowledge are widely
used for solving these tasks. Unfortunately, it is
costly to develop domain specific knowledge and
hand-crafted features. Recently, neural networks
using character-level information have been used
successfully for minimizing the need of feature
engineering. There are basically two threads of
character-based modeling, one focuses on learn-
ing representations of sentences for semantics
and syntax (Zhang et al., 2015; Conneau et al.,
2017); the other focuses on learning representa-
tions of words for the purpose of eliminating hand-
crafted features for word shape information (Lam-
ple et al., 2016; Ma and Hovy, 2016).

Two main state-of-the-art approaches of learn-
ing character representations for sequence labeling
emerged from the latter thread. One is based on
RNNs and uses bidirectional LSTMs or GRUs to
learn forward and backward character information
(Ling et al., 2015; Lample et al., 2016; Yang et al.,
2017). The other approach is based on CNNs
with a fixed-size window around each word to
create character-level representations (Santos and
Zadrozny, 2014; Chiu and Nichols, 2016; Ma and
Hovy, 2016). However, there is a gap in the so-
phistication between character-based methods for
learning representations of sentences compared to
that of words. We found that most of the state-
of-the-art character-based CNN models for words
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use a convolution followed by max pooling as a
shallow feature extractor, which is very different
from the CNN models with deep and complex ar-
chitecture for sentences. In spite of considerable
research on learning character embeddings, it is
still not clear which kind of architecture is the best
for capturing character-to-word representations.

Therefore, a number of questions remain open:

• Why is there a gap between methods for
learning representations of sentences and
words? How can this gap be bridged?

• How do state-of-the-art character embedding
models differ in term of performance?

• What kind of neural network architecture is
better for learning the internal structure of a
word? Deep or shallow? Narrow or wide?

To answer these questions, we first investigate
the gap between learning word representations
and sentence representations for convolutional ar-
chitectures. The most straightforward idea is to
add more convolutional layers which follows the
approaches from learning representations of sen-
tences. Interestingly, we observe the accuracy
does not increase much and found that accuracy
drops when we increased the depth of the net-
work. This observation shows that learning char-
acter representations for the internal structure of
words is very different than sentences, and also
might explain one of the reasons there has been
a gap in character-based CNN models for repre-
senting words and sentences.

In this paper, we present detailed experiments
and comparisons across different state-of-the-art
convolutional models from natural language pro-
cessing and computer vision. We also investi-
gate the advantages and disadvantages of some
of their constituents on different convolutional
architectures. Furthermore, we propose IntNet,
a funnel-shaped wide convolutional neural net-
work for learning the internal structure of words
by composing their characters. Unlike previous
CNN-based approaches, our funnel-shaped Int-
Net explores deeper and wider architecture with
no down-sampling for learning character-to-word
representations from limited supervised training
corpora. Lastly, we combine our IntNet model
with LSTM-CRF, which captures both word shape
and context information, and jointly decode tags
for sequence labeling.

The main contributions of this paper are the fol-
lowing:

• We conduct detailed studies on investigating
the gap between learning word representa-
tions and sentence representations.

• We provide in-depth experiments and empir-
ical comparisons of different convolutional
models and explore the advantages and dis-
advantages of their components for learning
character-to-word representations.

• We propose a funnel-shaped wide convo-
lutional neural architecture with no down-
sampling that focuses on learning a better in-
ternal structure of words.

• Our proposed compositional character-to-
word model combined with LSTM-CRF
achieves state-of-the-art performance for var-
ious sequence labeling tasks.

This paper is organized as follows: Section 2
describes multiple threads of related work. Sec-
tion 3 presents the whole architecture of the neu-
ral network. Section 4 provides details about ex-
perimental settings and compared methods. Sec-
tion 5 reports model results on different bench-
marks with detailed analyses and discussion.

2 Related Work

There exist three threads of related work regarding
the topic of this paper: (i) different convolutional
architectures from different domains; (ii) character
embedding models for words; (iii) sequence label-
ing with deep neural network.

CNN models across domains. Convolutional
neural networks (CNNs) are very useful in extract-
ing information from raw signals. In the area of
NLP, Kim (2014) was the first to propose shallow
CNN with word embeddings for sentence classifi-
cation. Zhang et al. (2015) proposed CNN with 6
convolutional layers by directly extracting charac-
ter level information for learning representations
of semantic structure on sentences. Recently, Con-
neau et al. (2017) proposed a VDCNN architec-
ture with 29 convolutional layers using residual
connections for text classification. However, one
study on randomly dropping layers for training
deep residual networks, (Huang et al., 2016), has
shown that not all layers may be needed and high-
lighted there is some amount of redundancy in
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ResNet (He et al., 2016). Also, some research has
shown promising results with wide architectures,
for example, wide ResNet (Zagoruyko and Ko-
modakis, 2016), Inception-ResNet (Szegedy et al.,
2017) and DenseNet (Huang et al., 2017). These
models use character-level information to learn
representations are for sentences, not words.

Character embedding models. Santos and
Zadrozny (2014) proposed a CNN model to
learn character representations of words to re-
place hand-crafted features for part-of-speech tag-
ging. Ling et al. (2015) proposed a bidirectional
LSTM over characters to use as input for learn-
ing character-to-word representations. Chiu and
Nichols (2016) proposed a bidirectional LSTM-
CNN with lexicons for named entity recognition
by applying the CNN-based character embedding
model from Santos and Zadrozny (2014). Plank
et al. (2016) proposed a bi-LSTM model with aux-
iliary loss for multilingual part-of-speech tagging
by following the LSTM-based character embed-
ding model from Ling et al. (2015). Cotterell and
Heigold (2017) proposed a character-level transfer
learning model for neural morphological tagging.

Sequence labeling. Collobert et al. (2011) first
proposed a method based on CNN-CRF that learns
important features from words and requires few
hand-crafted features. Huang et al. (2015) pro-
posed a bidirectional LSTM-CRF model by us-
ing word embeddings and hand-crafted features
for sequence tagging. Lample et al. (2016) applied
the LSTM-based character embedding model from
Ling et al. (2015) with bidirectional LSTM-CRF
and obtained best results on NER for Spanish,
Dutch, and German. Ma and Hovy (2016) ap-
plied the CNN-based character embedding model
from Chiu and Nichols (2016), but without us-
ing any data preprocessing or external knowledge
and achieved the best result on NER for English
and part-of-speech tagging. Also, there have been
some joint models which use additional knowl-
edge, like transfer learning (Yang et al., 2017),
pre-trained language models (Peters et al., 2017),
language model joint training (Rei, 2017), and
multi-task learning (Liu et al., 2018). Without any
additional supervision or extra resources, LSTM-
CRF (Lample et al., 2016) and LSTM-CNN-CRF
(Ma and Hovy, 2016) are current state-of-the-art
methods. To test the effectiveness of our proposed
model, we use these two models as our baselines
in the latter sections.

3 Neural Network Architecture

3.1 IntNet
Character embeddings. The first step is to ini-
tialize the character embeddings for each word w
in the input sequence. We define the finite set
of characters V char. This vocabulary contains all
the variations of the raw text, including upper-
case and lowercase letters, numbers, punctuation
marks, and symbols. Unlike some character-based
approaches, we do not use any character-level pre-
possessing which enables our model to learn and
capture regularities from prefixes to suffixes to
construct character-to-word representations. The
input word w is decomposed into a sequence of
characters {c1, ..., cn}, where n is the length of
w. Character embeddings are encoded by col-
umn vectors in the embedding matrix W char ∈
Rdchar×|V char|, where dchar is the number of pa-
rameters for each character in V char. Given a
character ci, its embedding rchari is obtained by
the matrix-vector product:

rchari =W charvchari , (1)

where vchari is defined as a one-hot vector for
ci. We randomly initialize a look-up table with
values drawn from a uniform distribution with
range [−

√
3

dchar
,+

√
3

dchar
], where dchar is em-

pirically chosen by users. The character set in-
cludes all unique characters and the special tokens
PADDING and UNKNOWN. We do not perform any
character-level preprocessing, including case nor-
malization, digit replacement (e.g. replacing all
sequences of digits 0-9 with a single “0”), nor do
we use any capitalization features (e.g. allCaps,
upperInitial, lowercase, mixedCaps,
noinfo).

Convolutional blocks. The input for the Int-
Net is the sequence of character embeddings
{rchar1 , ..., rcharn }. First is the initial convolutional
layer, which is a temporal convolutional mod-
ule that computes 1-D convolutions. Let xi ∈
Rdchar×rchar be the concatenation of the charac-
ter embeddings for each w. The initial convolu-
tional layer applies a matrix-vector operation to
each successive window of size kchar. An input
k-grams xi:i+k−1 is transformed through a convo-
lution filter wc:

ci = f(wc · xi:i+k−1 + bc), (2)

where ci is the feature map of 1-D convolution, f
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is the non-linear ReLU function, and bc is a bias
term. Equation 2 produces m filters with different
kernel sizes. The filters are computed with differ-
ent kernels by the initial convolutional layers are
concatenated:

g0 = [ck11 . . . ck1m ; ck21 . . . ck2m ; ckh1 . . .khm ], (3)

where h is the number of kernels, g0 is the output
for the initial convolutional layer which feeds into
the next convolutional block.

We define F(·) as a function of several con-
secutive operations within a convolutional block.
Firstly, a N×1 convolution transforms the input.
The output size is 4 ×m × h feature maps, like a
bottleneck layer. The next step consists of multiple
1-D convolutions with kernels of different sizes.
Lastly, we concatenate all the feature maps from
kernels of different size. In each convolution, we
use a batch normalization, followed by a ReLU ac-
tivation and N×k temporal convolution.

Funnel-shaped wide architecture. The net-
work comprises of L convolutional layers, which
implies (L−12 ) convolutional blocks. We use direct
connections from every other layer to all subse-
quent layers, inspired by dense connection. There-
fore, the lth layer has access to the feature maps of
all the alternate layers:

gl = Fl([g0, g2, . . . , gl−2]). (4)

Equation 4 ensures maximum information flow
between blocks in the network. Compared to
residual connection Fl(gl−1) + gl−1, it can be
viewed as an extreme case of residual connec-
tion and makes feature reuse possible. Unlike
DenseNet and ResNet, we concatenate feature
maps by different kernels in every other convo-
lutional layers, which captures different levels of
features and makes our wide architecture possible,
inspired by Inception. Different levels of concate-
nation can help IntNet to learn different patterns
of word shape information. We compare our ar-
chitecture to residual connection and dense con-
nection for learning character-to-word representa-
tions in Section 5.

Without down-sampling. Compared to other
CNN models like ResNet and DenseNet, our
model does not contain any halve down-sampling
layer or average pooling to reduce resolution. We
did not find these operations to be helpful and, in
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Figure 1: The main architecture of IntNet.

some cases, found them to be detrimental to per-
formance. These operations are useful for sen-
tences and images, but might break the internal
structure of words, like the sequential patterns for
prefixes and suffixes.

Character-to-word representations. In the
last layer, we use a max-over-time pooling oper-
ation:

ĉi = max(ci), (5)

which takes the maximum value corresponding to
a particular filter. The idea is to capture the most
important feature with the highest value for each
feature map. Finally, we concatenate all of salient
features together as a representation for this word:

z = [ĉ0, ĉ1, . . . ĉu], (6)
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where u is the number of salient features which is
equal to the total number of output feature maps
in the last layer. If each function Fl produces p
feature maps, we obtain (p0 + p× L−1

2 ) represen-
tations, where p0 is the number of output feature
maps in the initial convolution layer.

3.2 Bi-directional RNN

Given the character-to-word representations are
computed by IntNet in Equation 6, we denote the
input vector (z1, z2, . . . , zn) for a sentence.
LSTM (Hochreiter and Schmidhuber, 1997) re-
turns the sequence (h1, h2, . . . , hn) that repre-
sents the sequential information at every step. We
use the following implementation:

it = σ(Wzizt + Whiht−1 + Wcict−1 + bi)
ft = σ(Wzfzt + Whfht−1 + Wcfct−1 + bf )
c̃t = tanh(Wzczt + Whcht−1 + bc)
ct = ft � ct−1 + it � c̃t
ot = σ(Wzozt + Whoht−1 + Wcoct + bo)
ht = ot � tanh(ct),

where σ is the element-wise sigmoid function and
� is the element-wise product. zt is the input vec-
tor at time t and it, ft, ot, ct are the input gate,
forget gate, output gate, and cell vectors, all of
which are the same size as the hidden vector ht.
Wzi, Wzf , Wzo, Wzc denote the weight matrices
of different gates for input zt; Whi, Whf , Who,
Whc are the weight matrices for hidden state ht,
and bi, bf , bo, bc denote the bias vectors. Forward
LSTM and backward LSTM compute the repre-
sentations of

−→
ht and

←−
ht for left and right context

of the sentence, respectively. We concatenate two
hidden states to form the output of bi-directional
LSTM [

−→
ht ,
←−
ht ] for capturing context information

from both sides.

3.3 Scoring Function

Instead of predicting each label independently, we
consider the correlations between labels in neigh-
borhoods and jointly decode the best chain of la-
bels for a given input sentence by leveraging a
conditional random field (Lafferty et al., 2001).
Formally, the sequence of labels is defined as:

y = (y1, y2, ..., yT ). (7)

To define the scoring function f (h, y) for each
position t, we multiply the hidden state hwt with a
parameter vector wyt that is indexed by the tag yt
to obtain the matrix of scores output by the bidi-
rectional LSTM network. Therefore, the function
f can be written as:

f(h, y) =
T∑
t=1

wyth
w
t +

T∑
t=1

Ayt−1,yt . (8)

In Equation 8, A is a matrix of transition scores,
Ai,j represents the score of a transition from the
tag i to tag j, y1 is the start tag of a sentence. Let
Y(h) denote the set of possible label sequences for
h. A probabilistic model for a sequence defines a
family of conditional probabilities p(y|h) over all
possible label sequences y given h with the fol-
lowing form:

p(y|h) = ef(h,y)∑
y′∈Y(h) e

f(h,y′) . (9)

3.4 Objective Function and Inference

For end-to-end network training, we use maxi-
mum conditional likelihood estimation to max-
imize the log probability of the correct tag se-
quence:

log(p(y|h)) = f(h, y)− log

 ∑
y′∈Y(h)

ef(h,y
′)

 .

While decoding, we predict the label sequence
that obtains the highest score given by:

y∗ = arg max
y′∈Y(h)

f(h, y′). (10)

The objective function and its gradients can be
efficiently computed by dynamic programming;
for inference, we use the Viterbi algorithm to find
the best tag path which maximizes the score.

4 Experiments

4.1 Datasets

We performed experiments on six standard
datasets for sequence labeling tasks, i.e. named
entity recognition, part-of-speech tagging, and
syntactic chunking. To test the effectiveness of our
proposed model, we do not use language-specific
resources (such as gazetteers), external knowledge
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Model Spanish NER Dutch NER English NER German NER Chunking PTB POS
Baseline 70.73±0.42 63.49±0.42 77.51±0.39 54.07±0.42 91.97±0.21 95.76±0.13
+ char-LSTM 79.93±0.43 77.16±0.47 83.98±0.46 64.29±0.47 93.31±0.23 97.14±0.11
+ char-CNN 79.78±0.41 76.43±0.48 83.85±0.38 63.53±0.41 92.67±0.24 97.02±0.12
+ char-CNN-5 79.63±0.38 76.92±0.42 83.60±0.39 64.26±0.42 93.11±0.26 97.15±0.12
+ char-CNN-9 79.25±0.56 74.82±0.46 83.31±0.47 63.97±0.46 92.92±0.27 97.13±0.13
+ char-ResNet-9 74.34±0.45 76.54±0.39 83.91±0.42 66.15±0.44 93.85±0.24 96.99±0.15
+ char-DenseNet-9 78.25±0.52 76.71±0.53 84.16±0.41 67.54±0.46 93.82±0.25 97.13±0.11
+ char-IntNet-9 78.53±0.44 76.93±0.47 83.83±0.44 70.11±0.41 93.94±0.26 97.19±0.12
+ char-IntNet-5 80.44±0.43 78.06±0.45 85.34±0.39 69.48±0.42 94.27±0.23 97.23±0.11

Table 1: F1 score of different character-to-word models.

(such as transfer learning, joint training), hand-
crafted features, or any character preprocessing,
we do not replace any rare words into UNKNOWN.

Named entity recognition. CoNLL-2002 and
CoNLL2003 datasets (Tjong Kim Sang, 2002;
Tjong Kim Sang and De Meulder, 2003) con-
tain named entity labels for Spanish, Dutch, En-
glish and German as separate datasets. These four
datasets contain different types of named entities:
locations, persons, organizations, and miscella-
neous entities. Unlike some approaches, we do
not combine the validation set with the training
set. Although POS tags were made available for
these datasets, we do not leverage those as addi-
tional information which sets our approach apart
from that of transfer learning.

Part-of-speech tagging. The Wall Street Jour-
nal (WSJ) portion of Penn Treebank (PTB) (Mar-
cus et al., 1993) contains 25 sections and catego-
rizes each word into one out of 45 POS tags. We
adopt the standard split and use sections 0-18 as
training data, sections 19-21 as development data,
and sections 22-24 as test data.

Syntactic chunking. The CoNLL 2000 chunk-
ing task (Tjong Kim Sang and Buchholz, 2000)
uses sections 15-18 from the Wall Street Journal
corpus for training and section 20 for testing. It
defines 11 syntactic chunk types (e.g., NP, VP,
ADJP), we adopt the standard split and sample
1000 sentences from the training set as the devel-
opment set.

4.2 Training Settings

Initialization. The size of the dimensions of char-
acter embeddings is 32 which are randomly ini-
tialized using a uniform distribution. We adopt
the same initialization method for randomly ini-
tialized word embeddings that are updated during
training. For IntNet, the filter size of the initial
convolution is 32 and that of other convolutions is

16. We have used filters of size [3, 4, 5] for all the
kernels. The number of convolutional layers are 5
and 9 for IntNet-5 and IntNet-9, respectively, and
we have adopted the same weight initialization as
that of ResNet. We use pre-trained word embed-
dings for initialization, GloVe (Pennington et al.,
2014) 100-dimension word embeddings for En-
glish, and fastText (Bojanowski et al., 2017) 300-
dimension word embeddings for Spanish, Dutch,
and German. The state size of the bi-directional
LSTMs is set to 256. We adopt standard BIOES
tagging scheme for NER and Chunking.

Optimization. We employ mini-batch stochas-
tic gradient descent with momentum. The batch
size, momentum and learning rate are set to 10,
0.9 and ηt = η0

1+ρt , where η0 is the initial learning
rate 0.01 and ρ = 0.05 is the decay ratio, the value
of gradient clipping is 5. Dropout is applied on the
input of IntNet, LSTMs, and CRF, and its ratio 0.5
is fixed, but with no dropout inside of IntNet.

4.3 Compared Methods

To address those open questions in Section 1,
we conduct detailed experiments and empirical
comparisons on different state-of-the-art charac-
ter embedding models across different domains.
Firstly, we use LSTM-CRF with randomly ini-
tialized word embeddings as our initial baseline.
We adopt two state-of-the-art methods in sequence
labeling, denoted as char-LSTM (Lample et al.,
2016) and char-CNN (Ma and Hovy, 2016). We
add more layers to the char-CNN model and re-
fer to that as char-CNN-5 and char-CNN-9, re-
spectively for 5 and 9 convolutional layers. Fur-
thermore, we add residual connections to the char-
CNN-9 and refer it as char-ResNet. Also, we ap-
ply 3 dense blocks based on char-ResNet which
we refer to as char-DenseNet, to compare the dif-
ference between residual connection and dense
connection. Lastly, we refer to our proposed
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Model Spanish Dutch English German Chunking POS
Conv-CRF+Lexicon (Collobert et al., 2011) - - 89.59 - 94.32 97.29
LSTM-CRF+Lexicon (Huang et al., 2015) - - 90.10 - 94.46 97.43
LSTM-CRF+Lexicon+char-CNN (Chiu and Nichols, 2016) - - 90.77 - - -
LSTM-Softmax+char-LSTM (Ling et al., 2015) - - - - - 97.55
LSTM-CRF+char-LSTM (Lample et al., 2016) 85.75 81.74 90.94 78.76 - -
LSTM-CRF+char-CNN (Ma and Hovy, 2016) - - 91.21 - - 97.55
GRM-CRF+char-GRU (Yang et al., 2017) 84.69 85.00 91.20 - 94.66 97.55
LSTM-CRF 80.33±0.37 79.87±0.28 88.41±0.22 73.42±0.39 94.29±0.11 96.63±0.08
LSTM-CRF+char-LSTM 86.12±0.34 87.13±0.25 91.13±0.15 78.31±0.35 94.97±0.09 97.49±0.04
LSTM-CRF+char-CNN 85.91±0.38 86.69±0.22 91.11±0.14 78.15±0.31 94.91±0.08 97.45±0.03
LSTM-CRF+char-IntNet-9 85.71±0.39 87.38±0.27 91.39±0.16 79.43±0.33 95.08±0.07 97.51±0.04
LSTM-CRF+char-IntNet-5 86.68±0.35 87.81±0.24 91.64±0.17 78.58±0.32 95.29±0.08 97.58±0.02

Table 2: F1 score of our proposed models in comparison with state-of-the-art results.
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Figure 2: Training details of different models for English, German, Spanish, and Dutch.

model, which uses different convolution layers, as
char-IntNet-5 and char-IntNet-9.

5 Results and Analysis

5.1 Character-to-word Models

Table 1 presents the performance of differ-
ent character-to-word models on six benchmark
datasets. For sequence labeling, char-LSTM and
char-CNN are current state-of-the-art character
embedding models for learning character-to-word
representations. We observe that char-LSTM per-
forms better than char-CNN in most cases, how-
ever, char-CNN uses a convolution layer followed
by max pooling as a shallow feature extractor, that
does not explore the full potential of CNNs.

Therefore, we implement two variations based
on char-CNN, referred to as char-CNN-5 and char-
CNN-9. The result shows that for most of the
datasets, the F1 score does not improve much
when we directly add more layers. We also ob-
serve some accuracy drop when we continuously
increase the depth. This confirms why most CNN-
based approaches for learning representations on
words are shallow, which is very different from
learning representations for sentences. Further-
more, we add residual connections to char-CNN-
9 as char-ResNet-9, which confirms that residual
connections can help train deep layers. We fur-
ther improve char-ResNet-9 by changing residual
connections into dense connection blocks as char-

DenseNet-9, which shows that the dense connec-
tions are better than residual connections for learn-
ing word shape information.

Our proposed character-to-word model, char-
IntNet-5 and char-IntNet-9 generally improves the
results across all datasets. Our IntNet significantly
outperforms other character embedding models,
for example, the improvement is more than 2%
in terms of F1 score for German and Dutch.
Also, we observe that char-IntNet-5 is more ef-
fective for learning character-to-word representa-
tions than char-IntNet-9 in most of the cases. The
only exception is German which seems to require
a deeper and wider model for learning better rep-
resentations.

5.2 State-of-the-art Results

Table 2 presents our proposed model in com-
parison with state-of-the-art results. LSTM-CRF
is our baseline which uses fine-tuned pre-trained
word embeddings. Its comparison with LSTM-
CRF using random initializations for word em-
beddings, as shown in Table 1, confirms that
pre-trained word embeddings are useful for se-
quence labeling. Since the training corpus for
sequence labeling is relatively small, pre-trained
embeddings learned from a huge unlabeled cor-
pus can help to enhance word semantics. Fur-
thermore, we adopt and re-implement two state-
of-the-art character models, char-LSTM and char-
CNN, by combining with LSTM-CRF, which we
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Model
English German Spanish Dutch

IV OOTV OOEV OOBV IV OOTV OOEV OOBV IV OOTV OOEV OOBV IV OOTV OOEV OOBV

Dev

char-LSTM 97.15 89.87 89.41 87.07 86.97 85.80 68.35 64.76 89.63 89.06 78.14 74.13 94.50 87.98 80.00 72.37
char-CNN 97.10 90.04 95.45 88.02 87.45 86.13 57.14 63.28 88.93 88.85 72.90 71.96 94.54 87.27 74.55 68.77

char-IntNet-9 96.86 90.52 91.95 90.16 87.92 85.29 76.07 67.98 88.43 88.58 74.53 72.09 93.68 87.49 89.09 75.58
char-IntNet-5 96.65 90.14 88.10 88.31 87.21 85.00 67.10 64.17 88.56 88.47 78.90 70.23 94.63 88.56 89.09 74.40

Test

char-LSTM 93.68 92.48 100.00 82.64 86.97 83.95 69.67 62.74 87.19 87.79 95.29 76.01 95.13 83.00 78.26 72.34
char-CNN 93.85 92.65 100.00 84.09 64.72 83.67 69.67 58.19 87.81 88.46 87.96 73.68 94.25 82.50 73.27 73.37

char-IntNet-9 93.79 94.94 100.00 82.31 87.56 83.85 74.33 65.75 87.08 87.98 95.29 77.16 94.42 83.85 85.02 75.46
char-IntNet-5 93.94 92.72 100.00 83.91 87.11 83.60 67.22 60.92 87.19 88.42 97.38 78.02 94.71 84.84 82.13 76.99

Table 3: F1 score of different models for IV, OOTV, OOEV and OOBV.

Model
Frequent Words Rare Words OOV Words

char-LSTM

newspapers slipped world Commerce youthful sessions 11-month Thursdays undetermined

enclosures stirred wolrd Committee luthier cessions 19-month Thousands undereducated
nelsonville clipped worde Computer loughmoe sensible 10-month Tunbridge underpinned
entrances snipped lowed Comments wrathful stepanos 12-month Standings undermined
newpapers striped wowed Corrects slothful stefanos 14-month Torrance underlined
necklaces stifled crowd Clippers ephorus constans 11-inch Phillies underprepared

char-CNN

newspaper slipper worli Committee mouthful suppressions 31-month Thursday determined
newspapermen slippy worle Community eeyou oppressions 51-month Wednesday overdetermined

newpapers stripped worse Commodities mouthfeel digressions 1-month Tuesday determinist
nitrification shipped werle Communist motul confessions 21-month Ecuador determiners
megaphones stopped wereld Comments yourself fissions 41-month Windass determiner

char-IntNet

newpapers blipped eworld Commissioner mouthful recessions 55-month Thursday undermined
wallpapers unclipped offworld Commodities mirthful accessions 51-month Saturday determined
escapers tripped homeworld Clarence mouthfuls missions 22-month thursdays overdetermined
carcases dripped linuxworld Commission youths conversions 25-month Tuesday unexamined
spacers slopped westworld Commons slothful possessions 12-month tuesdays predetermined

Table 4: Nearest neighbours of different models for frequent words, rare words and OOV words.

refer to as LSTM-CRF-char-LSTM and LSTM-
CRF-char-CNN. Lastly, we combine our proposed
model with LSTM-CRF which we refer to as
LSTM-CRF-char-IntNet-9 and LSTM-CRF-char-
IntNet-5.

These experiments show that our char-IntNet
generally improves results across different mod-
els and datasets. The improvement is more pro-
nounced for non-English datasets, for example,
IntNet improves the F-1 score over the state-
of-the-art results by more than 2% for Dutch
and Spanish. It also shows that the results
of LSTM-CRF are significantly improved after
adding character-to-word models, which confirms
that word shape information is very important for
sequence labeling. Figure 2 presents the details of
training epochs in comparison with other state-of-
the-art character models for different languages.
It shows that char-CNN and char-LSTM converge
early whereas char-IntNet takes more epochs to
converge and generally performs better. It alludes
to the fact that IntNet is suitable for reducing over-
fitting, since we have used early stopping while
training.

5.3 Rare and OOV Words Analysis

Another advantage of learning internal structure
of words is that it can capture representations for
out-of-vocabulary (OOV) words. To better un-

derstand the behavior of IntNet, Table 3 presents
error analysis on in-vocabulary words (IV), out-
of-training-vocabulary words (OOTV), out-of-
embedding-vocabulary words (OOEV), and out-
of-both-vocabulary words (OOBV) compared to
different character models. The result shows
that our proposed model significantly outperforms
other character models on OOV words includ-
ing OOTV, OOEV, and OOBV. For example, in
OOBV category, our IntNet outperforms other
models by more than 3% in terms of F1 score for
Dutch and German datasets.

Furthermore, we present comparisons of near-
est neighbors with different models for frequent
words, rare words, and OOV words. Table 4
shows the results of nearest neighbors for learn-
ing word shape information, which gives insights
on what kind of character-to-word representations
can be learned by different models. For exam-
ple, in OOV words, our IntNet model learns a bet-
ter xx-month shape pattern when matching 11-
month compared to other models.

5.4 Discussion

In many situations, learning character-to-word
representations of subword sequences that exceed
the typical length of word shape pattern or mor-
pheme sequences might result in noise. RNNs
can capture longer sequences in theory, however,
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longer sequences do not guarantee better results
when learning prefixes and suffixes. The funnel-
shaped wide architecture of IntNet, uses different
kernels with different levels of concatenation to
capture patterns of different subword lengths and
that is flexible than char-LSTM and char-CNN.
For example, Table 4 shows Thursday in OOV
words, our model learns a better word-shape struc-
ture for character-to-word representations com-
pared to other methods.

When considering training time, IntNet is only
20% slower than char-CNN for the whole training
process. Also, learning word representations use
fewer parameters than learning sentence represen-
tations. Therefore, the impact of training speed for
sequence labeling is limited. The inference time of
IntNet is almost the same as char-CNN.

6 Conclusion

We presented empirical comparisons of differ-
ent character embedding models for learning
character-to-word representations and investigated
the gaps between methods for learning repre-
sentations of words and sentences. We con-
ducted detailed experiments of different state-of-
the-art convolutional models, and explored the ad-
vantages and disadvantages of their components
for learning word shape information. Further-
more, we presented IntNet, a funnel-shaped wide
convolutional neural architecture with no down-
sampling that focuses on learning better inter-
nal structure of words by composing their char-
acters from limited supervised training corpora.
Our in-depth analysis showed that a shallow wide
architecture is better than a narrow deep archi-
tecture for learning character-to-word representa-
tions. Omitting down-sampling operations is use-
ful for capturing the sequential patterns of pre-
fixes and suffixes. Our proposed compositional
character-to-word model does not leverage any ex-
ternal resources, hand-crafted features, additional
knowledge, joint training, or character-level pre-
processing, and achieves new state-of-the-art per-
formance for various sequence labeling tasks, in-
cluding named entity recognition, part-of-speech
tagging and syntactic chunking. In the future, we
would like to explore using the IntNet model for
other NLP tasks.
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