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Abstract

We present a new kind of question answering
dataset, OpenBookQA, modeled after open
book exams for assessing human understand-
ing of a subject. The open book that comes
with our questions is a set of 1326 elementary
level science facts. Roughly 6000 questions
probe an understanding of these facts and their
application to novel situations. This requires
combining an open book fact (e.g., metals con-
duct electricity) with broad common knowl-
edge (e.g., a suit of armor is made of metal) ob-
tained from other sources. While existing QA
datasets over documents or knowledge bases,
being generally self-contained, focus on lin-
guistic understanding, OpenBookQA probes a
deeper understanding of both the topic—in the
context of common knowledge—and the lan-
guage it is expressed in. Human performance
on OpenBookQA is close to 92%, but many
state-of-the-art pre-trained QA methods per-
form surprisingly poorly, worse than several
simple neural baselines we develop. Our or-
acle experiments designed to circumvent the
knowledge retrieval bottleneck demonstrate
the value of both the open book and additional
facts. We leave it as a challenge to solve the
retrieval problem in this multi-hop setting and
to close the large gap to human performance.

1 Introduction

Open book exams are a common mechanism
for assessing human understanding of a subject,
where test takers are allowed free access to a rel-
evant book, study guide, or class notes when an-
swering questions. In this context, the goal is not
to evaluate memorization but a deeper understand-
ing of the material and its application to new situa-
tions (Jenkins, 1995; Landsberger, 1996). The ap-
plication, in turn, often requires combining a fact
in the book (e.g., metals conduct electricity) with
additional common knowledge the test taker is ex-

Question:
Which of these would let the most heat travel through?
A) a new pair of jeans.
B) a steel spoon in a cafeteria.
C) a cotton candy at a store.
D) a calvin klein cotton hat.

Science Fact:
Metal is a thermal conductor.

Common Knowledge:
Steel is made of metal.
Heat travels through a thermal conductor.

Figure 1: An example for a question with a given set
of choices and supporting facts.

pected to have acquired by this stage (e.g., a suit
of armor is made of metal).

Motivated by this setting, we present a new kind
of question answering dataset, OpenBookQA,1

that consists of two parts: Q, a set of 5957
multiple-choice questions, andF , a set of 1326 di-
verse facts about elementary level science. F has
three key characteristics of an ‘open book’: (a) it
forms the basis for generating Q; (b) it has been
deemed central to scientific explanations (Jansen
et al., 2018); and (c) by itself, F is generally in-
sufficient to answer questions in Q. Faced with a
question q ∈ Q, a student or system S is expected
retrieve a relevant fact f ∈ F , and appeal to their
own common knowledge, KS , when applying f to
answer q.

Figure 1 provides an example. Here, metals are
thermal conductors is a core scientific fact avail-
able in F . One way to apply this fact to decide
whether a steel spoon would let the most heat
travel through is to appeal to common knowledge
that steel is metallic and heat travels through ther-
mal conductors. In general, the expected common
knowledge is relatively simple (taxonomic facts,

1The dataset and the code for the models are available at
http://data.allenai.org/OpenBookQA.

http://data.allenai.org/OpenBookQA
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definitions, object properties, etc.); the difficulty
lies in identifying it and meaningfully combining
it with a core fact from F to answer the question.

OpenBookQA questions are challenging as they
require multi-hop reasoning with partial context
provided by F . Specifically, unlike existing
datasets for reading comprehension (RC), answer-
ing questions on the back of a textbook (TQA),2

as well as question answering over structured
knowledge-bases (KBQA), the open book F that
comes with OpenBookQA is not self-contained.
A successful system must therefore go beyond
the typical challenges such as paraphrase match-
ing and coreference resolution, without benefiting
from the canonicalized and complete information
in KBQA.

Generating interesting open book questions is
a difficult task. We used a multi-stage process
starting with F , using crowd-sourcing to generate
(noisy) questions based on F that probe novel sit-
uations, using an automatic filter to ensure hard-
ness for retrieval and association based systems,
using a crowd filter to ensure answerability by a
lay person, and further using an expert filter to en-
sure higher quality in Dev and Test sets.

We evaluate a number of existing QA systems
for science (without retraining) on OpenBookQA,
finding that they perform surprisingly close to the
random guessing baseline of 25%. Human perfor-
mance, on the other hand, is close to 92%.3

Motivated by recent findings of gameability of
NLP datasets (Gururangan et al., 2018), we also
develop and evaluate simple, attention-based, neu-
ral baselines including a plausible answer detector
(which ignores the question text completely) and
an odd-one-out solver. These highlight inevitable
human bias in any crowdsourced dataset, increas-
ing performance on OpenBookQA to 48%.

Building upon a recent neural model for incor-
porating external knowledge in the story cloze set-
ting (Mihaylov and Frank, 2018), we propose a
knowledge-aware neural baseline that can utilize
both the open book F and common knowledge re-
trieved from sources such as ConceptNet (Speer
et al., 2017). While retrieving the most useful
pieces of knowledge remains an open challenge,
our ‘oracle’ experiments with the fact f used while
generating a question q and an interpretation (by

2Only ∼5% of the TQA questions of Kembhavi et al.
(2017) require additional common knowledge.

3To avoid ambiguity in the term ‘human performance’,
Section 3.2 describes the specific randomized model we use.

the question author) of the additional knowledge
k needed for q, provides valuable insight into the
nature of this dataset: Facts from the open book F
are valuable (5% improvement) but not sufficient.
Using both f and k increases the accuracy to 76%,
but is still far from human level performance, sug-
gesting the need for non-trivial reasoning to com-
bine these facts.

To encourage further research on this new task,
for each Train and Dev question q, OpenBookQA
also includes f as intermediate supervision signal,
which may be viewed as a partial explanation for
q. We leave closing the large gap to human perfor-
mance as a challenge for the NLP community.

2 Related Work

By construction, answering OpenBookQA ques-
tions requires (i) some base science facts from
a provided ‘open book’, (ii) broader understand-
ing about the world (common or commonsense
knowledge), and (iii) an ability to combine these
facts (reasoning). This setup differs from several
existing QA tasks, as summarized below.

Reading Comprehension (RC) datasets have
been proposed as benchmarks to evaluate the abil-
ity of systems to understand a document by an-
swering factoid-style questions over this docu-
ment. These datasets have taken various forms:
multiple-choice (Richardson et al., 2013), cloze-
style (Hermann et al., 2015; Onishi et al., 2016;
Hill et al., 2016), and span prediction (Rajpurkar
et al., 2016; Trischler et al., 2017; Joshi et al.,
2017) However, analysis (Chen et al., 2016; Sug-
awara et al., 2017) of these datasets has shown that
many of the questions can be solved with context
token matching (Chen et al., 2017a; Weissenborn
et al., 2017) or relatively simple paraphrasing.

To focus on the more challenging problem
of reasoning across sentences, new datasets
have been proposed for multi-step RC. QAnga-
roo (Welbl et al., 2018) have used a knowledge-
base to identify entity pairs (s, o) with a known
relation, r, which is also supported by a multi-
hop path in a set of documents. They use struc-
tured tuple queries (s, r, ?) and use all the docu-
ments along the path as the input passage. Nar-
rativeQA (Kociský et al., 2017) is an RC dataset
that has been shown to require an iterative reason-
ing about the narrative of a story. Similar to Open-
BookQA, the questions were generated to ensure
that the answer is not a direct match or paraphrase
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that can be retrieved with an IR approach. Most
recently, Khashabi et al. (2018) proposed Mul-
tiRC, a multiple-choice RC dataset that is de-
signed to require multi-sentence reasoning and can
have multiple correct answers. Again, like most
RC datasets, it is self-contained.

Tasks with external knowledge. While many
of the RC datasets could benefit from common-
sense or background knowledge, they are designed
to be self-contained, i.e., solvable by the document
context alone. Datasets such as the Story Cloze
Test (Mostafazadeh et al., 2016), MCScript,4 and
ProPara (Mishra et al., 2018) do require addi-
tional domain knowledge about everyday events,
scripts, and processes, respectively. However,
these datasets need domain-specific modeling of
events, whereas OpenBookQA appeals to broad
common knowledge cutting across a variety of
types and topics.

Stasaski and Hearst (2017) explore the creation
of multi-hop questions and propose generating
stronger distractors for the multiple-choice setting.
Their work, however, starts with structured knowl-
edge, specifically a Biology ontology.

Lastly, many Science Question Answering
datasets (e.g. Clark et al., 2016, 2018) have been
released that need broad external knowledge to
answer the questions. However, these questions
are not associated with a core set of facts, i.e., an
“open book” used to define these questions. As
a result, the questions vary widely in style and
complexity (Clark et al., 2018). In contrast, Open-
BookQA focuses on a more well-defined subset of
science QA, appealing to one core fact from the
open book and one (or few) relatively simple com-
monly known supporting facts.

3 OpenBookQA Dataset

The OpenBookQA dataset consists of about 6,000
4-way multiple-choice questions, each associated
with one core fact from a “book” F of 1326 such
facts, and an auxiliary set K of about 6000 ad-
ditional facts. The questions were created via a
multi-stage crowdsourcing and partial expert fil-
tering process, discussed in Section 3.1.

The small “book” F consists of recurring sci-
ence themes and principles, each of which can be
(and here is) instantiated into multiple questions.

4SemEval-2018 Task 11: Machine Comprehension using
Commonsense Knowledge https://competitions.
codalab.org/competitions/17184

For F , we use a subset of the WorldTree corpus
which Jansen et al. (2018) have analyzed for suf-
ficiency for elementary level science. The subset
we use is taken from the 2287 WorldTree facts that
were marked as “central” by the original authors
in at least one explanation. We further filter them
down to 1326 that appear general enough to be ap-
plicable to multiple situations.

OpenBookQA additionally requires broad com-
mon knowledge, which is expected to come from
large corpora, such as ConceptNet, Wikipedia, or
a corpus with 14M science-related sentences used
by some existing baselines. The crowdsourcing
process below also asks workers to mark a second
fact, k, needed for each question q, in addition to
f . These second facts, unfortunately, were often
incomplete, over-complete, or only distantly re-
lated to q. We thus include in OpenBookQA the
set K of such second facts only as auxiliary data
for optional use. We emphasize that K should not
be viewed as ‘gold’ additional facts, or as a substi-
tute for broad common knowledge.

3.1 Crowdsourcing Process

The overall question generation and filtering
pipeline is summarized in Figure 2. Given the
“book” F of core facts, the process proceeds as
follows, starting with an empty question set Qs
and an empty ‘second facts’ set K:

1. A crowd-worker5 w is shown a random sci-
ence fact f from the set F .

2. w is asked to think of a second common fact,
k, that may be combined with f to derive a new,
valid assertion s.

3. w then converts s into a question-answer pair
and extends this into a 4-way multiple choice
question by adding 3 incorrect answer choices,
qmc = (q, {c1, c2, c3, c4}), where one of the ci’s
is the unique correct answer.

4. The system verifies qmc passes basic checks
such as uniformity of answer choices.6

5. w then feeds the multiple-choice question qmc

to an information retrieval solver (Clark et al.,

5 We used Amazon Mechnical Turk, with workers from
North America and with a ‘masters’ level qualification.

6Specifically, it looks for: 1) exactly 4 answer choices; 2)
no negation words to trivially fool baselines (no, none, not,
isn’t, doesn’t, aren’t, don’t, won’t, except, can’t, shouldn’t,
wouldn’t, couldn’t, mustn’t); 3) uniform answer choice
length: all with at most 3 or at least 4 words.

https://competitions.codalab.org/competitions/17184
https://competitions.codalab.org/competitions/17184
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Figure 2: OpenBookQA question generation pipeline

2016) and a word association based solver (Tur-
ney, 2017), and verifies that (a) neither of them an-
swers qmc correctly and (b) the top 3 IR retrieved
sentences are insufficient to answer qmc; if not, the
question is edited and re-tried.

6. Question qmc is then shown to 5 new crowd-
workers, who are asked to answer it.

7. If at least 4 out of 5 workers answer qmc cor-
rectly, it is deemed answerable and the process
continues. If not, qmc is discarded.

8. The answer choices of qmc are randomly shuf-
fled to avoid unintended bias.7

9. qmc is associated with f as the core science
fact and added to the question setQ. k is added to
the set K of additional (noisy) facts.

The Dev and Test splits were further filtered by
an in-house expert to ensure higher quality.

3.2 Human Performance
To assess human accuracy on this dataset, we con-
sider the following model: Each question q ∈ Q
has some (unknown) human accuracy pq, defined
as the probability that a random human subject,
chosen uniformly from a large pool H, would
answer q correctly. Thus, we can think of this
as defining a Bernoulli random variable, Xq ∼
B(pq), whose mean is (unknown) pq. The aver-
age human accuracy on Q under this model is:

H(Q) = 1

|Q|
∑
q∈Q

pq

where {pq | q ∈ Q} are unknown.
With H as the set of crowd-workers (cf. Foot-

note 5), step 6 of the above question generation
7Choice ‘A’ was the correct answer in 69% of the ques-

tions at the end of Step 4.

process is equivalent to obtaining 5 independent
samples, Xq,i, i ∈ I, |I| = 5, from B(pq). We
must, however, be careful when using this data to
estimate pq, as the same 5 samples were used to
decide whether q makes it into the question set Q
or not. For instance, if we had kept only those
questions that all 5 workers answered correctly, it
would clearly be inaccurate to claim that the hu-
man accuracy on Q is 100%. Nevertheless, it is
possible to re-use the judgments from Step 6 to
approximate H(Q) with high confidence, without
posing the questions to new workers.

Intuitively, if all questions in Q were difficult
to answer (i.e., all pq were small), it would be un-
likely that all |Q| questions would pass the test in
Step 6. We can use the contrapositive of this obser-
vation to conclude that pq, on average, must have
been high for q ∈ Q.

Formally, aggregating across all questions gives
the following empirical estimate of H(Q):

H̃(Q) = 1

|Q|
∑
q∈Q

1

|I|
∑
i∈I

Xq,i

=
1

|Q||I|
∑

q∈Q,i∈|I|

Xq,i

For analysis, we assume all samplesXq,i are in-
dependent, i.e., every answer is obtained indepen-
dently.8 An application of Hoeffding’s Inequal-
ity (Hoeffding, 1963) shows that H̃(Q) converges
toH(Q) very rapidly as n = |Q||I| grows; specif-
ically, H̃(Q) ≤ H(Q)+ t with probability at least
1−exp(−2nt2); similarly for H̃(Q) ≥ H(Q)−t.
In our Dev and Test sets, where |Q| = 500 and
|I| = 5, this translates into H(Q) being at least

8Realistically, there is some dependence across questions
as a single worker may answer multiple questions. We leave
a formal analysis of this setting as future work.
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OpenBookQA Statistics
# of questions 5957
# of choices per question 4
Avg. question sentences 1.08 (6)
Avg. question tokens 11.46 (76)
Avg. choice tokens 2.89 (23)
Avg. science fact tokens 9.38 (28)
Vocabulary size (q+c) 11855
Vocabulary size (q+c+f) 12839
Answer is the longest choice 1108 (18.6%)
Answer is the shortest choice 216 (3.6%)

Table 1: Statistics for full OpenBookQA dataset. Par-
enthetical numbers next to each average are the max.

H̃(Q) − 3% with probability over 98.8% and at
least H̃(Q) − 2.5% with prob 95.6%; we report
the former as our conservative estimate on human
performance.

3.3 Question Set Analysis
OpenBookQA consists of 5957 questions, with
4957/500/500 in the Train/Dev/Test splits.9 Ta-
ble 1 summarizes some statistics about the full
dataset. Each question has exactly four answer
choices and one associated fact used in the cre-
ation process. We report the average length of
questions, candidate choices, and associated facts,
as well as how often is the longest/shortest choice
the correct one.

We analyzed 100 questions in the Train set to
capture the kind of common knowledge and rea-
soning needed. For each, we wrote down the addi-
tional common knowledge needed to answer this
question in addition to the original science fact. In
21% of the cases, the crowdsourced question ac-
tually tests for a fact that doesn’t necessarily need
the original science fact. For example, the ques-
tion: “On a rainy day the clouds are (A) low (B)
white (C) small (D) gray” was written based on
the science fact “clouds produce rain” but doesn’t
need this fact to answer it. We ignore such ques-
tions in our analysis. For the remaining ques-
tions, we categorized the additional facts into five
high-level categories (and collapsed the remain-
ing facts into a catch-all OTHERS category) based
on previous approaches on similar science ques-
tions (Clark et al., 2018; Jansen et al., 2016):

1. ISA: Basic taxonomic facts such as isa(tree,
9Overall, 8140 questions were collected, of which 2183

were discarded in crowdsourcing Step 7.

Fact Type % Questions % Facts
PROPERTY 29.11% 25.81%
ISA 20.25% 17.20%
BASIC 17.72% 19.35%
DEFINITION 17.72% 15.05%
CAUSAL 11.39% 9.68%
OTHERS 13.92% 12.90%

Table 2: Percentage of questions and facts for the five
most common type of additional facts. Note that %
Questions does not add up to 100% since we count the
percentage of questions where at least one such fact is
needed.

living thing), isa(granite, rock).
2. PROPERTY: Properties of objects such as

madeof(belt buckle, metal), has(mammals,
four legs), contains(lemon juice, citric acid).

3. DEFINITION: Definitions of objects that may
be based on their appearance (tape is a plastic
with markings), working mechanism (tele-
scope is a device that uses mirrors to view
objects), etc.

4. CAUSAL: Causal facts such as causes(adding
lemon juice to milk, milk to break down).

5. BASIC: General scientific fact that did not fit
above, e.g. squirrels eat nuts for food.

Table 2 presents the proportions of these facts
in our analyzed question set. For each type of
fact, we calculate the percentage of questions that
need at least one such fact (shown as % Ques-
tions). We also calculate the overall percentage
of each fact type across all the common knowl-
edge facts (shown as % Facts). Most of our ques-
tions need simple facts such as isa knowledge and
properties of objects, further confirming the need
for simple reasoning with common knowledge.
Apart from these five major categories of facts,
the catch-all OTHERS category contains common-
sense facts (e.g., it is dark at night), world knowl-
edge (e.g., Japan is often hit by earthquakes) and
lexical rewrites10 (e.g., ad infinitum means over
and over).

Most of our questions need simple facts that
should be easily retrievable from any knowledge-
base/textual corpora. On an average, each ques-
tion needed 1.16 additional facts ignoring any lin-
guistic variations. Despite the simplicity of the
knowledge needed for these questions, as we show

10Of course, every question had lexical variations. We
marked it when this was the only change to the core fact.



2386

empirically, most baseline approaches achieve a
relatively low score on this dataset (even when
the core fact is provided). We claim that this is
due to the fact that the reasoning needed to answer
these questions is non-trivial. Table 3 shows few
questions with the associated facts and high-level
reasoning needed to answer these questions. As-
suming a model can extract the described relations
(e.g. defn, contains), the QA system still needs to
be able to chain these facts together, identify the
resulting relation and verify its expression for each
choice. In the extreme case (as shown in the last
example), even though only one additional fact is
needed to answer the question, it needs a system
to apply the core “general” science fact to a “spe-
cific” situation.

4 Baseline Models

We evaluate the performance of several baselines
systems on the Dev and Test subsets of Open-
BookQA. For each question, a solver receives 1
point towards this score if it chooses the correct
answer, and 1/k if it reports a k-way tie that
includes the correct answer. The “Guess All”
baseline, which always outputs a 4-way tie, thus
achieves a score of 25%, same as the expected per-
formance of a uniform random baseline.

4.1 No Training, External Knowledge Only

Since OpenBookQA is a set of elementary level
science questions, one natural baseline category
is existing systems that have proven to be effec-
tive on elementary- and middle-school level sci-
ence exams. These pre-trained systems, however,
rely only on their background knowledge and do
not take the set F of core facts into account. Fur-
ther, their knowledge sources and retrieval mecha-
nism are close to those used by the IR solver that,
by design, is guaranteed to fail on OpenBookQA.
These two aspects place a natural limit on the ef-
fectiveness of these solvers on OpenBookQA, de-
spite their excellent fit for the domain of multiple-
choice science questions. We consider four such
solvers.

PMI (Clark et al., 2016) uses pointwise mutual
information (PMI) to score each answer choice us-
ing statistics based on a corpus of 280 GB of plain
text. It extracts unigrams, bigrams, trigrams, and
skip-bigrams from the question q and each answer
choice ci. Each answer choice is scored based on
the average PMI across all pairs of question and

answer n-grams.
TableILP (Khashabi et al., 2016) is an Integer

Linear Programming (ILP) based reasoning sys-
tem designed for science questions. It operates
over semi-structured relational tables of knowl-
edge. It scores each answer choice based on the
optimal (as defined by the ILP objective) “sup-
port graph” connecting the question to that an-
swer through table rows. The small set of these
knowledge tables, however, often results in miss-
ing knowledge, making TableILP not answer 24%
of the OpenBookQA questions at all.

TupleInference (Khot et al., 2017), also
an ILP-based QA system, uses Open IE tu-
ples (Banko et al., 2007) as its semi-structured rep-
resentation. It builds these subject-verb-object tu-
ples on-the-fly by retrieving text for each question
from a large corpus. It then defines an ILP pro-
gram to combine evidence from multiple tuples.

DGEM (Khot et al., 2018) is a neural entail-
ment model that also uses Open IE to produce a
semi-structured representation. We use the adap-
tation of this model to multiple-choice question
answering proposed by Clark et al. (2018), which
works as follows: (1) convert q and each ci into
a hypothesis, hi, and each retrieved fact into a
premise pj ; and (2) return the answer choice with
the highest entailment score, argmaxi e(pj , hi).

4.2 No Training; F and Extr. Knowledge

We also consider providing the set F of core
facts to two existing solvers: the IR solver of
Clark et al. (2016) (to assess how far simple word-
overlap can get), and the TupleInference solver.

4.3 Trained Models, No Knowledge

We consider several neural baseline models that
are trained using Train set of OpenBookQA. For
ease of explanation, we first define the notation
used in our models. For a given question qmc =
(q, {c1, c2, c3, c4}), we define the set of token se-
quences , S = {q, c1, c2, c3, c4}. For each token
sequence s ∈ S, wsj is the jth and esj = Emb(wsj )
is the embedding for this token. We use ns to
indicate the number of tokens in s and d for the
dimensionality of the embeddings.11 We model
multiple-choice QA as multi-class classification:
Given qmc, predict one of four class labels L =

11For all experiments we use d = 300 GloVe (Pennington
et al., 2014) embeddings pre-trained on 840B tokens from
Common Crawl (https://nlp.stanford.edu/projects/glove/).
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Question Science Fact Common Knowledge
(Type)

Reasoning
Challenge

What is the most likely to be an effect of acid rain
on an aquatic environment? (A) increase in plant
growth (B) increase in fish population (C)
decrease in plant life (D) cleaner and clearer water

acid rain has a
negative impact on
water quality

decrease in water
quality leads to a
decrease in aquatic life
(CAUSAL)

causes(x, y) ∧
causes(y, z)⇒
causes(x, z)

The moon’s surface (A) is smooth on the entire
surface (B) contains an internal core of cheese (C)
is filled with lakes (D) contains large cavities
cause by explosions

the moon’s surface
contains many
craters

Craters are large
cavities caused by
explosions
(DEFINITION)

contains(x, y) ∧
defn(y, z)⇒
contains(x, z)

As a car approaches you in the night (A) the
headlights remain at a constant (B) the headlights
turn off (C) the headlights become more intense
(D) the headlights recede into the dark

as a source of light
becomes closer,
that source will
appear brighter

Headlights of a car are
source of light
(PROPERTY)

[lhs⇒ rhs]⇒
[ground(lhs)⇒

ground(rhs)]

Table 3: Example training questions (with their correct choices marked) along with the facts and reasoning
needed. In the last example, the science fact states that lhs=“source of light becomes closer” implies rhs=“source
will appear brighter”. Grounding this rule based on the common-knowledge fact, produces a new rule: “As head-
lights of the car come closer, headlights will appear brighter”

{1, 2, 3, 4}, where the true label is the correct an-
swer index.

Embeddings + Similarities as Features. We
first experiment with a simple logistic regression
model (Mihaylov and Nakov, 2016; Mihaylov and
Frank, 2016, 2017) that uses centroid vectors remb

s

of the word embeddings of tokens in s, and then
computes the cosine similarities between the ques-
tion and each answer choice, rcos

q,ci :

remb
s =

1

ns

ns∑
j=1

esj ∈ Rd

rcos
q,ci = cos(remb

q , remb
ci ) ∈ R1

For each training instance, we build a feature rep-
resentations ~f by concatenating these vectors and
train an L2 logistic regression classifier:

~f = [remb
q ; remb

c1..4 ; r
cos
q,c1..4 ] ∈ R5d+4

BiLSTM Max-Out Baselines. As a simple
neural baseline, we adapt BiLSTM max-out
model (Conneau et al., 2017) to our QA task. That
is, we first encode the question tokens and choice
tokens ws1...ns

, independently with a bi-directional
context encoder (LSTM) to obtain a context (ctx)
representation hctx

s1...ns
= BiLSTM(es1...ns

) ∈
Rns×2h Next, we perform an element-wise aggre-
gation operation max on the encoded representa-
tions hctx

s1..ns
to construct a single vector:

rctx
s = max(hctx

s1..ns
) ∈ R2h. (1)

Given the contextual representations for each
token sequence, we experiment with three config-
urations for using these representations for QA:

(a) Plausible Answer Detector. This baseline
goes to the extreme of completely ignoring q and
trying to learn how plausible it is for ci to be the
correct answer to some question in this domain.
This captures the fact that certain choices like ‘a
magical place’ or ‘flying cats’ are highly unlikely
to be the correct answer to a science question with-
out negation (which is the case for OpenBookQA).

We implement a plausible answer detector us-
ing a choice-only model for predicting the an-
swer by obtaining a score αci as: αci =
W T
c r

ctx
ci ∈ R1, where W T

c ∈ R2h is a
weights vector optimized during training, i =
{1..4} is the index of the choice. To ob-
tain the answer choice from the set of choice
scores αc1..4 using argmax(softmax(αc1..4)),

where softmax(αci) =
exp(αci )∑4

j=1 exp(αcj )
as usual.

(b) Odd-One-Out Solver. It considers all 4 an-
swer options jointly and selects the one that is least
similar to the others. This captures bias in human
authored questions arising from the fact that cre-
ating good quality incorrect answers is difficult.
Workers generally start with the correct answer,
and then come up with three incorrect ones. The
latter often tend to be homogeneous or share other
common properties (e.g., non-scientific terms) un-
characteristic of the correct answer.

We implement this using a choice-to-choices at-
tention model. For each choice ci, we calculate the
attention to the other choices as αci,cj . We then
sum these attention values to compute the atten-
tion for ci to the rest of the choices, αci2cr(est) , and
return the choice with the lowest sum. The atten-
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tion is computed as αci,cj = Att(rctx
ci , r

ctx
cj ) where

Att(u, v) =W T ([u; v;u · v; |u− v|]) ∈ R1

is a linear attention function and W ∈ R8h is
a weight vector. We then compute αci2cr(est) =∑4

j=1 αci,cj (j 6= i) and select the answer with the
index ac2cr = argmin(softmax(αc1..42cr)).

(c) Question Match. This solver tries to predict
which choice best matches the question (Nakov
et al., 2016), without relying on external knowl-
edge. To achieve that, we compute an attention
score αq,ci between q and each of the choices qi as
αq,ci = Att(rctx

q , rctx
ci ), and select the one with the

highest score. We also experiment with a model
where rctx

q and rctx
ci are obtained using token-wise

interaction proposed in ESIM (Chen et al., 2017b).

4.4 Trained Model with External Knowledge
Lastly, we implement a two stage model for in-
corporating external common knowledge, K. The
first module performs information retrieval on K
to select a fixed size subset of potentially relevant
facts KQ,C for each instance in the dataset (see
Appendix A). The second module is a neural net-
work that takes (Q, C, KQ,C) as input to predict
the answer aq,c to a question Q from the set of
choices C.

Knowledge-Enhanced Reader. As a base
knowledge-aware model, we use a variant of
the model of Mihaylov and Frank (2018), im-
plemented by extending our BiLSTM max-out
question-match baseline (c). For each instance
the model reads the question q and answers
c1..4 independently and attends to the set of
retrieved external knowledge facts KQ,C . We
encode each fact kj from KQ,C = k1..Nk

(Nk

is the number of facts) with same BiLSTM
as used for q and c1..4 and construct a single
vector rctx

kj
∈ R2h using Eq. 1. Having such

representations for each kj results in knowledge
memory matrix Mk = rctx

k1..Nk
∈ RNk×2h. Note

that Mk is dynamic memory, specific for each
instance in the batch and is encoded in each
step during training. This memory is used to
calculate a knowledge-aware representation,
rkn
s =

∑
((MT

k r
ctx
s ).Mk) ∈ R2h. Each context

(ctx) representation rctx
s (s ∈ S) is combined with

rkn
s to obtain a knowledge-enhanced representa-

tion rctx+kn
s = (rctx

s + rkn
s )/2. We then model

the knowledge-enhanced attention αkn
q,ci between

Solver Dev Test

Human solver 89.3* 91.7*
Guess All (“random”) 25.0 25.0

NO TRAINING, KB ONLY (§4.1)
TupleInference 15.9 17.9
PMI (Waterloo corpus) 19.7 21.2
TableILP 20.0 23.4
DGEM 27.4 24.4

NO TRAINING, KB + F (§4.2)
IR with F 25.5 24.8
TupleInference with F 23.6 26.6
DGEM with F 28.2 24.6

TRAINED MODELS, NO F OR KB (§4.3)
Embedd+Sim 44.6 41.8
ESIM 53.9±0.4 48.9±1.1
Plausible Answer Detector 54.4±0.7 49.6±0.7
Odd-one-out Solver 56.9±0.5 50.2±1.6
Question Match 54.6±1.2 50.2±0.9

ORACLE MODELS, F AND/OR KB (§4.4)
f 63.0±2.3 55.8±2.3
f + WordNet 57.6±1.4 56.3±1.3
f + ConceptNet 57.0±1.6 53.7±1.5
f + k 80.2±1.1 76.9±0.7

Table 4: Scores obtained by various solvers on Open-
BookQA, reported as a percentage± the standard devi-
ation across 5 runs with different random seeds. Other
baselines are described in the corresponding referenced
section. For oracle evaluation, we use the gold science
fact f associated with each question, and optionally the
additional fact k provided by the question author. Bold
denotes the best Test score in each category.

q and ci as a linear combination of the ctx, kn and
ctx + kn representations as

αq,ci =W T [Att(rctx
s , rctx

ci ); Att(rkn
s , r

kn
ci );

Att(rctx+kn
s , rctx

ci ); Att(rctx
s , rctx+kn

ci );

Att(rctx
s , rkn

ci ); Att(r
kn
s , r

ctx
ci );

Att(rctx+kn
s , rkn

ci ); Att(r
kn
s , r

ctx+kn
ci );

Att(rctx+kn
s , rctx+kn

ci )],

where W ∈ R9 is a weight vector initialized with
the ones vector and optimized during training. We
then select the answer ci with the highest score.

5 Baseline Performance

The results for various baseline models are sum-
marized in Table 4, grouped by method category.
We make a few observations:

First, the task is largely solvable by a lay-
person, as evidenced by the 92% score of crowd-
workers. This is measured as described in Sec-
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tion 3.2. We use annotations from Step 6 of the
question generation process and report H̃(Q)−3%
as a conservative lower estimate. As an additional
assessment, we also obtained 5 new annotations
for 100 randomly chosen questions from each of
Train, Dev, and Test sets. The performance re-
mained similar at 88.6%, 90.2%, and 91.6%, resp.

The second group shows that pre-trained
state-of-the-art solvers for multiple-choice science
questions perform poorly. One explanation is their
correlation with the the IR method used for ques-
tion filtering, as mentioned in Section 4.1.

The third group of results suggests that adding
F to pre-trained models has a mixed effect, im-
proving TupleInference by 8.7% but not changing
DGEM.12 Unlike DGEM, TupleInference relies
on brittle word-overlap similarity measures very
similar to the ones used by IR. Since IR (KB) gets
0% by design, TupleInference (KB) also has poor
performance and adding F helps it find better sup-
port despite the brittle measures.

The fourth group demonstrates that carefully
designed trainable neural models—even if sim-
plistic and knowledge-free—can be surprisingly
powerful. For example, the “plausible answer
detector” can predict the correct answer with
49.6% accuracy without even looking at the ques-
tion. The “odd-one-out” solver, by considering
other answer choices, raises this to 50.2%. The
“question match” solver, which simply compares
the BiLSTM max-out encoding of the question
with that of various answer choices, also achieves
50.2%.13 Similar findings have been reported for
several recent datasets (Gururangan et al., 2018),
making it imperative to perform such tests early.

Interestingly, all of these neural knowledge-free
baselines simultaneously succeed on 34.4% of the
Dev questions, and simultaneously fail on 23.6%.
For Question Match and ESIM we also experi-
ment with ElMo (Peters et al., 2018) which im-
proved their score on Test with 0.4% and 1.8%.

The final group demonstrates the need for ex-
ternal knowledge and deeper reasoning. When the
“oracle” science fact f used by the question author
is provided to the knowledge-enhanced reader,

12By design, IR with its default corpus gets 0% on Open-
BookQA. Hence we don’t consider the effect of adding F ,
which appears artificially magnified.

13This model also achieves the current best score, 33.87%,
on the ARC Reasoning Challenge (Clark et al., 2018).
When adapted for the textual entailment task by comparing
BiLSTM max-out encodings of premise and hypothesis, it
achieves 85% on the SciTail dataset (Khot et al., 2018).

it improves over the knowledge-less models by
about 5%. However, there is still a large gap,
showing that the core fact is insufficient to answer
the question. When we also include facts retrieved
from WordNet (Miller et al., 1990), the score im-
proves by about 0.5%. Unlike the WordNet gain,
adding ConceptNet (Speer et al., 2017) introduces
a distraction and reduces the score. This suggests
that ConceptNet is either not a good source of
knowledge for our task, or only a subset of its
relations should be considered. Overall, external
knowledge helps, although retrieving the right bits
of knowledge remains difficult. In the last row of
Table 4, we use the oracle core fact along with
question author’s interpretation of the additional
fact k. This increases the scores substantially, to
about 76%. This big jump shows that improved
knowledge retrieval should help on this task. At
the same time, we are still not close to the hu-
man performance level of 92% due to various rea-
sons: (a) the additional fact needed can be sub-
jective, as hinted at by our earlier analysis; (b)
the authored facts K tend to be noisy (incomplete,
over-complete, or only distantly related), also as
mentioned earlier; and (b) even given the true gold
facts, performing reliable “reasoning” to link them
properly remains a challenge.

Sample predictions and analysis of questions
from Dev are provided in Appendix D.

6 Conclusion

We present a new dataset, OpenBookQA, of about
6000 questions for open book question answering.
The task focuses on the challenge of combining a
corpus of provided science facts (open book) with
external broad common knowledge. We show that
this dataset requires simple common knowledge
beyond the provided core facts, as well as multi-
hop reasoning combining the two. While simple
neural methods are able to achieve an accuracy of
about 50%, this is still far from the human perfor-
mance of 92% on this task. We leave closing this
gap for future research, and illustrate, via oracle-
style experiments, the potential of better retrieval
and reasoning on this task.
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