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Abstract

We propose a novel approach to semantic de-
pendency parsing (SDP) by casting the task as
an instance of multi-lingual machine transla-
tion, where each semantic representation is a
different foreign dialect. To that end, we first
generalize syntactic linearization techniques to
account for the richer semantic dependency
graph structure. Following, we design a neural
sequence-to-sequence framework which can
effectively recover our graph linearizations,
performing almost on-par with previous SDP
state-of-the-art while requiring less parallel
training annotations. Beyond SDP, our lin-
earization technique opens the door to integra-
tion of graph-based semantic representations
as features in neural models for downstream
applications.

1 Introduction

Many sentence-level representations were devel-
oped with the goal of capturing the sentence’s
proposition structure and making it accessible for
downstream applications (Montague, 1973; Car-
reras and Màrquez, 2005; Banarescu et al., 2013;
Abend and Rappoport, 2013). See Abend and
Rappoport (2017), for a recent survey.

While syntactic grammars (Marcus et al., 1993;
Nivre, 2005) induce a rooted tree structure over
the sentence by connecting verbal predicates to
their arguments, these semantic representations
often take the form of the more general labeled
graph structure, and aim to capture a wider no-
tion of propositions (e.g, nominalizations, adjec-
tivals, or appositives). In particular, we will
focus on the three graph-based semantic repre-
sentations collected in the Broad-Coverage Se-
mantic Dependency Parsing SemEval shared task
(SDP) (Oepen et al., 2015): (1) DELPH-IN Bi-

∗Work performed while at Bar-Ilan University.

Lexical Dependencies (DM) (Flickinger, 2000),1

(2) Enju Predicate-Argument Structures (PAS)
(Miyao et al., 2014), and (3) Prague Semantic
Dependencies (PSD) (Hajic et al., 2012). These
annotations have garnered recent attention (e.g.,
(Buys and Blunsom, 2017; Peng et al., 2017a)),
and were consistently annotated in parallel on over
more than 30K sentences of the Wall Street Jour-
nal corpus (Charniak et al., 2000).

In this work we take a novel approach to graph
parsing, casting sentence-level semantic parsing as
a multilingual machine-translation task (MT). We
deviate from current graph-parsing approaches to
SDP (Peng et al., 2017a) by treating the differ-
ent semantic formalisms as foreign target dialects,
while having English a as a common source lan-
guage (Section 3). Subsequently, we devise a neu-
ral MT sequence-to-sequence framework that is
suited for the task.

In order to apply sequence-to-sequence mod-
els for structured prediction, a linearization func-
tion is required to interpret the model’s sequen-
tial input and output. Initial work on structured
prediction sequence-to-sequence modeling has fo-
cused on tree structures (Vinyals et al., 2015; Aha-
roni and Goldberg, 2017), as these are quite easy
to linearize using the bracketed representation (as
employed in the Penn TreeBank (Marcus et al.,
1993)). Following, various efforts were made
to port the attractiveness of sequence-to-sequence
modeling to the more general graph structure of
semantic representations, such as AMR or MRS
(Peng et al., 2017b; Barzdins and Gosko, 2016;
Konstas et al., 2017; Buys and Blunsom, 2017).
However, to the best of our knowledge, all such
current methods actually sidestep the challenge of
graph linearization – they reduce the input graph
to a tree using lossy heuristics, which are specifi-

1 DM is automatically derived from Minimal Recursion
Semantics (MRS) (Copestake et al., 1999).
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cally tailored for their target representation.

In contrast, we design a novel deterministic and
lossless linearization (Section 4), which is appli-
cable to any graph with ordered nodes (e.g., sen-
tence word order). To that end, we devise so-
lutions for the various obstacles for linearizing a
graph structure, such as reentrancies (or multi-
ple heads), non-connected components, and non-
projective relations. This lineariztion allows us to
follow the spirit of Johnson et al. (2017) in train-
ing all source-target combinations in a multi-task
approach (Section 5). These combinations include
the three traditional text to semantic parsing tasks,
as well as six additional inter-representation trans-
lation tasks, constituting of all binary combina-
tions of the target representations (e.g., PSD to
PAS, or DM to PSD).

Following, we design an encoder-decoder
model which has two shared encoders, one for
raw English sentences and another for linearized
graphs, and a single global graph decoder. Inter-
estingly, we show that training on the auxiliary
inter-representation translation tasks greatly im-
proves the performance on the original SDP tasks,
without requiring any additional manual annota-
tion effort (Section 6).

Our contributions are two-fold. First, we show
that novel sequence-to-sequence models are able
to effectively capture and recover general graph
structures, making them a viable and easily exten-
sible approach towards the SDP task. Second, be-
yond SDP, as the inclusion of syntactic lineariza-
tion was shown beneficial in various tasks (Aha-
roni and Goldberg, 2017; Le et al., 2017) so does
our approach prompt easy integration of graph-
based representations as complementary semantic
signal in various downstream applications.

2 Background

We begin this section by presenting the corpus
we use to train and test our model (the SDP cor-
pus) and the current state-of-the-art in predicting
semantic dependencies. Then, we discuss pre-
vious work on sequence-to-sequence models for
tree prediction, which this work extends to general
graph structures. Finally, we briefly describe the
multilingual translation approach, which we bor-
row and adapt to the semantic parsing task.

DM PAS PSD

#Train sentences 35,657 35,657 35,657
#Test sentences 1,410 1,410 1,410
#Labels 59 42 91
%Trees 2.30 1.22 42.19
%Projective 2.91 1.64 41.92

Table 1: SDP corpus statistics. Numbers taken
from Oepen et al. (2015).

2.1 Semantic Dependencies

In general, the development of most semantic for-
malisms was carried out by disjoint and indepen-
dent efforts. However, the 2014 and 2015 Se-
mEval shared tasks (Oepen et al., 2014, 2015)
have culminated in the Semantic Dependency
Parsing (SDP) resource, a consistent and large
corpus (roughly 39K sentences), annotated in
parallel with three well-established formalisms:
DELPH-IN MRS-Derived Bi-Lexical Dependen-
cies (DM) (Flickinger, 2000), Enju Predicate-
Argument Structures (PAS) (Miyao et al., 2014),
and Prague Semantic Dependencies (PSD) (Hajic
et al., 2012). While varying in their labels and
annotation guidelines, all three representations in-
duce a graph structure, where each node corre-
sponds to a single word in the sentence. See Ta-
ble 1 for more details on this corpus, and Fig-
ure 1 for examples of the three SDP formalisms.
SDP has enabled the application of machine learn-
ing models for the task. Peng et al. (2017a) have
set the state-of-the-art results on all three tasks,
using techniques inspired by graph-based depen-
dency parsing models (Kiperwasser and Goldberg,
2016; Dozat and Manning, 2016; Kuncoro et al.,
2016). Their best results were obtained by lever-
aging the fact that SDP was annotated on parallel
texts. They reached 88% average labeled F1 score
across the SDP representations on an in-domain
test set, via joint prediction of the three representa-
tions using higher-order cross-representation fea-
tures. The first row in Table 4 summarizes their
performance for the three prediction tasks.

In this work we will take a different approach to
structured prediction of the SDP corpus. We will
design a novel sequence-to-sequence model, not
necessitating parallel annotations, which are often
unavailable for multi-task learning.
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Couch-potato jocks watching Monday Night Football can now vote for the greatest play in 20 years
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(a) DELPH-IN Minimal Recursion Semantics-derived bi-lexical dependencies (DM).

Couch-potato jocks watching Monday Night Football can now vote for the greatest play in 20 years
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(b) Enju Predicate-Argument Structures (PAS).

Couch-potato jocks watching Monday Night Football can now vote for the greatest play in 20 years

RSTR RSTR

PAT-arg

RSTR TWHEN

ACT-arg

TWHEN

PAT-arg

RSTR

THL

RSTR

SHIFT SHIFT SHIFT SHIFT SHIFT SHIFT SHIFT SHIFT SHIFT SHIFT SHIFT SHIFT SHIFT

(c) Prague Semantic Dependencies (PSD).

Figure 1: Example of gold annotations for the three sentence-level representations in the SDP corpus
(DM, PAS, and PSD) on the same sentence, which was slightly shortened for presentation. Arcs in each
of the representations appear above the sentence. Our “SHIFT” edges, which appear dashed below it,
were introduced in Section 4 to ensure that all nodes are reachable from the first word.

2.2 Structured Prediction using
Sequence-to-Sequence Models

In contrast to the graph-parsing algorithms dis-
cussed in Section 2.1, a recent line of work has
explored the usage of more general sequence-to-
sequence models to perform structured prediction,
focusing specifically on predicting tree structures.
These approaches devise a task-specific lineariza-
tion function which converts the structured repre-
sentation to a sequential string, which is then used
to train the recurrent neural network. During infer-
ence, the inverted linearization function is applied
to the output to recover the desired structure.

Vinyals et al. (2015) showed that sequence-to-
sequence phrase-based constituency parsing can
be achieved using a tree depth-first search (DFS)
traversal as a linearization function.2 Following
this work, several recent efforts have employed
a similar DFS approach to AMR and MRS pars-
ing (Barzdins and Gosko, 2016; Konstas et al.,
2017; Peng et al., 2017b; Buys and Blunsom,
2017), after reducing AMR to trees by removing

2DFS for rooted trees is equivalent to the bracketed nota-
tion of the Penn Treebank.

re-entrencies.
Several recent works have found syntactic lin-

earization useful outside of neural parsers. For ex-
ample, in neural machine translation, Aharoni and
Goldberg (2017) showed that predicting target-
side linearized syntactic trees can improve the
quality and grammatically of the predicted transla-
tions. In Section 4, we show for the first time that
the DFS approach is a viable linearization function
also for semantic dependencies, by extending it to
account for the challenges introduced by the richer
graph structures in SDP.

2.3 Multi-lingual Machine Translation

Multi-Task Learning (MTL) is a modeling ap-
proach which shares and tunes the model param-
eters across several tasks. In some instances of
MTL, a subset of the tasks may be defined as
the “main tasks”, while the other tasks are treated
as auxiliaries which improve performance on the
main tasks by contributing to their training sig-
nal. MTL had regained popularity in recent years
thanks to its easy and wide-spread applicability in
neural networks (Collobert et al., 2011; Sogaard
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and Goldberg, 2016).
Perhaps most relevant to this work is Google’s

neural machine translation system by Johnson
et al. (2017), which trained a single sequence-to-
sequence model to translate between multiple lan-
guages. They introduced the usage of a special tag
in the source sentence to specify the desired target
language. For example, <2es> indicates that the
model should translate the input sentence to Span-
ish.

In Section 4, we adapt the MTL strategy to train
a single model for all SDP formalisms. We use
a similar “to” and “from” tags to indicate source
and desired target representations, and show that
introducing auxiliary inter-task translations can
improve performance on the main target tasks,
namely parsing semantic representations for raw
input text.

3 Task Definition

We define the task of semantic translation, as
converting to, and between, different sentence-
level semantic representations. Formally, a
sentence-level semantic representation according
to formalism R is a tuple, MR = (S,G), where
S = {w1, ..., wn} is a raw sentence, and G =
(V,E | V = {v1, ..., vn}, E ⊆ V 2) is a labeled
graph whose vertices have a one-to-one correspon-
dence with the words in S,3 while its edges rep-
resent binary semantic relations, adhering to R’s
specifications.

Using these notations, our input is defined as
a triplet (source, target,Msource). Preceding
the input semantic representation are identifiers
for source and target representation schemes (e.g.,
“PAS”, “DM” or “PSD”). The semantic transla-
tion task is then to produceMtarget. I.e., the sen-
tence’s representation under the target formalism.

This definition is broad enough to encapsulate
many sentence-level representations, and in this
work we will use the three SDP representations,
as well as an empty “RAW” representation (where
E(G) = ∅ for all sentences) to allow for transla-
tions from raw input sentences. We note that fu-
ture work may extend this framework with other
graph-based sentence representations.

3 The one-to-one node-to-word correspondence follows
SDP’s formulation, but can be relaxed to adjust for other
graph structures.

4 Graph Linearization

As discussed in Section 2, structured prediction in
a sequence-to-sequence framework requires a lin-
earization function, from the desired structure to a
linear sequence, and vice versa.

Oftentimes, such linearization consists of node
traversal along the edges of the input graph. While
previous work have had certain structural con-
straints on their input (e.g., imposing tree or non-
cyclic constructions), in this work, we construct
a lossless function which allows us to feed the
sequence-to-sequence network with a linearized
general graph representation and expect a lin-
earized graph in its output.

In this section, we describe our linearization
traversal order, which generalizes the DFS traver-
sal applied previously only for trees. We do this
by converting an SDP graph such that all nodes
are reachable from node v1. We then outline the
challenging aspects of graph properties (which do
not exist in trees), show that they are prevalent in
the SDP corpus, and describe our proposed solu-
tions. To the best of our knowledge, this is the
first work which tackles the task of general graph
linearization.

While our linearization can be predicted with
good accuracy (as we show in following sections),
there is ample room to experiment with represen-
tational variations, which we start exploring in
Section 6. Our conversion code is made publicly
available,4 allowing further experimentation with
general graph linearization for SDP and other re-
lated tasks.

4.1 Traversing Graphs with Non-Connected
Components

The DFS approach is an applicable linearization of
trees since a recursive traversal, which starts at the
root and explores all outgoing edges, is guaranteed
to visit all of the graph’s nodes. However, DFS
linearization is not directly applicable to SDP, as
its graphs often consist of several non-connected
components.

For such graphs, there exists no starting node
from which all of the nodes are reachable via DFS
traversal, and certain nodes are bound to be left out
of the traditional DFS encoding. For example, the
words “can” and “greatest” in Figure 1a reside in
different components, and therefore no single path

4https://github.com/gabrielStanovsky/
semantics-as-foreign-language
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(which traverses along the graph’s edge direction)
will discover both of them.

To overcome this limitation, we make sure that
all nodes are reachable from node v1, correspond-
ing to the first word in the sentence, from which
we start our traversal. This is achieved by intro-
ducing an artificial SHIFT edge between any two
consecutive nodes vi, vi+1 for which there is no
directed path already connecting them. Follow-
ing, it is easy to see, by induction, that all nodes
are reachable from v1, as for every node vi there
exists a directed path (v1, v2, ..., vi−1, vi). For ex-
ample, revisit the previously mentioned “can” and
“greatest” nodes in Figure 1a, which are connected
using “SHIFT” edges.

4.2 Linearizing a DFS Graph Traversal

Intuitively, our linearization is a pre-order DFS,
generalizing Vinyals et al. (2015)’s approach to
syntactic linearization. We start from v1 and ex-
plore all paths from it, in a depth-first manner.
Once a path is exhausted, either by reaching a node
with no outgoing edges5 or by reaching an already
visited node, we use special backtracking edges to
form a path backwards “up” the graph, until we hit
a node which still has unexplored outgoing edges.

Formally, our linearization of a given DFS
traversal is composed of 3 types of elements (see
Figure 2 for example):

First, a Node reference identifies a node in the
graph, which in turn corresponds to word in the
SDP formalism. We identify nodes using two to-
kens: (1) Their position in the sentence, relative
to the previous node in the path (while the first
position in the linearization is written in absolute
terms, as “0”), and (2) Explicitly writing the word
corresponding to the node.

For example, in Figure 2, traversing the
ARG1 edge from “easy” lands at “ind/2
understand”, whose outgoing ARG2 edge ar-
rives at “ind/-4 success”.

Second, an Edge reference, identifies an edge
label. These are denoted by a single token, com-
posed of 2 parts: (1) The edge’s formalism (in our
case, the SDP representation to which it pertains),
and (2) The edge label. Traversing an edge (u, v)
with label L will be encoded by placing the edge
reference between the node references of u and
v. For instance, in Figure 2, moving from node

5Note that after introducing the artificial “SHIFT” edges,
only vn may have no outgoing edges.

0 to node 1 through the edge labeled “poss” is en-
coded with the following string: “ind/0 Their
PAS/poss ind/1 success”.

Finally, Backtracking edges, signify a step
“backward” in the traversal. These are de-
noted with a single token, similarly to edge ref-
erences, with the addition of a “BACK” suffix.
For example, in Figure 2, we backtrack from
the already visited node “understand” by writing:
“PAS/ARG1/BACK”.

This linearization can be deterministically and
efficiently inverted back to the graph structure.
This is done by building the graph while read-
ing the linearization, adding to it nodes and edges
when they first appear, and omitting possible node
recurrences in the linearization (due to cycles or
backtracking edges), such as “success”, which ap-
pears twice in the Figure 2.

Redundancy in encoding We note that certain
items in our proposed linearization are redun-
dant. First, writing down the explicit word in
the traversal is not necessary, as the positional in-
dex is sufficient to uniquely identify a node. Sec-
ond, a single backtracking tag would have been
enough to identify the specific edge which is cur-
rently being backtracked (e.g., BACK instead of
PAS/verb ARG1/BACK). The latter is similar
to the redundancy in the syntactic linearization
of Vinyals et al. (2015), who specify the type
of closing bracket, e.g., NP(...)NP instead of
NP(...).

In Section 6 we show empirically that our model
benefits from explicitly generating these redun-
dancies during decoding.

4.3 DFS Traversal Order

A graph DFS traversal does not dictate an order
in which to explore the different outgoing paths
at each branching point. Consider, as a recurring
example, the branching point at the word “vote”
in Figure 1c, in which we need to choose an order
amongst its four neighbors.

While syntactic linearization conveniently fol-
lows the ordering of the words in the sentence,
Konstas et al. (2017) have noted that different
child visiting linearization orders affect the perfor-
mance of text generation from AMR. In particular,
they found that following the order of annotation
of a human expert worked best.

Intuitively, since different graph traversals af-
fect the sequence of encoded nodes during train-
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DFS order type
Example
(vote’s PSD neighbors)

Random permutation (play, for, jocks, now)∗

Sentence order
Neighbor’s index in the sentence

(jocks, now, for, play)

Closest words
Neighbor’s absolute distance

(now, for, play, jocks)

Smaller-first
# nodes reachable from the neighbor

(now, play, for, jocks)

Table 2: Different neighbor exploration orders.
Under the name of each order type, we list the key
by which we sort each node’s neighbors. The “Ex-
ample” column shows the corresponding ordering
of “vote”’s neighbors in Figure 1c. ∗An example
of one possible random permutation.

ing, the network will inevitably have to learn dif-
ferent weights and attention when presented with
different orderings. Therefore, some traversal or-
derings may be easier to learn than others, leading
to better (hopefully more semantic) abstractions.

To the best of our knowledge, the human an-
notation order is not available for the SDP anno-
tations, and there is no clear a priori optimal or-
dering. We therefore experiment with several vis-
iting orders, as described in Table 2. Notably,
Sentence order is equivalent to the ordering used
by Vinyals et al. (2015) for syntactic lineariza-
tion, while Closest words orders child nodes from
short to longer range-dependencies (commonly as-
sociated with syntactic versus semantic relations),
and Smaller first is motivated by the easy-first ap-
proach (Goldberg and Elhadad, 2010), first encod-
ing paths which are shorter (and easier to memo-
rize), before longer, more complicated sequences.

In Section 6 we evaluate the effect of these vari-
ations on the SDP parsing task.

5 Model

We start by describing our model architecture, in-
spired by recent MT architectures, while allow-
ing for different types of inputs, namely English
sentences and linearized graphs. Following, we
present our methods for training and testing, and
specific hyper-parameter configuration and imple-
mentation details.

Their success is easy to understand

poss
ARG2

ARG1

SHIFT SHIFT SHIFT SHIFT

(a) Gold PAS representation from the SDP corpus. Original
gold edges appear above the words, while our introduced edges
appear below them.

ind/0 Their PAS/poss ind/1 success
SHIFT ind/1 is SHIFT ind/1 easy
PAS/ARG1 ind/2 understand PAS/ARG2
ind/-4 success PAS/ARG2/BACK ind/4
understand PAS/ARG1/BACK ind/-2 easy
SHIFT ind/1 to SHIFT ind/1 understand

(b) Our linearization scheme for the sentence in 2a. Each node
is represented by its relative index and surface form. Back-
wards traversing edges (marked with BACK) appear in italics.

Figure 2: Example of gold PAS representation
from the development partition of the SDP corpus
(top), and our corresponding linearization (bot-
tom).

5.1 Architecture

Our architecture, depicted in Figure 3, consists of
a sequence-to-sequence model using a bi-LSTM
encoder-decoder with attention on input and out-
put tokens, similar to that used by Johnson et al.
(2017) for multi-lingual MT. As described in Sec-
tion 3, it is trained on 9 translation tasks in paral-
lel. We split these into two groups, consisting of 3
primary tasks and 6 auxiliary tasks, as follows:

PRIMARY = {(RAW, tgt) |
tgt ∈ (DM, PAS, PSD)}

AUXILIARY = {(src, tgt) ∈ {DM, PAS, PSD}2 |
src 6= tgt}

The PRIMARY tasks deal with converting raw
sentences to linearized graph structures, which we
can compare to previous published baselines and
are therefore our main interest. Conversely, while
the AUXILIARY tasks provide additional training
signal to tune our model, they are also interesting
from an analytic point-of-view, which we examine
in depth in Section 6.

To allow the model to differentiate between
the different tasks, we prefix each input sample
with two tags (see example in Figure 3). First,
similarly to Johnson et al. (2017), we add a tag
indicating the desired target representation, e.g.,
<to:DM>. Second, In contrast to multi-lingual
MT which omits the source language (to allow for
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<from:RAW>

<from:DM>

ind/1

<to:PSD>

<to:PSD>

Couch−potato

ind/0

jocks

Couch−potato

can

DM/compound

jocks PSD/compound

Raw
Encoder

SDP
Encoder

Shared SDP Decoder

Softmax

Figure 3: Simplified sketch of our sequence-to-sequence architecture. The figure depicts encoding
and decoding of two input training samples, one from raw text to PSD (lower left), and the other from
DM to PSD (top left). The OR gate denotes choosing only one sample to encode at each training step.
While the two samples use different encoders, they share a single global SDP decoder (right) which
outputs a the graph structure. As denoted by dashed edges, at every decode step we can deterministically
interject and override the softmax probabilities for redundant elements, based on previous predictions.
For simplicity sake, a small number of units is showed for encoders and decoder and the attention and
deep encoder-decoder layers are omitted.

code switching), we explicitly denote the source
representation, e.g., <from:PSD>. This addition
further strengthens the correlation between inputs
from the same representation.6

Further deviating from the current practice in
MT, our architecture uses two encoders and a
single decoder (while common MT regards the
encoder-decoder as a single unit). The first
shared encoder specializes in encoding raw text
for all PRIMARY tasks, while a second encodes
linearized graph structures for the AUXILIARY
tasks. Both encoders are linked to a single de-
coder which converts their output representations
to a linearized graph.

Intuitively, the two encoders correspond to the
different nature of input to the PRIMARY tasks (an
English sentence) versus that of the AUXILIARY
tasks (a linearized graph), while a single decoder
allows for a common linearized graphs output for-
mat. Since the decoder is trained across all 9 tasks,
both encoders are optimized to arrive at similar
latent representations which are geared towards
graph prediction.

5.2 Training and Inference

The overall size of multi-task training data is
320, 913 samples. This constitutes a 9-fold in-

6Moreover, “code-switching” between semantic represen-
tations is inherently undesired.

crease over a single-model for SDP (35, 657 sen-
tences in the SDP corpus) and a 3-fold increase
over a standard MTL approach to SDP (without
the AUXILIARY tasks). During training, we pe-
nalize the model on all predicted elements, in-
cluding the redundant elements discussed in Sec-
tion 4.2. During inference, however, these re-
dundancies may cause contradictions leading to
incoherent sequences. Namely, a word may not
conform to the previous word index, and a back-
tracking edge may point to a different relation.
To overcome this we artificially increase the soft-
max probabilities (dashed edges in Figure 3) so
that they reflect the DFS path decoded up until
that point. Specifically, we override the predicted
word according to the previous index, and back-
track “up” the corresponding edge.

5.3 Implementation Details

All of our hyper-parameters were tuned on a held
out partition of 1000 sentences in the training set.
In particular, we use 3 hidden layers for both
of the encoders, and 2 hidden layers for the de-
coder. English word embeddings were fixed with
300-dimensional GloVe embeddings (Pennington
et al., 2014), while the graph elements, which con-
sist of a lexicon of roughly 400 tokens across three
representations, were randomly initialized. We
trained the model until convergence, roughly 20
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DM PAS PSD Avg.

Random 86.1 87.7 78.4 84.1
Sentence order 87.2 90.3 79.9 85.8
Closest words 87.5 89.8 79.7 85.8
Smaller-first 87.9 90.9 80.3 86.2

Table 3: Evaluation of different DFS orderings, in
labeled F1 score, across the different tasks.

epochs, in about 12 hours on a GPU (NVIDIA
GeForce GTX 1080 Ti), in batches of 50 sen-
tences. All of these sentences belong to the same
task, which is chosen at random before each batch.

Finally, our models were developed using the
OpenNMT-py library (Klein et al., 2017), and are
made available.7

6 Evaluation

We perform several evaluations, testing the im-
pact of alternative configurations, including the
different DFS traversal orders and MTL versus
single-task approach, as well as our model’s per-
formance against current state-of-the-art on each
of the PRIMARY tasks.

6.1 Results

The results of our different analyses are reported
in Tables 3-6, as elaborated below. For all evalu-
ations, we use the in-domain test partition of the
SDP corpus, containing 1, 410 sentences. Follow-
ing Peng et al. (2017a) we report performance us-
ing labeled F1 scores as well as average scores
across representations. We compare the produced
graphs, after applying the inverted linearization
function, rather than comparing the DFS path di-
rectly, as there may be several DFS graph traver-
sals encoding the same relations.

DFS order matters - Table 3 depicts our
model’s performance when linearizing the graphs
according to the different traversal orders dis-
cussed and exemplified in Table 2. Overall, we
find that the “smaller-first” approach performs best
across all datasets, and that imposing one of our
orders is always preferable over random permu-
tations. Intuitively, the “smaller-first” approach
presents shorter, and likely easier, paths first, thus
minimizing the amount of error-propagation for

7https://github.com/gabrielStanovsky/
semantics-as-foreign-language

following decoding steps. Due to its better per-
formance, we will report only the smaller-first’s
performance in all following evaluations.

From English to SDP - Table 4 presents the
performance of our complete model (“MTL PRI-
MARY+AUX”) versus Peng et al. (2017a). On
average, our model performs within 1% F1 point
from the state-of-the art (outperforming it on the
harder PSD task), despite using the more gen-
eral sequence-to-sequence approach instead of a
dedicated graph-parsing algorithm. In addition,
an ablation study shows that multi-tasking the
PRIMARY tasks is beneficial over a single task set-
ting, which in turn is outperformed by the inclu-
sion of the AUXILIARY tasks.

Simulating disjoint annotations - In contrast
with SDP’s complete overlap of annotated sen-
tences, multi-task learning often deals with dis-
joint training data. To simulate such scenario, we
retrained the models on a randomly selected set of
33% of the train sentences for each representation
(11, 886 sentences), such that the three representa-
tions overlap on only 10% (3, 565 sentences). The
results in Table 5 show that our approach is more
resilient to the decrease in annotation overlap, out-
performing the state-of-the-art model on the DM
and PSD task, as well as on the average score. We
hypothesize that this is in part thanks to our ability
to use the inter-task translations, even when these
exist only for part of the annotations.

6.2 Translating Between Representations
As a byproduct of training on the AUXILIARY
tasks, our model can also be tested on translating
between the different representations. This is done
by presenting it with a linearized graph of one rep-
resentation and asking it to translate it to another.
To the best of our knowledge, this is the first work
which tries to accomplish this.

We report the performance of all source-target
combinations in Table 6. These evaluations pro-
vide several interesting comparisons between the
representations: (1) For all representations, trans-
lating from any of the other two is easier than pars-
ing from raw text, (2) The PAS and DM represen-
tations can be converted between them with high
accuracy (95.7% and 96.1%, respectively). This
can be due to their structural resemblance, noted
in previous work (Peng et al., 2017a; Oepen et al.,
2015), and (3) While PSD serves as a viable in-
put for conversion to DM and PAS (92.1% F1 on
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DM PAS PSD Avg.

Peng et al. (2017a) 90.4 92.7 78.5 87.2

Single 70.1 73.6 63.6 69.1
MTL PRIMARY 82.4 87.2 71.4 80.3
MTL PRIMARY+AUX 87.9 90.9 80.3 86.2

Table 4: Evaluation of our model (labeled F1
score) versus the current state of the art. “Sin-
gle” denotes training a different encoder-decoder
for each task. “MTL PRIMARY” reports the
performance of multi-task learning on only the
PRIMARY tasks. “MTL PRIMARY+AUX” shows
the performance of our full model, including MTL
with the AUXILIARY tasks.

DM PAS PSD Avg.

Peng et al. (2017a) 86.8 90.5 77.3 84.9
MTL PRIMARY+AUX 87.1 89.6 79.1 85.3

Table 5: Performance (labeled F1 score) of our
model versus the state of the art, when reducing
the amount of overlap in the training data to 10%.

To \From DM PAS PSD Avg.

DM 96.1 92.4 94.3
PAS 95.7 91.7 93.7
PSD 89.5 87.6 88.6
Avg. 92.6 91.9 92.1

Table 6: Performance (labeled F1 score) of inter-
task translations. Each column depicts the perfor-
mance converting from a specific source represen-
tation, while each row denotes the corresponding
target representation.

average), it is relatively harder to convert either of
them to PSD (88.6%). This might indicate that
PSD subsumes some of the information in DM and
PAS.

7 Conclusions and Future Work

We presented a novel sequence-to-sequence ap-
proach to the task of semantic dependency parsing,
by casting the problem as multi-lingual machine
translation. To that end, we introduced a DFS-
based graph linearization function which general-
izes several previous works on tree linearization.
Following, we showed that our model, inspired
by neural MT, benefits from the inter-task training

signal, reaching performance almost on-par with
current state of the art in several scenarios.

Future work can employ this linearization func-
tion within downstream applications, as was done
with syntactic linearization, or extend this frame-
work with other graph-based representations, such
as universal dependencies (Nivre et al., 2016) or
AMR (Banarescu et al., 2013).
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Mikulová, Petr Pajas, Jan Popelka, et al. 2012.
Announcing prague czech-english dependency tree-
bank 2.0. In LREC, pages 3153–3160.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Tho-
rat, Fernanda B. Viégas, Martin Wattenberg, Gre-
gory S. Corrado, Macduff Hughes, and Jeffrey Dean.
2017. Google’s multilingual neural machine transla-
tion system: Enabling zero-shot translation. TACL,
5:339–351.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional lstm feature representations. TACL, 4:313–
327.

G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M.
Rush. 2017. OpenNMT: Open-Source Toolkit for
Neural Machine Translation. ArXiv e-prints.

Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin
Choi, and Luke S. Zettlemoyer. 2017. Neural amr:
Sequence-to-sequence models for parsing and gen-
eration. In ACL.

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng
Kong, Chris Dyer, and Noah A. Smith. 2016. Dis-
tilling an ensemble of greedy dependency parsers
into one mst parser. In EMNLP.

An Nguyen Le, Ander Martinez, Akifumi Yoshimoto,
and Yuji Matsumoto. 2017. Improving sequence
to sequence neural machine translation by utilizing
syntactic dependency information. In IJCNLP.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of english: The penn treebank. Computa-
tional linguistics, 19(2):313–330.

Yusuke Miyao, Stephan Oepen, and Daniel Zeman.
2014. In-house: An ensemble of pre-existing off-
the-shelf parsers. In Proceedings of the 8th Interna-
tional Workshop on Semantic Evaluation (SemEval
2014), pages 335–340.

Richard Montague. 1973. The proper treatment of
quantification in ordinary english. In Approaches to
natural language, pages 221–242. Springer.

Joakim Nivre. 2005. Dependency grammar and depen-
dency parsing.

Joakim Nivre, Marie-Catherine de Marneffe, Filip
Ginter, Yoav Goldberg, Jan Hajic, Christopher D.
Manning, Ryan T. McDonald, Slav Petrov, Sampo
Pyysalo, Natalia Silveira, Reut Tsarfaty, and Daniel
Zeman. 2016. Universal dependencies v1: A multi-
lingual treebank collection. In LREC.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinková, Dan Flickinger, Jan
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task 18: Broad-coverage semantic dependency pars-
ing. In SemEval@NAACL-HLT.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Dan Flickinger, Jan Hajic, Angelina
Ivanova, and Yi Zhang. 2014. Semeval 2014 task
8: Broad-coverage semantic dependency parsing. In
Proceedings of the 8th International Workshop on
Semantic Evaluation (SemEval 2014), pages 63–72.

Hao Peng, Sam Thomson, and Noah A. Smith. 2017a.
Deep multitask learning for semantic dependency
parsing. In Proceedings of the Association for Com-
putational Linguistics, Vancouver, Canada. Associ-
ation for Computational Linguistics.

Xiaochang Peng, Chuan Wang, Daniel Gildea, and Ni-
anwen Xue. 2017b. Addressing the data sparsity is-
sue in neural amr parsing. In EACL.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP, volume 14, pages 1532–
1543.

Anders Sogaard and Yoav Goldberg. 2016. Deep
multi-task learning with low level tasks supervised
at lower layers. In ACL.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey E. Hinton. 2015.
Grammar as a foreign language. In NIPS.


