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Abstract

This paper addresses the problem of mapping
natural language text to knowledge base enti-
ties. The mapping process is approached as a
composition of a phrase or a sentence into a
point in a multi-dimensional entity space ob-
tained from a knowledge graph. The composi-
tional model is an LSTM equipped with a dy-
namic disambiguation mechanism on the input
word embeddings (a Multi-Sense LSTM), ad-
dressing polysemy issues. Further, the knowl-
edge base space is prepared by collecting ran-
dom walks from a graph enhanced with textual
features, which act as a set of semantic bridges
between text and knowledge base entities. The
ideas of this work are demonstrated on large-
scale text-to-entity mapping and entity classi-
fication tasks, with state of the art results.

1 Introduction

The task of associating a well-defined action, con-
cept or piece of knowledge to a natural language
utterance or text is a common problem in natu-
ral language processing and generic artificial in-
telligence (Tellex et al., 2011), and can emerge
in many different forms. In NLP, the ability to
code text into an entity of a knowledge graph
finds applications in tasks such as question an-
swering and information retrieval, or any task that
involves some form of mapping a definition to a
term (Hill et al., 2016; Rimell et al., 2016). Fur-
ther, it can be invaluable in providing solutions to
domain-specific challenges, for example medical
concept normalisation (Limsopatham and Collier,
2016) and identification of adverse drug reactions
(O’Connor et al., 2014).

This paper details a model for efficiently map-
ping unrestricted text at the level of phrases and
sentences to the entities of a knowledge base

∗ This paper is dedicated to the memory of Euripides
Kartsaklis, a man who loved technology.

(KB)—a task also referred to as text grounding or
normalisation. The model aims at characterising
short focused texts, such as definitions or tweets.
Given a medical KB, for example, a tweet of
the form “Can’t sleep, too tired to think straight”
would be mapped to the entity Insomnia, while
in the context of a lexical ontology the definition
“Device that detects planets” would be associated
to the entity Telescope.

Note that such a task cannot be approached
as standard classification, since the “classes” (en-
tities) are usually in one-to-one correspondence
with the available inputs. To address this we pro-
pose the use of a continuous vector space for em-
bedding the entities of the KB graph, where text
is projected by a neural network. We rely on the
notion of distributional semantics, where a word
is represented as a multi-dimensional vector ob-
tained either by collecting co-occurrence statistics
with a selected set of contexts or by directly opti-
mising an objective function in a neural network-
based architecture (Collobert and Weston, 2008).
Interestingly, similar techniques can be used for
the multi-dimensional representation of nodes in
a KB graph; for example, by collecting random
walks following the edges of a graph it is possi-
ble for one to construct an artificial “corpus”, to
which a distributional model applies in the usual
way (Perozzi et al., 2014).

By exploiting this representational compatibil-
ity, we treat the process of text-to-entity map-
ping as a transformation from a textual vector
space where words live, to a KB vector space cre-
ated from a graph and populated by vectors rep-
resenting entities. A sentence is coded as a se-
quence of word vectors, composed by a modi-
fied Long Short-Term Memory network (LSTM—
Hochreiter and Schmidhuber, 1997) into a multi-
dimensional point in the entity space. One of our
aims is to specifically deal with lexical ambiguity
and polysemy which can be an important factor
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for the task at hand. To this end, each word is as-
sociated with a number of sense embeddings, and
the LSTM is extended with an attentional disam-
biguation mechanism that dynamically selects and
updates the right sense vector for each word given
its context during training. We dub this formula-
tion Multi-Sense LSTM (MS-LSTM).

An important issue is the provision of a set of
reliable anchors; that is, points in one-to-one cor-
respondence between the two representations that
would enforce some degree of structural similar-
ity between pieces of text and KB entities and
thus make the mapping more efficient. We deal
with this problem by extending the original KB
graph with nodes corresponding to textual fea-
tures, i.e. to words strongly associated to a spe-
cific entity and collected from various resources.
A novel sampling strategy is detailed for incor-
porating these nodes to random walks, which are
then fed to the skipgram model for producing an
entity space. The results indicate that the textual
nodes, being words and KB entities at the same
time, do an extremely effective job in transform-
ing the geometry of the entity space to the benefit
of mapping the textual modality.

The proposed model is evaluated in three tasks:
text-to-entity mapping on a dataset extracted from
SNOMED CT1, a medical knowledge base of
327,000 concepts; a reverse dictionary task based
on WordNet (Miller, 1998), where the goal is to
associate a multi-word definition to the correct
lemma (Hill et al., 2016); and document classifica-
tion on the Cora dataset (McCallum et al., 2000).
The results demonstrate the effectiveness of our
methods by improving the current state of the art.

2 Background

Aligning meaning between text and entities in
a knowledge graph is a task traditionally based
on heuristic methods exploiting text features such
as string matching, word weighting, syntactic re-
lations, or dictionary lookups (McCallum et al.,
2005; Lu et al., 2011; O’Connor et al., 2014). Ma-
chine learning techniques have been also exploited
in various forms, for example Leaman et al. (2013)
use a pairwise learning-to-rank technique to learn
the similarity between different terms, while Lim-
sopatham and Collier (2015) apply statistical ma-
chine translation to “translate” social media text to
domain-specific terminology. There is little work
based on neural networks; the most relevant to us

1https://www.snomed.org/snomed-ct

is a study by Hill et al. (2016), who tested a num-
ber of compositional neural architectures trained
to approximate word embeddings on a reverse dic-
tionary task. Compared to their work, this paper
proposes the use of a distinct target space for rep-
resenting ontological knowledge, where every en-
tity in the graph lives.

The goal of a graph embedding method is to em-
bed components of a knowledge graph into a low-
dimensional space. One research direction focuses
on the relations, i.e. the edges of the graph (Bor-
des et al., 2013; Socher et al., 2013; Xiao et al.,
2016) and aims at tasks such as link prediction
and KB completion. Such work is outside the
scope of the current paper, the subject of which
is the efficient low-dimensional representation of
entities (nodes). In this line of research, a preva-
lent method involves the collection of a set of ran-
dom walks, starting from each node in the graph
(Perozzi et al., 2014; Grover and Leskovec, 2016).
There is a direct analogy between such a set of
random walks and a text corpus: each node corre-
sponds to a word and the sequence of nodes vis-
ited during a random walk is analogous to a sen-
tence. Thus, any distributional model that takes
as input this artificial “corpus” can generate multi-
dimensional representations of the nodes in the
graph. Random walks have also been used for KB
inference (Lao et al., 2011) with success.

While random walk-based methods are not the
only way to construct graph spaces—alternatives
include factorisation (Ahmed et al., 2013) and
deep autoencoders (Wang et al., 2016)—they have
been found very effective in capturing multiple as-
pects of the graph structure (Wang et al., 2017;
Goyal and Ferrara, 2017). The current paper pro-
poses a random walk generation strategy that im-
proves and complements existing approaches.

The idea of using textual features to improve the
entity vectors is not well explored, and most of the
existing work focuses again on the representation
of relations (Xie et al., 2016; Wang et al., 2014;
Wang and Li, 2016) as opposed to entities. Closer
to us is the work of Yamada et al. (2017) and Yang
et al. (2015), with the latter to incorporate text fea-
tures in the concept embeddings by exploiting ma-
trix factorisation properties.

Representing the meaning of words using
a number of sense vectors is an old and
well-established idea in NLP—see for example
(Schütze, 1998; Reisinger and Mooney, 2010;
Neelakantan et al., 2014). However, most of the
relevant research is evaluated on intrinsic tasks

https://www.snomed.org/snomed-ct
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Figure 1: The text-to-entity mapping system in a nut-
shell. The red nodes indicate textual features, while
“MSE” stands for mean squared error.

such as word similarity, while in the few works
based in real end tasks, disambiguation is usu-
ally treated as a prior stand-alone step (Kartsak-
lis and Sadrzadeh, 2013; Li and Jurafsky, 2015;
Pilehvar et al., 2017). The crucial difference of
this work is that the ambiguity resolution mecha-
nism is part of the compositional model itself, and
the sense embeddings are trained simultaneously
with the rest of the parameters. A close work is by
Cheng and Kartsaklis (2015), who used a siamese
network with an integrated disambiguation mech-
anism for paraphrase detection. For more infor-
mation on multi-sense embeddings see (Camacho-
Collados and Pilehvar, 2018).

3 Methodology

Fig. 1 provides a high-level illustration of our
methodology, consisting of two stages: (1) the
KB graph is extended with weighted textual fea-
tures, and an artificial “corpus” of random walks
is created and used as input to the skipgram model
(Mikolov et al., 2013) for generating an enhanced
KB space—this part is covered in §3.1; (2) the
transformation from text to entities is performed
by a supervised multi-sense compositional model,
which generates a point in the KB space for every
input text. This is achieved with an LSTM recur-
rent network, equipped with an attentional mech-
anism that provides a finer level of granularity to
the different ways a word is used in the data—we
detail this part in §3.2.

3.1 Textual features for entity vectors

For our KB space, we follow the generic recipe
proposed by Perozzi et al. (2014) and we assemble

an artificial corpus of random walks from the KB
graph, which is then used as input to the skipgram
model (Mikolov et al., 2013). For a random walk
of nodes n1n2 . . . nT and a context window size c,
skipgram maximises the following quantity:

1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(nt+j |nt) (1)

i.e. for a target node nt, the objective is to pre-
dict all other nodes in the same context. As a
consequence, two vectors of the resulting space
will be close if their corresponding nodes occur in
topological proximity within the graph. However,
while such a topology allows perhaps for mean-
ingful comparisons between points in this space, it
is not directly compatible with the task of mapping
text to entities. The reason is that the communities
formed in a KB graph (and thus the topology of
the resulting vector space) mostly reflect domain-
specific hierarchies and ontological relationships
that are not necessarily evident by the textual rep-
resentations referring to the entities. An impor-
tant question therefore with regard to the proposed
methodology is how to provide meaningful links
between the two representations that would allow
for the efficient translation of one form (text) to
another (entities).

In this work, we address this problem by associ-
ating every node in the graph with a set of textual
features, each one of which is weighted according
to their importance with respect to the node. Our
methodology is as follows: For each entity, we
collect all available textual descriptions found in
the knowledge base itself and the English portion
of BabelNet (Navigli and Ponzetto, 2012), which
is a very large dictionary integrating numerous re-
sources, such as WordNet, Wikipedia, FrameNet
and many others. The textual descriptions are
treated as short documents, and each word in them
is assigned a specific TF-IDF value, forming the
set of textual features for the specific entity.

The KB graph is extended in the following way:
Let Tc be the set of textual features for an entity
c; then, for each t in Tc, we add an edge (c, t)
with weight tf-idfc(t), where tf-idfc(t) is the TF-
IDF value of t with respect to c. In contrast to
Perozzi et al. (2014) who utilise a uniform node
sampling strategy, we define the random walk gen-
eration process as follows: Given a randomly se-
lected node n, let Cn = {c1, c2, · · · cN} be the set
of all entity nodes in its immediate vicinity, and
Tn = {t1, t2, · · · tM} the set of all textual features
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λ = 0 λ = 0.5 λ = 1

Figure 2: Effect of λ parameter. Blue nodes indicate
entities, red nodes textual features, and red paths re-
fer to random walks. As λ increases, the probability
of “hops” between originally unlinked nodes increases
accordingly.

of n; the next node x in the path is drawn from a
categorical distribution defined as below:

PX(x) =


(1− λ) 1

N
if x ∈ Cn

λ
tf-idfn(ti)∑M
j=1 tf-idfn(tj)

if x ∈ Tn

(2)

for X a discrete random variable with range Cn ∪
Tn. In the above, λ defines the proportion of
the probability mass allocated to textual features,
when both Cn and Tn are non-empty; if one of the
sets is empty, all of the probability mass is allo-
cated to the other set, and λ becomes irrelevant.
Further, in contrast to what is the case for the tex-
tual nodes, the probabilities of the entity nodes in
Equation 2 are defined uniformly, since we lack
any mechanism for fine-tuning them in a way that
objectively reflects the importance of the nodes.

It is instructive to examine how the above sam-
pling strategy works. As expected, setting λ = 0
will result in a sampling process that ignores the
textual features and produces a path comprised
solely of entity nodes; this is equivalent to the
original model by Perozzi et al. (2014), known as
DeepWalk. On the other hand, the effect of setting
λ = 1 is less intuitive: Recall that, by construc-
tion, each textual node is connected only to entity
nodes; that is, when the current node is textual,
the next node will be always sampled from Cn.
Therefore, setting λ = 1 creates paths following
an alternating pattern, where each entity node is
followed by a textual node, which in turn is fol-
lowed by an entity node. Values of λ between 0
and 1 scale this behaviour accordingly (Fig. 2).

Advantages. The introduction of textual fea-
tures in the graph achieves two goals. Firstly,
the textual nodes serve as links between entities
which, although perhaps related to each other in
some way, lie in different parts of the KB graph
(e.g. being parts of different hierarchies). As
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Figure 3: Linking of distant concepts with textual fea-
tures (red boxes) for λ = 1. The textual feature under-
standing correctly links a related medical finding (ly-
ing on a different branch) to the condition known as
alexia. Further, due to the presence of inability in their
contexts, the vectors of alexia and insomnia (concepts
originally quite far apart in the graph) will now have
a common part reflecting that they are both conditions
related to forms of incompetence.

a result, points that would normally be unjustifi-
ably apart of each other in the vector space are
now brought closer, providing additional coher-
ence. This behaviour is controlled by the λ pa-
rameter, as Fig. 2 shows. Fig. 3 presents an illus-
trative example, taken from a real random walk on
SNOMED CT.

The second advantage of introducing textual
features in the graph is a consequence of the dual
nature of these features in the context of learn-
ing: they essentially represent words, but since
they are also nodes of the graph, they get vector
representations exactly as every other normal en-
tity in the knowledge base. The textual features,
therefore, paired with their assigned vectors, form
a set of anchors that links pieces of text with the
KB space, and can be used to support the train-
ing process of the mapping system. In §4.1 we
will see that this approach leads to substantial im-
provements in the accuracy of the model.

3.2 A multi-sense LSTM

We now proceed to present our neural architecture
for text-to-entity mapping. The goal of the model
is, given a certain piece of text, to produce a point
in the KB space corresponding to an appropriate
entity or concept. The model is trained on pairs of
texts and entity vectors created from a graph ex-
tended with textual features, as discussed in §3.1.

Our architecture needs to explicitly take into ac-
count the fact that the task at hand is very sen-
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Figure 4: Detailed architecture of the Multi-Sense
LSTM (MS-LSTM), shown here for the first word of
a phrase. Red vectors refer to senses, while the green
vector is a target vector.

sitive to lexical ambiguity. Specifically, while it
is true that the level of homonymy (words hav-
ing more than one disjoint meanings) is substan-
tially decreased when we move from the generic
domain to more specialised domains, on the other
hand the increase in polysemy (words with many
slightly different meanings) is exponential. As an
example, while the lemma for the word “fever” in
a dictionary usually contains two or three defini-
tions, the term occurs in many dozens of different
forms and contexts in SNOMED. Note that most of
the different uses of the term correspond to distinct
KB nodes, a fact that makes the job of a text-to-
entity mapping system especially hard.2 This mo-
tivates the employment of a dedicated mechanism
that would handle the extra complexity imposed
by the polysemous words.

The compositional setting of this paper, equip-
ped with such a mechanism, is shown in Fig. 4.
It consists of a generic word embedding layer, a
word sense disambiguation layer, and two con-
secutive LSTM networks responsible for encoding
the embeddings into a vector in the KB space. The
objective is to minimise the mean squared error
between the predicted vectors and the target vec-
tors (prepared as in §3.1):

MSE =
1

N

N∑
i=1

‖yi − f(xi)‖2 (3)

where N is the number of training examples, x
the input text, y the target entity vector, and f the
neural network.

To address the polysemy issues discussed
above, every word is associated with a sin-
gle generic embedding and k sense embeddings,
where k is a fixed number. These sense embed-
dings can be seen as centroids of clusters denoting

2See also §4.4 for some concrete examples.

different uses of the word in the training set, and
are dynamically updated during training. Specif-
ically, for each word wi in a training example, a
context vector ci is computed as the average of the
generic vectors of all other words in the sentence.
The probability of each sense vector sij given this
context is then calculated via an attentional mech-
anism equipped with a softmax layer, as follows:

p(sij |ci) =
exp (w′j

ᵀs′ij)∑k
l=1 exp (w

′
l
ᵀs′il)

(4)

where s′ij = tanh(Wsij+Uci), andW ,U andW ′

the parameters of the attentional network. Each
sense vector is subsequently updated by addition
of the context vector weighted by its similarity
with the specific sense:

st+1
ij = stij + (stij

ᵀ
cti)c

t
i (5)

The output of the attention is a weighted sum
of the sense vectors given their probabilities (i.e.
we apply soft attention), which is used as input
to the compositional network—a 2-layer LSTM.
The overall model is optimised on the MSE of the
LSTM’s output vector and the target entity vec-
tor. At inference time, a predicted vector ŷ can
be classified to the entity with the closest vectorial
representation according to some metric.

4 Experiments

The ideas presented in the previous sections are
evaluated on three tasks, two of which are related
to text-to-entity mapping, and one to classifica-
tion of KB entities. The purpose of the classifica-
tion task (§4.3) is to provide a direct comparison
of the textually enhanced vectors against vectors
produced by the original graph, but independently
of the compositional part. On the other hand,
the text mapping experiments (§§4.1, 4.2) evalu-
ate the overall architecture of Fig. 1 (including
the compositional model and the dynamic disam-
biguation mechanism) on appropriate end tasks.
Comparisons are provided with the most relevant
previous work. Specifically, in all tasks, no inclu-
sion of textual features corresponds to the standard
DeepWalk model of Perozzi et al. (2014); in §4.2
our compositional architecture is compared to the
work of Hill et al. (2016) in their reverse dictio-
nary task; and §4.3 compares our method for tex-
tually enhancing the entity space with that of Yang
et al. (2015), and other state-of-the-art deep mod-
els. The last subsection, §4.4, examines a few se-
lected cases from a qualitative perspective.
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4.1 Text-to-entity mapping

We begin with a large scale text-to-entity mapping
experiment. We construct a dataset of 21,000 med-
ical concepts extracted from SNOMED CT, each
of which is associated with a multi-word textual
description, taken from the knowledge base or Ba-
belNet. The criterion for including a concept in
the dataset was the availability of at least one tex-
tual description with 4 or more words. The objec-
tive of the task is to associate each one of these
descriptions to the correct concept. Given a pre-
dicted vector v̂, we assemble a list of all candidate
concept vectors ranked by their cosine similarity
with v̂. We compute strict accuracy (based on how
many times the vector of the correct concept is at
the top of the list) and accuracy on the first 20 el-
ements of the list. Further, we also present results
based on the mean reciprocal rank (MRR).

In all experiments, we create KB vectors of
150 dimensions by applying the skipgram objec-
tive on a set of random walks of length 20, and
with window size of 5. The graph is extended
with 102,500 textual nodes weighted by their TF-
IDF values with regard to the corresponding enti-
ties and selected as described in §3.1 (textual fea-
tures that occur in the testing set are not taken into
account). Each node in the graph serves as the
starting point of 10 random walks. For the compo-
sitional model, we use embeddings of 150 dimen-
sions, and 200-dimensional hidden states. The at-
tentional mechanism is implemented as a 2-layer
MLP, with 50 units allocated to the hidden layer
for each sense. The overall model contains two
dropout layers for regularisation purposes, and
is optimised with Adam (Kingma and Ba, 2015)
(α = 0.001, β1 = 0.9, β2 = 0.999).3

Following usual practice, we split our dataset
in three parts: a training set (14,754 instances), a
testing set (4,187 instances), and a development
set (2,000 instances). We use the dev set to opti-
mise the two main hyper-parameters of our model,
namely the probability mass given to textual fea-
tures (λ) and the number of senses for each word
(k). The experiments on the dev set showed that
increasing the probability mass for the inclusion of
textual features in the random walks leads to con-
sistently better performance for all tested models,
so for the main experiment we set λ to its highest
possible value, 1.00.4 Further, a number of senses

3Python code will be released at https://github.com/
cambridgeltl/SIPHS.

4Recall that this means half of the nodes in a random
walk will be textual (see Fig. 2).

Model Target space MRR Acc Acc-20
Baseline 1 W2V-GoogleNews 0.25 0.19 0.41
Baseline 2 W2V-PubMed 0.17 0.12 0.31

Least squares DeepWalk 0.19 0.10 0.49
TF vectors 0.49 0.37 0.79

CCA DeepWalk 0.36 0.24 0.70
TF vectors 0.71 0.60 0.94

Standard LSTM DeepWalk 0.30 0.20 0.58
(150 dim.) TF vectors 0.82 0.73 0.97

Standard LSTM DeepWalk 0.33 0.23 0.59
(k × 150 dim.) TF vectors 0.86 0.80 0.97

MS-LSTM DeepWalk 0.36 0.26 0.60
TF vectors 0.89 0.84 0.98

MS-LSTM TF vectors 0.94 0.90 1.00+ anchors

Table 1: Results for the SNOMED dataset. For the MS-
LSTM we set k = 3, while TF vectors refers to our
textually enhanced vectors (λ = 1). The difference
between MS-LSTM and LSTM is s.s. with p < 0.01
according to a two-tailed z-test.

equal to 3 achieved the highest performance.
We compare our MS-LSTM with a number of

baselines: In Baselines 1 and 2 a vector for each
textual description is computed as the average of
pre-computed word vectors, and compared to con-
cept vectors prepared in a similar way, i.e. by av-
eraging pre-computed vectors for all words in the
qualified name of the entities. We used two differ-
ent word spaces, a standard Word2Vec space cre-
ated from Google News5 and a custom Word2Vec
model trained on a corpus of 4B tokens from med-
ical articles indexed in PubMed6. In Least squares
and CCA, an averaged vector for each textual de-
scription is again computed as before, and a linear
mapping is learned between the textual space and
the KB space, using least squares and canonical
correlation analysis (Hardoon et al., 2004).

In Standard LSTM, we use a configuration simi-
lar to that of Fig. 4, but without the multi-sense as-
pect; here, the word embeddings are just parame-
ters of the model randomly initialised before train-
ing. Further, we also test a standard LSTM where
the length of the single embeddings is k times big-
ger (k is the number of senses in the MS-LSTM),
so that the overall dimensionality of embeddings
in LSTM and MS-LSTM is the same.

The results are presented in Table 1. Each
model is tested against two target KB spaces, one
consisting of simple DeepWalk vectors7 and one
of textually enhanced vectors (TF vectors, λ = 1)
according to the procedure of §3.1. There are three
observations: (1) Using the enhanced vectors as a

5https://code.google.com/archive/p/word2vec
6http://www.ncbi.nlm.nih.gov/pubmed/
7In our setting, this is equivalent to having λ = 0.

https://github.com/cambridgeltl/SIPHS
https://github.com/cambridgeltl/SIPHS
https://code.google.com/archive/p/word2vec
http://www.ncbi.nlm.nih.gov/pubmed/
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target space improves the performance of all tested
models by a large margin; (2) the MS-LSTM con-
figuration of Fig. 4 achieves the highest overall
performance, showing that explicitly handling pol-
ysemy during the composition is beneficial for the
task at hand; and (3) despite the equal dimension-
ality between the two models, the standard LSTM
with the long embeddings presents performance
inferior to that of the MS-LSTM.

The last row of the table presents results after
extending the training dataset with the textual an-
chors, that is, all the textual features paired with
their learned KB vectors, as described in the Ad-
vantages section in §3.1. Specifically, recall that
each textual feature (a word or a two-word com-
pound), being also a node in the graph, is associ-
ated with a vector according to the process of §3.1.
It is possible for one then to use these (textual fea-
ture, vector) pairs as additional examples during
the training of the MS-LSTM. The last row of Ta-
ble 1 shows the results after extending the training
set with the 102,500 textual features. This setting
achieves the highest performance, increasing fur-
ther the strict accuracy by 6%, to 0.90.

4.2 Reverse dictionary

We proceed to the reverse dictionary task of Hill
et al. (2016), the goal of which is to return a can-
didate term given a definition. Many forms of this
task have been proposed in the past, see for exam-
ple (Kartsaklis et al., 2012; Turney, 2014; Rimell
et al., 2016). In (Hill et al., 2016), the authors test
a number of supervised models under two evalu-
ation modes: (1) “seen”, in which the testing in-
stances are also included in the training set; and
(2) “unseen”, where the evaluation is done on a
held-out set. In both cases the datasets consisted
of 500 term-definition pairs from WordNet.

We treat WordNet as a graph, the edges of
which are defined by the various relationships
between the synsets. This graph is further ex-
tended with 96,734 textual nodes extracted from
the synset descriptions. We compute synset vec-
tors of 150 dimensions, on random walks of length
20 and with window size of 5. For the seen evalu-
ation, we train the compositional model on the to-
tality of WordNet 3.0 synsets (117,659) and their
descriptions. For the unseen evaluation, we re-
move from the graph any textual features occur-
ring in the testing part, and create a new set of
synset vectors; further, any testing instance is re-
moved from the training set of the compositional
model. The evaluation is done by comparing the

Model Acc-10 Acc-100
Seen (500 WordNet definitions)

OneLook (Hill et al., 2016) 0.89 0.91
RNN cosine (Hill et al., 2016) 0.48 0.73

Std LSTM (150 dim.) + TF vec. 0.86 0.96
Std LSTM (k × 150 dim.) + TF vec. 0.93 0.98

MS-LSTM +TF vectors 0.95 0.99
MS-LSTM +TF vectors + anchors 0.96 0.99

Unseen (500 WordNet definitions)
RNN w2v cosine (Hill et al., 2016) 0.44 0.69
BOW w2v cosine (Hill et al., 2016) 0.46 0.71

Std LSTM (150 dim.) + TF vec. 0.72 0.88
Std LSTM (k × 150 dim.) + TF vec. 0.77 0.90

MS-LSTM + TF vectors 0.79 0.90
MS-LSTM + TF vectors + anchors 0.80 0.91

Table 2: Results for the reverse dictionary task, com-
pared with the highest numbers reported by Hill et al.
(2016). TF vectors refers to textually enhanced vectors
with λ = 1. For the MS-LSTM, k is set to 3.

predicted vector with the vectors of all WordNet
synsets (a search space of 117,659 points) and cre-
ating a ranked list as before, by cosine similarity.
Following (Hill et al., 2016), we compute accu-
racy on top-10 and top-100. λ and k are tuned on
a dev set of 2,000 synsets, showing a behaviour
very similar to that of the SNOMED task.

Table 2 shows the results, based on a MS-LSTM
setup similar to that of §4.1. Note that the MS-
LSTM achieves 0.95-0.96 top-10 accuracy for the
seen evaluation, significantly higher not only than
the best model of Hill et al. (2016), but also higher
than OneLook, a commercial system with access
to more than 1000 dictionaries. It also presents
considerably higher performance in the unseen
evaluation. We are not aware of any other mod-
els with higher performance on the specific task.

4.3 Document classification

Our last experiment is a document classification
task, performed on Cora (McCallum et al., 2000),
a dataset containing 2708 machine learning papers
linked by citation relationships into a graph. Each
document is a short text extracted from the title or
the abstract of the paper. The task is to predict the
category of a document (a total of 7 classes), given
its vector—so here we only evaluate the textually
enhanced vectors as inputs to a classifier, indepen-
dently of the compositional part.

In Table 3 we report results for two evaluation
settings. In Evaluation 1, we provide a compari-
son with the method of Yang et al. (2015) who in-
clude textual features in graph embeddings based
on matrix factorisation, and two topic models used
as baselines in their paper. Using the same clas-
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Model Accuracy
Evaluation 1 (training ratio=0.50)

PLSA (Hofmann, 1999) 0.68
NetPLSA (Mei et al., 2008) 0.85
TADW (Yang et al., 2015) 0.87

Linear SVM + DeepWalk vectors 0.85
Linear SVM + TF vectors 0.88

Evaluation 2 (training ratio=0.05)
Planetoid (Yang et al., 2016) 0.76

GCN (Kipf and Welling, 2017) 0.81
GAT (Veličković et al., 2018) 0.83

Linear SVM + DeepWalk vectors 0.72
Linear SVM + TF vectors 0.82

Table 3: Results for the Cora dataset. TF vectors refers
to textually enhanced KB vectors (λ = 0.5). Differ-
ence between our best models and GAT/GCN/TADW
are not s.s.

sification algorithm (a linear SVM) and training
ratio (0.50) with them, we present state-of-the-art
results for vectors of 150 dimensions, prepared by
a graph extended with 1422 textual features. We
set λ = 0.5 by tuning on a dev set of 677 randomly
selected entries from the training data.8

In Evaluation 2, using the same linear SVM
classifier and λ as before, we reduce the train-
ing ratio to 0.05 in order to make our task com-
parable to the experiments reported by Veličković
et al. (2018) for a number of deep learning models:
specifically, the graph attention network (GAT)
of Veličković et al. (2018), the graph convolu-
tional network (GCN) of Kipf and Welling (2017),
and the Planetoid model of Yang et al. (2016).
Again, our simple setting presents results within
the state of the art range, comparable to (or bet-
ter than) those of much more sophisticated models
that have been specifically designed for the task of
node classification. We consider this as a strong
indication for the effectiveness of the textually en-
hanced vectors as representations of KB entities.

Fig. 5 provides a visualisation of the Cora clas-
ses based on node vectors created with λ = 0 and
λ = 0.5, correspondingly, demonstrating the im-
pact of textual features in terms of cluster coher-
ence and separation.

4.4 Qualitative evaluation
Table 4 compares the performance of the multi-
sense approach with that of the single-sense model
for a number of selected cases of text mapping.
The predictions in the top part (for definitions

8We also attempted a second classification experiment on
a dataset of 200k concepts extracted from SNOMED, observ-
ing a similar behaviour of λ (details are not reported due to
space). This difference in the behaviour of λ between text-to-
entity mapping and classification tasks is discussed in §5.

Figure 5: Visualisation of the Cora classes based on
a 2D t-SNE projection of the node vectors before the
inclusion of textual features (left) and after (right).

taken from the unseen evaluation of the reverse
dictionary task) show that, in contrast to the
single-sense model, the multi-sense approach was
able to capture subtle variations of meaning be-
tween different synsets due to polysemy, as moti-
vated in §3.2. The lower part of the table contains
short phrases with ambiguous words, specifically
selected to demonstrate the effect of the multi-
sense approach. In all these cases, the multi-sense
model was able to effectively disambiguate the
ambiguous parts of the phrase by using the avail-
able context, and predict a very relevant synset; in
contrast, the predictions of the single-sense model
were based on choosing a wrong sense.

Finally, Table 5 presents the derived senses for
word table, expressed as lists of nearest neigh-
bouring words in the space. The model was able to
effectively distinguish between a table as a kitchen
furniture (sense 2), and a table as a structured way
of presenting data (senses 1 and 3).

5 Discussion

The experimental work shows that using a graph
embedding space as a target for mapping text
to entities is an effective approach. This was
mostly evident in the reverse dictionary task of
§4.2, where the model was found to perform sub-
stantially better than previous approaches by Hill
et al. (2016), who used a compositional architec-
ture similar to ours but optimised on the word em-
beddings of the target terms. Note that this is sub-
optimal in the sense that, unless specific measures
are taken, a word embedding reflects ambiguous
meaning; therefore, trying to associate a definition
like “keyboard musical instrument with pipes” to
the vector for word “organ” introduces a certain
amount of noise in the model, since the definition
will be partly associated with features related to



1967

Definition from the unseen dataset of the reverse dictionary task k = 3 (correct pred.) k = 1 (wrong pred.)
the branch of engineering that deals with things smaller than 100 nm nanotechnology microelectronics
floor consisting of open space at the top of a house just below roof loft balcony

a board game for two players; pieces move according to dice throws backgammon checkers
an address of a religious nature sermon rogation

Example short phrase with ambiguous words k = 3 prediction k = 1 prediction
a rechargeable cell nickel-cadmium battery karyolysis (biological process)

a state capital Curitiba (Brazilian state capital) assert (verb)
the lap of a person upper side of thighs lapper (garment)

a band named Queen band leader neckband (garment)

Table 4: Qualitative comparison of a few selected cases for multi- and single-sense LSTMs.

Sense 1. formulation, uncommonly, rauwolfia, cardiol-
ogy, hypodermic, malleability, points, optic, dendrite, ru-
biaceae, nonparametric, meninges, deviation, anesthetics
Sense 2. tableware, meal, expectation, heartily, kitchen,
hum, eating, forestay, suitors, croupier, companionship,
restaurant, dishes, candles, cup, tea
Sense 3. reassigned, projective, ultracentrifuge, polemo-
niaceous, thyronine, assumptions, lymphocyte, atomic,
difficulties, intracellular, virgil, elementary, cartesian

Table 5: Derived senses for word table, visualised as
lists of nearest neighbouring words in the vector space.

the “body part” sense of the word. In our model,
homonymy issues are resolved by design: each
point in the target space corresponds to a well-
defined unambiguous concept or synset. Further,
the attentional mechanism of Fig. 4 handles subtle
variations of each distinct sense due to polysemy.

The effectiveness of the textual feature mech-
anism was demonstrated in every task we at-
tempted, but to different extents. As our tuning
on the dev sets showed, for tasks closer to text-
to-entity mapping (§§4.1-4.2) the more the textual
features in the random walks, the better the results
were. However, the best performance on the clas-
sification task came by λ values between 0.50 and
0.75, i.e. by walks visiting more entity nodes than
textual nodes. The reason is that entity classifi-
cation is a task very sensitive to the topology of
the KB graph, since entities belonging to a spe-
cific class are very likely to be located at the same
sub-hierarchy, hence in topological proximity. On
the other hand, one of the motivations for intro-
ducing textual features was exactly to broaden the
context of a node by connecting distant parts of the
graph (see Figures 2-3). So, while small amounts
of textual features can be still useful for classifica-
tion purposes, excessive use introduces unwanted
noise in the model.

The dynamic disambiguation mechanism inte-
grated in the compositional architecture improved
further the performance of the model. This finding
is consistent with previous work on simpler tensor-
based models, which showed that applying some

form of word sense disambiguation when compos-
ing word vectors can provide consistent improve-
ments on end tasks such as sentence similarity and
paraphrase detection (Kartsaklis and Sadrzadeh,
2013; Kartsaklis et al., 2013).

6 Conclusion and future work

We presented and evaluated a text-to-entity map-
ping system based on a continuous KB space en-
hanced with textual features and capable of han-
dling polysemy. The reasonable next step will be
to extend our methods for modelling the relations
(edges) of a KB graph, which will allow appli-
cations in tasks such as link prediction and KB
completion. Furthermore, having a mechanism
that translates arbitrary text to points in a contin-
uous space creates many opportunities for inter-
esting research. For example, while the size of a
knowledge base is finite, the space itself consists
of infinite number of points, each one of which
corresponds to a valid—yet not explicitly stated
in the KB—entity of the same domain. The ex-
citing question of how can we exploit this extra
information—for instance in order to enrich the
knowledge base with new data—constitutes one of
our future directions.
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