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Abstract

This paper proposes to study fine-grained
coordinated cross-lingual text stream align-
ment through a novel information network
decipherment paradigm. We use Burst In-
formation Networks as media to represent
text streams and present a simple yet effec-
tive network decipherment algorithm with di-
verse clues to decipher the networks for ac-
curate text stream alignment. Experiments
on Chinese-English news streams show our
approach not only outperforms previous ap-
proaches on bilingual lexicon extraction from
coordinated text streams but also can harvest
high-quality alignments from large amounts
of streaming data for endless language knowl-
edge mining, which makes it promising to be a
new paradigm for automatic language knowl-
edge acquisition.

1 Introduction

Coordinated text streams (Wang et al., 2007) refer
to the text streams that are topically related and
indexed by the same set of time points. Previ-
ous studies (Wang et al., 2007; Hu et al., 2012)
on coordinated text stream focus on discovering
and aligning common topic patterns across lan-
guages. Despite their contributions to applications
like cross-lingual information retrieval and topic
analysis, such a coarse-grained topic-level align-
ment framework inevitably overlooks many use-
ful fine-grained alignment knowledge. For exam-
ple, Figure 1 shows typical knowledge that can
be derived from fine-grained Chinese-English text
stream alignments. In addition to (a) bi-lingual
word translations, we can also discover (b) poly-
semous and multi-referential words if one Chinese
word is aligned to multiple English words, (c) syn-
onymous and co-referential word pairs if two Chi-
nese words are aligned to the same English word,
and (d) entity phrases (e.g., [ 77 4L}t in Figure 1)

Engiin ﬂ . . -

(@
Figure 1: Knowledge derived from fine-grained cross-
lingual text stream alignments: (a) word transla-
tions; (b) polysemy/multi-references; (c) synonym/co-
reference; (d) entity phrases

if adjacent Chinese words in text are aligned to the
same English named entity.

In order to acquire language knowledge for
Natural Language Processing (NLP) applications,
we study fine-grained cross-lingual text stream
alignment. Instead of directly turning massive,
unstructured data streams into structured knowl-
edge (D2K), we adopt a new Data-to-Network-to-
Knowledge (D2N2K) paradigm, based on the fol-
lowing observations: (i) most information units
are not independent, instead they are intercon-
nected or interacting, forming massive networks;
(i1) if information networks can be constructed
across multiple languages, they may bring tremen-
dous power to make knowledge mining algorithms
more scalable and effective because we can em-
ploy the graph structures to acquire and propagate
knowledge.

Based on the motivations, we employ a promis-
ing text stream representation — Burst Information
Networks (BINets) (Ge et al., 2016a), which can
be easily constructed without rich language re-
sources, as media to display the most important
information units and illustrate their connections
in the text streams. With the BINet representa-
tion, we propose a simple yet effective network
decipherment algorithm for aligning cross-lingual
text streams, which can take advantage of the co-
burst characteristic of cross-lingual text streams
and easily incorporate prior knowledge and rich
clues for fast and accurate network decipherment.
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Figure 2: (A part of) Burst Information Networks built from Chinese and English news streams.

For example, in Figure 2, each node in a BI-
Net is a bursty word with one of its burst peri-
ods, representing an important information unit
in a text stream. To decipher the Chinese BINet,
our approach first focuses on the nodes in the En-
glish BINet in Figure 2 as the candidates because
they co-burst with the Chinese nodes. Then, we
decipher some nodes based on prior knowledge
(the green node), the pronunciation similarity clue
(the orange nodes) or literal translation similar-
ity clue (the blue node). These deciphered nodes
will serve as neighbor clues to decipher their adja-
cent nodes (the red node) which will then be used
for further decipherment (e.g., decipher the yellow
node) through knowledge propagation across the
network, as the dashed arrows in Figure 2 show.

Experiments on Chinese-English coordinated
news streams show our approach can accurately
align nodes across the cross-lingual BINets and
derive various knowledge, and that with more
streaming data provided, we can harvest more
high-quality alignments and thus derive more
knowledge. By aligning endless text streams, it is
promising for never-ending language knowledge
mining, which can not only complement language
resources but also benefit some NLP applications.

The main contributions of this paper are:

e We propose a promising framework to
mine knowledge from inexhaustible coordi-
nated cross-lingual text streams through fine-
grained alignment, exploring a paradigm for
language knowledge acquisition.

e We propose a network decipherment ap-
proach for text stream alignment, which can
work in both low and rich resource settings
and outperform previous approaches.

e We release our data (annotations) and sys-
tems to guarantee the reproducibility and
help future work improve on this task.

2 Burst Information Network

A Burst Information Network (BINet) is a graph-
based text stream representation and has proven
effective for multiple text stream mining tasks (Ge
et al., 2016a,b,c). In contrast to many informa-
tion networks (e.g., (Ji, 2009; Li et al., 2014)), BI-
Nets are specially for text streams. They focus on
the burst information units which are usually re-
lated to important events or trending topics in text
streams and illustrate their connections.

A BlINet is originally defined as G = (V, E, w)
in (Ge et al., 2016a). Each node v € V is a burst
element defined as a burst word! during one of its
burst periods (w, P) where w denotes a word and
‘P denotes one consecutive burst period of w, as
Figure 2 shows. Each edge ¢ € FE indicates the
connection between two burst elements with the
weight w which is defined as the number of docu-
ments where these two burst elements co-occur in
the text stream. In this paper, we extend the BINet
definition to G = (V, E, w, 7) by adding a binary

"Burst words and their corresponding burst periods can be

detected based on Kleinberg burst detection algorithm (Klein-
berg, 2003), as (Ge et al., 2016a) did.
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indicator 7 to indicate if two nodes (i.e., burst ele-
ments) are frequently (more than 5 times) adjacent
(as a bigram) in text, for mining knowledge such
as entity phrases in Figure 1(d).

3 Decipherment

After constructing a BINet from a foreign lan-
guage (we use Chinese as a foreign language
in this paper), we can decipher it by consult-
ing an Engish BINet constructed from its coor-
dinated English text stream. We define G, =
(Vo, Be,we, 7o) and Ge = (V, Ee,we, we) as
the Chinese BINet and English BINet respectively.
For people who do not know Chinese, G is a net-
work of ciphers. We design a novel BINet deci-
pherment procedure to decipher G by aligning as
many nodes in G as possible to G.. The decipher-
ment process is defined to find e € V, for a node
c € V. so that e is ¢’s counterpart in the English
text stream.”

3.1 Starting Point

To decipher the Chinese BINet, we need a few
seeds based on prior knowledge as a starting point.
Inspired by previous work on bi-lingual lexicon in-
duction, decipherment and name translation min-
ing, we utilize a few linguistic resources - a bi-
lingual lexicon and language-universal representa-
tions such as time/calendar date, number, website
URL, currency and emoticons to decipher a sub-
set of Chinese nodes. For the example shown in
Figure 2, we can decipher some nodes in the Chi-
nese BINet such as “7-6” (to “7-6) and “#F F”
(to “seed”).

3.2 Candidate Generation

For the nodes that cannot be deciphered by the
prior knowledge, we first need to discover their
possible candidates. For a node c in the Chinese
BINet, its counterpart e can be any node in the En-
glish BINet or does not exist in the English BINet,
resulting in an extremely large search space. For-
tunately, burst information that refers to a hot topic
usually co-bursts across languages. Based on this
characteristic, for a node in the Chinese BINet, its
counterpart is likely to be a node with the same
burst period in the English BINet. For example,
the node & B (Williams)” in the Chinese BINet

2¢ and e are burst elements (i.e., nodes in the BINets).
Sometimes, we also use ¢ and e to denote the nodes’ word if
that does not lead to misunderstanding.

in Figure 2 bursts between January 25 and January
31, 2010. We only need to look for its counterpart
from the nodes in the English BINet whose burst
period overlaps with this period. Formally, for a
node ¢ € V, in the Chinese BINet, its candidate
nodes in the English BINet can be derived as:
Cand(c) = {e[P(e) N P(c) # 0}

where e € V., and P(c) and P(e) are the burst
periods of ¢ and e respectively.

3.3 Candidate Verification

For the candidate list for ¢ (i.e., Cand(c)), we
need to verify each node e € Cland(c) and choose
the most probable one as c’s counterpart. For-
mally, we define Score(c,e) as the credibility
score of e being the correct counterpart of ¢ and
propose the following novel clues for verification.

Pronunciation

Inspired by previous work on name translation
mining (e.g., (Schafer III, 2006; Sproat et al.,
2006; Ji, 2009)), for a node e € Cand(c),
if its pronunciation is similar to ¢, then e is
likely to be the translation of c¢. For a Chinese
node ¢ and an English node e, we define S, as
its scaled pronunciation score to measure their
pronunciation similarity whose range is [0, 1]:
Sp€[0,1] x 5

where LD is the normalized (by e’s length) Lev-
enshtein edit distance between c’s pinyin® string
and e’s word string.

Translation

For a node e € Cand(c), it is possible that e’s
word exists or partially exists in the bi-lingual lex-
icon. We can exploit the translation clue to ver-
ify if e is ¢’s counterpart. For example, “Aus-
tralian Open” is a candidate of “& i & 3K
% (Australian Open)” as shown in Figure 2. Even
though *“# #] M 2k 2~ 7 3% (Australian Open)” is
not in the bi-lingual lexicon, “Australian” and
“open” are in the lexicon and their Chinese transla-
tions are “/% # 49 (Australian)” and “/2 7 (open)”
respectively. If we literally translate “Australian
Open” word by word, we will get “M i &) 2
77 which has long common subsequences with
the Chinese node “i # F ¥ /A JF 5% (Australian
Open)”, inferring that “Australian Open” is likely
to be the translation of “J# W 3K 2 587,
3Pinyin is the official romanization system for Chinese.

We use pinyin instead of IPA because romanization is usually
more easily available than IPA for a language.

2498



Motivated by this observation, for a candi-
date e € Cand(c), we first extract its pos-
sible Chinese translations C'(e) from the bi-
lingual lexicon. Note that if e is a multi-
word, we concatenate translations of its compo-
nents. Then, for (c,e), we define S; as its scaled
translation similarity score whose range is [0, 1]:

Sy € [0,1] ox maxyec(e) LCS(c, )
where maxcc(e) LCS(c, ¢’) is maximum length
of the longest common subsequence between c
and ¢ € C(e).

Neighbor

The graph topological structure of a BINet is also
an important clue for decipherment. By analyzing
anode’s neighbors, we can learn useful topic-level
knowledge to decipher the node. For the example
in Figure 2, “3{ T (Henin)” in the Chinese BINet
has neighbors such as “&% & (Williams)”, i ]
M 2 /A7t 5 (Australian Open)” and “#8 i (Zheng
Jie)” while “Justine Henin” in the English BINet
is connected with “Serena Williams”, “Australian
Open” and “Zheng Jie”. If we know “Serena
Williams”, “Australian Open” and “Zheng Jie” are
the counterpart of ‘B /&, “8 ] M 32 3 and
“*R & respectively, we can infer “Justine Henin”
is likely to be the counterpart of “X T, which
can be further used as a clue to decipher its neigh-
bors such as “#h ¥ (wildcard)” through knowledge
propagation.

We define N (c) and N (e) as the set of adjacent
nodes of ¢ in the Chinese BINet and the adjacent
nodes of e in the English BINet respectively. The
neighbor clue score S, of (c, e) is defined as:

Sn = c,;N(C) We,e! e/rg]%)((e) Score(c,e') €))
where Score(c, €') is the overall score of €’ being
the counterpart of ¢/, as defined at the beginning
of this section, W, = Zexc! is the nor-

c,c
Wet ot
c"eN(c)

malized weight of the edge between c and /.

Correlation of burst

If the word of e € Cand(c) frequently co-bursts
with the word of ¢, then e is likely to be the coun-
terpart of c. For example, “Serena Williams” in
the English stream usually co-bursts with “<J> &”
in the Chinese stream, as shown in Figure 3, which
is a useful clue to infer that “Serena Williams” is
the counterpart of “/]» &”.

We define .S, as the burst correlation score:

Sw(e) " Sw(e)

18w(eyllt + [8wie)llt = Sw(c) * Sw(e)

Sy = @)

Burst state
o o w
o o °

o
IS

°
N

T

50 100 15
Time: day(s)

10

0.8

0.6

Burst state

0.4

0.2

0.0,

50 101 200 o

0
Time: day(s)

Figure 3: Burst states of “/J* & (the upper) and “Ser-
ena Williams” (the lower) are correlated.

where w(v) denotes the word of the node v and
s, denotes the burst sequence of the word w in
which each entry is a binary variable indicating if
w bursts at a moment throughout the time frame.
Note that in the above equation, we regard s,, as a
vector. The numerator is the number of days when
w(c) and w(e) co-burst and the denominator is the
number of days when either w(c) or w(e) bursts.

3.4 Graph-based Decipherment

We define the overall (credibility) score as the lin-
ear combination of the clues introduced above:

Score(c,e) =nSp + ASt +¥Sn + S 3)

where S,, Si, S, and S, are the scores that
measure the value/reliability of the pronunciation,
translation, neighbor and burst correlation clues
respectively, and 1, A, v and § are hyperparame-
ters for adjusting their weights.

Based on Eq (3), we can now compute the score
of any candidate pair (c,e). For pairs that are
known to be correct alignments according to prior
knowledge, their overall scores will be fixed to 1.0.
For other possible candidate pairs, we simply ini-
tialize their scores as follows:

1.0
~ [Cand(o)]
where C'and(c) is the set of ¢’s candidate nodes in
the English BINet.

Given that Score(c,e) is influenced by other
pairs’ scores, we design an iterative algorithm
to compute and update the scores to deci-
pher the entire Chinese BINet through propaga-
tion. This process is elaborated in Algorithm 1.

Score(c, e)

“
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Algorithm 1 Graph-based Decipherment

1: For the determined pair (c, e) based on the prior knowl-
edge, Score(c,e) < 1.0
: For other undermined pairs {(c, e}, initialize Score(c, )
according to Eq (4);
: while True (until ACon f(G.,G.) < 0.0001) do
for each undetermined pair {c, €) do
Compute new_score according to Eq (3);
update(c, e) = min(1.0, new_score)
end for
for each undetermined pair {c, €) do
Score(c, e) < update(c, e)
end for
: end while

[\

ToeYXRIIUNER

—_——

AConf(G.,G,) in the 3rd line of Algorithm 1 is
the difference between the network decipherment
confidence score at the current iteration and that at
its previous iteration. Con f(G., G.) is defined as
follows, reflecting how much confidence we have
in our network decipherment result:

Conf(Ge,Ge) = Z max Score(c,e)  (5)

s e€Cand(c)

In practice, propagation of prior knowledge and
clues makes the confidence score increase be-
cause it helps us know more about the network
(as illustrated by Figure 2). When the confidence
score stops increasing or increases marginally (<
0.0001) after several iterations, the algorithm ter-
minates*.

4 Experiments

We first evaluate our approach on aligning nodes
in the cross-lingual BINets for fine-grained cross-
lingual stream alignment in Section 4.1. Then, we
show the value of derived alignments for endless
language knowledge acquisition in Section 4.2.

4.1 Stream alignment
4.1.1 Data

We used the public 2010 Agence France Presse
(AFP) news in Chinese (Graff and Chen, 2005)
and English Gigaword (Graff et al., 2003) as our
cross-lingual text streams. The Chinese stream
has 17,327 while the English one contains 186,737
documents.

We removed stopwords, conducted lemmatiza-
tion and name tagging for the English stream,
and did word segmentation and name tagging for
the Chinese stream using the Stanford CoreNLP
toolkit (Manning et al., 2014).

*Due to the upper bound of Con f(G., G.), the algorithm
must terminate after several iterations.

We detected bursts and constructed the BINets?
for the Chinese and English stream based on (Ge
et al., 2016a). The constructed Chinese BINet has
7,360 nodes and 33,892 edges while the English
one has 8,852 nodes and 85,125 edges. Our seed
bi-lingual lexicon is released by (Zens and Ney,
2004), containing 81,990 Chinese word entries,
each of which has an English translation. Among
the 7,360 nodes in the Chinese BINet, 2,281 nodes
need to be deciphered since their words are not in
the bi-lingual lexicon.

4.1.2 Evaluation Setting

We evaluate our approach in an end-to-end fash-
ion. For a node c in the Chinese BINet, we choose
the node e* which has the highest score as c¢’s
counterpart in the English BINet:

e* =arg max Score(ce)
e€Cand(c)

We rank the aligned node pairs by the score and
manually evaluate the quality of the top K pairs.
A pair (c,e) is annotated as correct if e is a cor-
rect translation of ¢ or e refers to an entity that ¢
refers to. The annotation assignment is done by
three human judges with 89.4% agreement. The
disagreement mainly arises from the ambiguity of
some named entities. In the evaluation, we con-
sider (c,e) correct if more than two judges anno-
tate it as correct.

We compare our approach to the following
baselines that use various combinations of clues to
verify candidates for decipherment as well as the
state-of-the-art algorithm for language decipher-
ment from non-parallel corpora:

e Pronunciation verification (pv): Use the pronun-
ciation clue only

e Translation verification (#v): Use the translation
clue only

e Neighbor verification (nv): Use the neighbor
clue only to decipher the BINet through prop-
agation.

e Correlation of burst verification: (cv): Use the
burst correlation clue only

e pv+tv and pv+tv+ny

e Bayesian Inference: Bayesian inference based
decipherment approach (Dou and Knight, 2012)
based on the alignment of bigram language

SWe discarded the edges whose weight is smaller than a
threshold (5 for Chinese and 20 for English BINet given the
difference of their data size) for removing trivial connections.
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Figure 4: Accuracy curves of various approaches. Note
that pv+tv+nv+cv is our final approach.

models across languages. We adapt it to our ex-
periment setting by considering adjacent nodes
in a BINet as bigrams for decipherment.

We used 2009 AFP Chinese/English news in Gi-
gaword as our development set to tune hyperpa-
rameters. Since our approach has only 4 parame-
ters (i.e., 1, A, 7y, 6 in Eq (3)), it is easy to tune the
parameters using grid search (from 0.0 to 1.0 with
a step 0.2) on the development set. For baselines
except Bayesian inference, the score computation
function is almost identical to Eq (3) except that
the weights of the clues which are not used are set
to 0.

4.1.3 Results

We present the results in Figure 4. Our approach
outperforms all the baselines because it consid-
ers various clues for decipherment. Among the
baselines, accuracy scores of pv and #v drop dra-
matically with K increasing because a single clue
can only decipher a limited number of nodes ef-
fectively. pv+tv seems to alleviate the problem to
some extent: its accuracy does not drop so dras-
tically as pv or v because multiple clues allow us
to decipher more nodes but its accuracy is still not
desirable. Among the clues, cv performs worst,
demonstrating that the burst correlation clue alone
is far from enough for decipherment. Compared
with pv, tv and cv, nv deciphers the nodes in the
Chinese BINet through propagation but the neigh-
bor clue alone is not sufficient for accurate deci-
pherment. It is notable that nv achieves compara-
ble performance to the Bayesian inference method
which uses similar clues, demonstrating the effec-
tiveness of our decipherment framework despite
its simplicity. Moreover, our graph-based deci-
pherment approach is more flexible to incorpo-
rate a variety of clues. When it is combined with
pv+tv, the performance shows a significant boost

1004 T T T T T T T T T
——
oz
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Figure 5: Accuracy curves of our approach with differ-
ent resource settings.

and achieves approximately 90% accuracy in the
top 200 results though it is slightly inferior to our
final approach due to the lack of awareness of burst
correlation.

Another interesting observation from Figure 4
is that our approach clearly know the confidence
of its predictions. For top 100 mined pairs with
the highest confidence scores (i.e., the score in Eq
(3)), the accuracy is 98 % . Therefore, it is easy to
control the quality of mined pairs, which is impor-
tant for a text mining algorithm.

We also study the effect of language resources
on the performance. We first randomly sample dif-
ferent sizes of entries from the original bi-lingual
lexicon as new bi-lingual lexicons. The results® in
Figure 5 show the accuracy improves as the size
of bi-lingual lexicon grows because more prior
knowledge benefits deciphering the BINet. In ad-
dition, we test our approach in a low-resource set-
ting where there is no knowledge of the roman-
ization system (i.e., pinyin) and no pre-trained
word segmentation and name tagging tools are
available. The only available resource is a very
small bi-lingual lexicon with 1,000 most com-
mon Chinese words’ and their corresponding En-
glish translations. In this setting, we use an un-
supervised Chinese word segmentation approach
combining a Hierarchical Dirichlet Process (HDP)
model with a Bayesian HMM model (Chen et al.,
2014) to segment Chinese text instead of the pre-
processing steps mentioned in Section 4.1.1. Ac-
cording to Figure 5, our approach still performs
well in the low-resource setting although its accu-
racy curve is lower than that in rich-resource set-
tings, demonstrating it can work in both rich- and
low-resource settings.

The sample processes are repeated for 3 times and the
results are the averaged accuracy.
"We sample these Chinese words based on IDF.
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Figure 6: Accuracy curves on multiple datasets.
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Figure 7: Stream alignments derived from 2008 on the
Chinese and English AFP news streams. With more
data (i.e., streams within a longer time frame) being
aligned, our approach can harvest more high-quality
alignments.

In order to test the generalization ability, we
evaluate our approach using the same hyperparam-
eters on another coordinated text streams — AFP
Chinese and APW English news stream in 2008.
The results in Figure 6 show that our decipherment
approach consistently outperforms the other base-
line and still deciphers the top 100 nodes in high
accuracy even though the curve in 2008 is lower
than that in 2010. The performance difference in
2008 and 2010 mainly arises from the difference
on topic overlaps. In the streams of 2010, the Chi-
nese and English news are from the same news
agency (i.e., AFP). Therefore, the topic overlaps
of the cross-lingual streams are larger than 2008,
allowing more nodes to be deciphered correctly.

Finally, we investigated the performance of our
approach under various sizes of data provided,
as shown in Figure 7. As observed, when the
data size is small (e.g., 6-month coordinated text
streams), the approach works poorly because there
are very few nodes in BINets that can be aligned.
As the data size increases, our approach can effi-
ciently® harvest a growing number of high-quality

8Efficiency is reported in the supplementary notes.

Node Chinese (burst period) English (burst period)

1 N & IAT R (346-348)
2 T3k (332-337)
3 % (360-363)
4 Ay (147-158)
5 = 3% (106-111)
6
7
8

Berlusconi (344-348)
Guardian (334-336)
Manchester City (358-361)
Hatoyama (147-158)
airspace (104-111)
bailout (112-129)
10C (36-44)
paedophilia (90-108)

48 (119-130)
FR AR L %, % R 4 (38-45)
A E R (102-104)

9 N B (147-153) Serena Williams (146-148)

10 A (200-203) ASEAN (198-203)

11 A B R4 (299-302) ASEAN (299-303)

12 AT (129-130) European Central Bank (125-129)
13 4T (75-76) Bank of Japan (73-76)

14 21 (310-311) Aung San Suu Kyi (308-313)
15 FHE (310-311) Aung San Suu Kyi (308-313)

Table 1: Alignment examples. The numbers of burst
periods denote the number of days after Jan 1, 2010.

alignments, as reflected by the higher curves in
Figure 7. Considering massive coordinated text
streams generated every day, if the approach can
be applied to the endless streams, it is possible to
monitor the streaming data and derive countless
alignments for never-ending language knowledge
acquisition.

4.2 Endless language knowledge mining

Table 1 shows the stream alignment result of our
approach. As demonstrated above, we can derive
a variety of language knowledge from the fine-
grained cross-lingual alignments.

Word/entity translations are the main knowl-
edge that can be derived from our alignment re-
sults by extracting word pairs from the aligned
cross-lingual node pairs. Formally, we find a Chi-
nese word w’s English translation w* as follows:

w* = w(e*)
e” = argmaxcv, MaX.cy,(w) Score(c, e)
where V,(w) is the set of Chinese nodes whose
word is w, and w(e) denotes the word of node e.

We evaluate our approach on mining trans-
lations of bursty Chinese words, based on the
evaluation criteria of bilingual lexicon extraction.
Specifically, we test how many out-of-vocabulary
(OOV) words appearing in the Chinese BINet are
correctly translated. The datasets used for eval-
uation are the 2010 and 2008 streams in Figure
6. In total, there are 1,226 and 1,082 distinct
Chinese OOV words (excluding incorrectly seg-
mented words) in the corresponding Chinese BI-
Nets. Accuracy is used to measure the proportion
of the words being correctly translated, as (Tamura
et al., 2012) did.

Table 2 compares our approach to represen-
tative bilingual lexicon extraction approaches.
CONTEXT is one of the earliest approaches for ex-
tracting word translations from comparable cor-

2502



Model Acc1(2010)  Acc1(2008) Knowledge Derived | Correct | Acc

CONTEXT (Fung and Yee, 1998) 0.32% 0.37% Word/entity translation pair 500 416 0.83

COLP (Tamura et al., 2012) 0.32% 0.46% Polysemy/multi-referential word 11 8 0.73

SIMLP (Tamura et al., 2012) 0.49% 0.46% Synonym/Co-referential word pair 72 49 0.68

DIVERSE (Schafer and Yarowsky, 2002) 5.22% 4.25% Entity phrase 99 84 0.85
DIVERSESP (Sproat et al., 2006) 5.46% 4.44 %

BAYESIAN(LM) (Dou and Knight, 2012)  0.57% 055%  Table 3: Knowledge derived from top 500 alignments

BAYESIAN(BINET) 11.17% 4.81% . .. . g
Ours 28.38% 19.78%  obtained by aligning AFP Chinese and English text

Table 2: Performance of translating bursty words.

pora based on context similarity., COLP and
SIMLP are label propagation models on word co-
occurrence and similarity graphs for bilingual lex-
icon extraction. DIVERSE is a variant of CON-
TEXT by adding various information (e.g., pronun-
ciation and temporality) and DIVERSESP is the
approach using phonetic and frequency correla-
tion with a score propagation strategy. BAYESIAN
is the Bayesian decipherment approach which has
been introduced in the previous section, and it
is evaluated in two settings (i.e., based on tradi-
tional bigram language models and BINets). Ac-
cording to Table 2, our approach substantially out-
performs the other approaches on both datasets,
showing its advantages for mining translation of
bursty words in coordinated text streams. It is also
notable that the BINet-based BAYESIAN improves
the LM-based counterpart, demonstrating the ad-
vantage of burst-level alignment for this task.

In addition to the comparisons to the clas-
sical baselines, we also test the latest repre-
sentative unsupervised bi-lingual lexicon extrac-
tion approaches (Zhang et al., 2017a,b) based on
word embedding and generative adversarial nets
(GANs). Unfortunately, these approaches do not
perform well in our setting. For example, the ap-
proach in (Zhang et al., 2017a) achieved <1% ac-
curacy’. One reason is that the topic overlap of co-
ordinated cross-lingual text streams is not so sig-
nificant as the Wikipedia data used for their ex-
periments, and the other reason is that their ap-
proaches focus on common fundamental words
like “¥% 77 (city)” while our targets are OOVs like
“Z ¥ (ASEAN)” which do not frequently appear
in a corpus. In contrast, our approach is more prac-
tical: it not only works well in easily available and
endless coordinated text streams without high con-
tent overlap requirement, but also can accurately
mine translations of many OOVs which do not ap-
pear frequently and really need mining their trans-
lations.

“We implement this approach using the codes released by
the authors. Their reported accuracy for the common words
with over 1,000 occurrences is 2.53% on Gigaword corpus.

streams from 2002 to 2010.

As illustrated in Figure 1, besides word/entity
translations, various types of knowledge can also
be derived from the BINet alignment results as
by-products. For example, for node 9 in Table
1, deciphering the nickname “‘I> & into Serena
Williams can benefit cross-lingual entity linking.
Nodes 10-11 also demonstrate the potential effect
on synonym detection, entity linking and coref-
erence resolution, like the case of Figure 1(b).
Nodes 12-13 show that the deciphered BINets can
detect polysemous/multi-referential word like ““3&
4T (Central bank)” which may refer to different en-
tities during different burst periods, like Figure
1(c). Moreover, the deciphered BINets can also
help entity phrase extraction based on the idea of
Figure 1(d). For example, in nodes 14-15, #
il 7+ 4 (Aung San Suu Kyi) is not recognized as
a person name by the Chinese name tagger; in-
stead, it is mistakenly separated into two words
— # J(Aung San) and 7 % (Suu Kyi). How-
ever, since # J1(Aung San) and 7 % (Suu Kyi)
are deciphered into the same English named entity
— Aung San Suu Kyi, we can merge them back to
form the correct entity.

For evaluating our approach’s performance on
language knowledge acquisition, we align the AFP
Chinese-English text streams from 2002 to 2010.
The Chinese stream has 119,196 documents and
the English one contains 1,608,636 documents.
Our approach obtained 7,211 node alignments'”.
Among them, we focus on the top 500 alignments
to guarantee their quality and use the aforemen-
tioned idea for deriving language knowledge.

Table 3 shows the result of deriving knowl-
edge from the alignments. Among top 500 align-
ments, we derived 416 correct word/entity transla-
tion pairs with 83% accuracy. Also, we correctly
derived 8 polysemous/multi-referential words, 49
synonymous/co-referential word pairs and 84 en-
tity phrases as byproducts. It is notable that the
data size of coordinated cross-lingual text streams
available on the web is much larger than that used
in our experiment and they are endlessly updated.

0The alignments with a low score (< 0.05) are discarded.
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That means it is promising to endlessly derive lan-
guage knowledge by applying our approach to the
huge size of endless cross-lingual text streams,
which may benefit NLP applications like machine
translation, entity linking and name tagging.

5 Related Work

Previous studies on cross-lingual text stream
alignment tend to focus on coarse-grained (i.e.,
topic-level) alignment for finding common pat-
terns (Wang et al., 2007; De Smet and Moens,
2009; Wang et al., 2009; Zhang et al., 2010; Hu
etal., 2012) and discovering parallel sentences and
documents (Munteanu and Marcu, 2005; Enright
and Kondrak, 2007; Uszkoreit et al., 2010; Smith
et al., 2010; Krstovski and Smith, 2011, 2016)
across languages. Studies on fine-grained cross-
lingual alignment are mainly for bilingual lexicon
induction (e.g., (Fung and Yee, 1998; Rapp, 1999;
Koehn and Knight, 2002; Schafer and Yarowsky,
2002; Shao and Ng, 2004; Schafer I1I, 2006; Has-
san et al., 2007; Haghighi et al., 2008; Udupa
et al., 2009; Klementiev and Callison-Burch,
2010; Tamura et al., 2012; Irvine and Callison-
Burch, 2013, 2015b; Kiela et al., 2015; Irvine and
Callison-Burch, 2015a; Vulic and Moens, 2015;
Cao et al., 2016; Zhang et al., 2017b,a)) and name
translation mining (e.g., (Sproat et al., 2006; Kle-
mentiev and Roth, 2006; Udupa et al., 2008; Ji,
2009; won You et al., 2010; Kotov et al., 2011;
Lin et al., 2011; Sellami et al., 2014)) from non-
parallel corpora. However, these approaches are
mainly developed for general comparable corpora,
not specially for cross-lingual text streams; thus
many of them did not use the powerful stream-
level information (e.g., co-burst across languages).
In contrast to the word-level alignment meth-
ods, we attempt to mine burst-level alignment to
largely narrow down candidates, and introduce
powerful clues for improving accuracy and dis-
covering various language knowledge.

In contrast to previous cross-lingual projection
work like data transfer (Pado and Lapata, 2009)
and model transfer (McDonald et al., 2011), we
do not require any parallel data. Moreover, our
BINets are cheap to construct, which can be eas-
ily extended to other languages. This is also the
first attempt to apply the decipherment idea (e.g.,
(Ravi and Knight, 2011; Dou and Knight, 2012;
Dou et al., 2014)) to graph structures instead of
sequence data.

6 Conclusions and Future Work

This paper proposes an approach to deciphering
the Burst Information Network constructed from
foreign languages as a novel way to align cross-
lingual text streams. For the first time we propose
to model stream alignment as a network decipher-
ment problem. By leveraging the network struc-
tures with stream-level burst features as well as
various clues, our approach can accurately align
the important information units across languages
and derive a variety of knowledge. Given that our
approach is unsupervised, effective, intuitive, in-
terpretable, and easily implementable, it is promis-
ing to use it as a framework for never-ending lan-
guage knowledge mining from big data, which
might benefit NLP applications such as machine
translation and cross-lingual information access.

For future work, we plan to 1) conduct more
experiments and analyses following this prelim-
inary study to verify our approach’s effective-
ness for more languages and domains (e.g., so-
cial stream VS news stream); 2) attempt to use
word embedding (e.g., word2vec (Mikolov et al.,
2013), GloVe (Pennington et al., 2014) and ELMo
(Peters et al., 2018)) for local context encoding
and use it as a clue for decipherment; 3) apply
our approach to real-time coordinated text streams
for never-ending knowledge mining and use the
mined knowledge to improve the downstream ap-
plications.
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