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Abstract

Attention-based models are successful when
trained on large amounts of data. In this paper,
we demonstrate that even in the low-resource
scenario, attention can be learned effectively.
To this end, we start with discrete human-
annotated rationales and map them into contin-
uous attention. Our central hypothesis is that
this mapping is general across domains, and
thus can be transferred from resource-rich do-
mains to low-resource ones. Our model jointly
learns a domain-invariant representation and
induces the desired mapping between ratio-
nales and attention. Our empirical results val-
idate this hypothesis and show that our ap-
proach delivers significant gains over state-of-
the-art baselines, yielding over 15% average
error reduction on benchmark datasets. !

1 Introduction

Attention-based models have become architec-
tures of choice for many NLP tasks. In addi-
tion to significant performance gains, these mod-
els are attractive, as attention is often used as a
proxy for human interpretable rationales. Their
success, however, is conditioned on access to large
amounts of training data. To make these mod-
els applicable in low-resource scenarios, we utilize
this connection in the opposite direction. Specif-
ically, we propose an approach to map human ra-
tionales to high-performing attention, and use this
attention to guide models trained in low-resource
scenarios.

The notions of rationale and attention are
closely related. Both of them highlight word im-
portance for the final prediction. In the case of
rationale, the importance is expressed as a hard
selection, while attention provides a soft distribu-
tion over the words. Figure 1 illustrates this re-
latedness. One obvious approach to improve low-

'Our code and data are available at https: //github.
com/YujiaBao/R2A.

Task: Hotel location label: negative

a nice and clean hotel to stay for business and leisure

transport . it took too long for transport and waiting
for bus . but the swimming pool looks good .

Task: Beer aroma label: positive

poured a deep brown color with little head that
dissipated pretty quickly . @foma is of Sweet
maltiness with chocolate and caramel notes . flavor
is also of chocolate and caramel maltiness . mouthfeel
is good a bit on the thick side . drinkability is ok . this
is to be savored not sessioned .

Figure 1: Examples of rationales versus oracle at-
tention. Words are highlighted according to their
relative attention scores. Human rationales are
shown in bold with underlines.

resource performance is to directly use human ra-
tionales as a supervision for attention generation.
The implicit assumption behind this method is that
machine-generated attention should mimic human
rationales. However, rationales on their own are
not adequate substitutes for machine attention. In-
stead of providing a soft distribution, human ratio-
nales only provide the binary indication about rel-
evance. Furthermore, rationales are subjectively
defined and often vary across annotators. Finally,
human rationales are not customized for a given
model architecture. In contrast, machine attention
is always derived as a part of a specific model ar-
chitecture.

To further understand this connection, we em-
pirically compare models informed by human ra-
tionales and those by high-quality attention. To
obtain the latter, we derive an “oracle” attention
using a large amount of annotations. This “ora-
cle” attention is then used to guide a model that
only has access to a small subset of this training
data. Not only does this model outperform the
oracle-free variant, but it also yields substantial
gains over its counterpart trained with human ra-
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tionales — 89.98 % vs 85.22 % average accuracy
on three aspects of hotel review (see Section 4 for
details). In practice, however, this “oracle” atten-
tion is not available. To employ this method, we
need to find a way to obtain a substitute for the
“oracle” attention.

In this paper, we show how to achieve this goal
using rationales. Specifically, we learn a map-
ping from human rationales to high-quality atten-
tion (R2A). We hypothesize that this mapping is
generalizable across tasks and thus can be trans-
ferred from resource-rich tasks.> Figure 1 illus-
trates that in both tasks, attention weighs ratio-
nale words in a similar fashion: highlighting task-
specific nouns and adjectives, while downplaying
functional words. To learn and apply this mapping
we need access to rationales in both source and tar-
get tasks. In the target task, we assume rationales
are provided by humans. In the source task(s), col-
lecting rationales at scale is infeasible. Therefore,
we use machine-generated rationales (Lei et al.,
2016) as a proxy.

Our R2A model consists of three components.
The first one is an attention-based model for the
source task(s) that provides supervision for at-
tention generation. The second component fo-
cuses on learning a domain-invariant representa-
tion to support transfer. The third component
combines this invariant representation and ratio-
nales together to generate the attention. These
three components are trained jointly to optimize
the overall objective. Once the model is trained,
we apply it to the target task to generate attention
from human rationales. This attention is conse-
quently used to supervise the training of the target
classifier.

We evaluate our approach on two transfer set-
tings: aspect transfer within single domain and do-
main transfer across multiple domains. Our exper-
iments demonstrate that our approach delivers sig-
nificant performance improvements over the base-
lines. For instance, the average error reduction
over the best baseline in domain transfer is over
15%. In addition, both qualitative and quantitative
analyses confirm that our R2A model is capable of
generating high-quality attention for target tasks.

*In this paper, we consider a more general setting where
one domain contains multiple tasks. Also, we assume having
one source domain. However, our proposed method is a gen-
eral framework and can be easily adapted to problems with
multiple source domains.

2 Related Work

Attention-based models Attention has been
shown to be effective when the model is trained
on large amounts of training data (Bahdanau et al.,
2014; Luong et al., 2015; Rush et al., 2015; Yang
et al., 2016; Lin et al., 2017; Chen et al., 2017;
Vaswani et al., 2017). In this setting, typically
no additional supervision is required for learn-
ing the attention. Nevertheless, further refining
attention by extra supervision has been shown
to be beneficial. Examples include using word
alignments to learn attention in neural machine
translation (Liu et al., 2016), employing argu-
ment words to supervise attention in event de-
tection (Liu et al., 2017), utilizing linguistically-
motivated annotations to guide attention in con-
stituency parsing (Kamigaito et al., 2017). These
supervision mechanisms are tailored to specific
applications. In contrast, our approach is based on
the connection between rationales and attention,
and can be used for multiple applications.

Rationale-based models Zaidan et al. (2007)
was the first to explore the value of rationales
in low-resource scenarios. They hypothesize that
the model confidence should decrease when the
rationale words are removed from the inputs,
and validate this idea for linear models. Recent
work (Zhang et al., 2016) explores the potential
of integrating rationales with more complex neu-
ral classifiers. In their model, human rationales
are directly used to guide the sentence-level atten-
tion for a CNN-based classifier. To reach good
performance, their model still requires a sufficient
amount of training data. Our work differs from
theirs as we discern the intrinsic difference be-
tween human rationales and machine attention.
Moreover, we learn a model to map human ratio-
nales into high-quality attention so as to provide a
richer supervision for low-resource models.

Transfer learning When labeled data on the tar-
get task is available, existing approaches typically
transfer the knowledge by either fine-tuning an
encoder trained on the source tasks(s) (Conneau
etal., 2017; Peters et al., 2018) or multi-task learn-
ing on all tasks with a shared encoder (Collobert
et al., 2011). In this paper, we explore the trans-
ferability of the task-specific attention through hu-
man rationales. We believe this will further assist
learning in low-resource scenarios.

Our work is also related to unsupervised domain
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adaptation, as the R2A model has never seen any
target annotations during training. Existing meth-
ods commonly adapt the classifier by aligning the
representations between the source and target do-
mains (Glorot et al., 2011; Chen et al., 2012; Zhou
etal., 2016; Ganin et al., 2016; Zhang et al., 2017).
In contrast, our model adapts the mapping from ra-
tionales to attention; thus after training, it can be
applied to different target tasks.

3 Method

Problem formulation We assume that we have
N source tasks {S;} ,, where each of them has
sufficient amounts of labeled examples. Using ex-
isting methods (Lei et al., 2016), we can gener-
ate rationales for each source example automati-
cally (see Appendix 1 for details). In the target
task 7, we only have a limited amount of labeled
examples with large amounts of unlabeled data.
For those labeled examples, we assume access to
human-annotated rationales.

Overview Our goal is to improve classification
performance on the target task by learning a map-
ping from human rationales to high-quality ma-
chine attention (R2A). Given the scarcity of our
target data, we learn this mapping on resource rich
tasks where high-quality attention can be readily
obtained during training. Next, the mapping be-
tween rationales and attention derived from the
source tasks is exported into the target task. To
enable this transfer, models have to operate over
an invariant representation which we construct via
an adversarial objective. Once the mapping is de-
rived, we can translate human rationales in the tar-
get task into high-quality attention. This generated
attention is then used to provide additional training
signal for an attention-based classifier for the tar-
get task. The overall pipeline is shown in Figure 2.

Alternatively, we can view the R2A mapping as
a meta model that produces a prior over the atten-
tion distribution across different tasks.

Model architecture Figure 3 illustrates the ar-
chitecture of our R2A model, which consists of
three components.

o Multi-task learning In order to learn the R2A
mapping, we need annotation for the attention.
This module generates high-quality attention as
an intermediate result by minimizing the predic-
tion error on the source tasks (Section 3.1).

labeled source data
with rationales

labeled target data with > target c "
R2A-generated attention

Figure 2: Overall pipeline of our approach (Sec-
tion 3.4). The R2A mapping is learned from la-
beled source data and unlabeled target data. Then
we applied it to the target task to derive attention
based on human rationales. Finally, a target clas-
sifier is trained under the supervision of both the
annotated labels and the R2A-generated attention.

e Domain-invariant encoder This module
aims to transform the contextualized represen-
tation obtained from the first module into a
domain-invariant version. We achieve this goal
through domain adversarial training over the
source data and the unlabeled target data (Sec-
tion 3.2).

e Attention generation This module learns to
predict the intermediate attention obtained from
the first module based on the domain-invariant
representation and the rationales (Section 3.3).

3.1 Multi-task learning

The goal of the multi-task learning module is to
learn good attention for each source task. This
learned attention will be used later to supervise the
attention generation module. This module takes
the input text from the source tasks and predicts
the labels. To accomplish the previously stated
goal, we minimize the prediction error over all la-
beled source data.

Let (z',y') be a training instance from any
source task ¢t € {S1,...Sy}. We first en-
code the input sequence z' into hidden states:
ht = enc(z!), where enc is a bi-directional
LSTM (Hochreiter and Schmidhuber, 1997) that
is shared across all source tasks. For each position
1, the dense vector h;f encodes the content and con-
text information of the word z!. We then pass the
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Figure 3: Architecture of the R2A model. The model is comprised of (a) a multi-task learning compo-
nent, (b) a domain-invariant encoder, and (c) an attention generation component. Solid arrows denote
computations for training, while dotted arrows denote computations for inference.

sequence h! on to a task-specific attention module
to produce attention o = att?(ht) as follows:

hi = tanh(Wighl + by ),

ol = exp(<ﬁ$1qgtt>) ’
Zj exp((hz., Tatt))

where (-, -) denotes inner product and W, bL.;,
ql¢ are learnable parameters. We predict the la-
bel of z! using the weighted sum of its contex-
tualized representation: §° = pred’ (>, alhl),
where pred’ is a task-specific multi-layer percep-
tron. We train this module to minimize the loss,
Ly, between the prediction and the annotated la-
bel for all source tasks. We use cross entropy loss
for classification tasks and mean square loss for
regression tasks.

3.2 Domain-invariant encoder

Supplied with large amounts of source data and
unlabeled target data, this module has two goals:
1) learning a general encoder for both source and
target corpora, and 2) learning domain-invariant
representation.  This module enables effective
transfer—especially in the presence of significant
variance between the source and target domains.
We achieve the first goal by optimizing a lan-
guage modeling objective and the second goal by
minimizing the Wasserstein distance between the
source and target distribution.

Let = be an input sequence, and h = [ﬁ, %]
be its corresponding contextuali_z)ed reprgentation
obtained from enc. Here, h and h denote
the output sequence of the forward and backward
LSTM, respectively. In order to support transfer,
enc should be general enough to effectively rep-
resent both source and target corpora. For this rea-
son, we ground the encoder by a language mod-
eling component (Bengio et al., 2003; Mikolov
et al., 2011). Specifically, we employ two Soft-
max classifiers to predict the word z; based on
h;—1 and h ;41 respectively. We minimize the
cross-entropy loss £;,,, over all source data and un-
labeled target data.

The representation h is domain-specific as it
is trained to encode useful features for language
modeling and the source tasks. To obtain an invari-
ant representation, we employ a transformation
layer and propose to align the transformed repre-
sentation so that it is not distinguishable whether it
comes from the source or the target. Specifically,
we transform the representation h; at each position
¢ linearly and obtain

h;nv - Winvhi + bil‘lV7

where Wi,y and bj,, are learnable parameters.
We minimize the Wasserstein distance (Arjovsky
et al., 2017) between the distribution of A1™V from
the source and the one from the target, denoted as
Ps and P7, respectively. Since hi®V is a sequence
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of variable length, L, we summarize it by its first
and last element via concatenation, [R}"V;hJ™].
The training objective is defined as:

sup Epinv pg [f([hilnv; hg“’])]
IFlL<K

[fwd =

— Eyenp [R5

where the supremum is over all K-Lipschitz scalar
functions f. Following Gulrajani et al. (2017), we
approximate f by a multi-layer perceptron, and
use gradient penalty to fulfill the Lipschitz con-
straint.

3.3 Attention generation

The goal of this module is to generate high-quality
attention for each task. This module combines
the domain-invariant representation together with
task-specific rationales as its input and predicts
task-specific attention scores. We minimize the
distance between the predicted attention and the
intermediate attention obtained from the multi-
task learning module.

For any source task ¢t € {S;}¥ |, we denote
r! as the task-specific rationales corresponding to
the input text z¢, and denote A™V* as the domain-
invariant representation of x!. For each position
i, we first concatenate ¢ with the frequency of !
occurring as a rationale from all training examples
of this task. We denote this augmented sequence
as 7. This frequency term provides the unigram
likelihood of each word being a rationale for the
task. Then we employ a sequence encoder enc’2®
and an attention module att”™?® to predict the at-
tention scores:

ut _ encha([hinv,t; ft]),
i = tanh(Wgduf + bigt),

o exp((af, gait))

>2; exp((at, gige))’

where W22, br2¢ and %3¢ are learnable param-
eters, and both enc™? and att™“ are shareable
across all tasks. We minimize the distance be-
tween &' and the o obtained from the first multi-

task learning module over all source data:

Eatt = Z

(at,at)te{S;}V,

where d(-,) can be any distance metric. In this
paper, we consider a soft-margin cosine distance:

d(a,b) £ max(0,1 — cos(a,b) — 0.1),

where cos(-, -) denotes the cosine similarity.

3.4 Pipeline

Training R2A  We train the three aforemen-
tioned modules jointly using both the source data
and the unlabeled target data. The overall objec-
tive is given by:

L = Ly + MateLatt + NimLim + AwaLlwa- (1)

The As are hyper-parameters that control the im-
portance of each training objective and Ls repre-
sent the corresponding loss functions.

R2A inference Once the R2A model is trained,
we can generate attention for each labeled target
example based on its human-annotated rationales.

Training target classifier When testing the per-
formance on the target task, of course, we are nei-
ther provided with labels nor rationales. In order
to make predictions for the target task, we train
a new classifier under the supervision of both the
labels and the R2A-generated attention. Specifi-
cally, this target classifier shares the same archi-
tecture as the source one in the multi-task learning
module. We minimize the prediction loss, £l7l;l, on
the labeled target data together with the cosine dis-
tance, L], between the R2A-generated attention
and the attention generated by this target classi-
fier. The joint objective for this target classifier is
defined as

L=Lhy+A\,Ll, )

where A7, controls the importance of £7,,. For
better transfer, we initialize the encoder in the tar-
get classifier as enc from the trained R2A model.

4 Experimental Setup
4.1 Datasets

We evaluate our approach on two transfer settings:
transfer among aspects within the same domain
and transfer among different domains.

Aspect transfer We first consider the transfer
problem between multiple aspects of one domain:
beer review. We use a subset of the BeerAdvocate®
review dataset (McAuley et al., 2012) introduced
by Lei et al. (2016). This dataset contains reviews
with ratings (in the scale of [0, 1]) from three as-
pects of the beer: look, aroma and palate. We treat

*https://www.beeradvocate.com
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Beer Source Source  1Arg  Target Target
Aspects  Train Dev Train* Dev Test
Look 43,351 10,170 200 200 4,014
Aroma 39,825 8,772 200 200 4,212
Palate 30,041 7,152 200 200 3,804

Table 1: Statistics of the beer review dataset.  de-
notes data with human-annotated rationales.

Hotel Target  Target  Target Target
Aspects Train* Dev Test  Unlabeled
Location 200 200 1,808 14,472
Cleanliness 200 200 12,684 14,472
Service 200 200 18,762 14,472

Table 2: Statistics of the hotel review dataset. *
denotes data with human-annotated rationales.

any two aspects as the source and the other one
as the target. We consider a classification setting
for each target task. Specifically, reviews with rat-
ings < 0.4 are labeled as negative and those with
> 0.6 are labeled as positive. We form our dataset
by randomly selecting an equal number of positive
and negative examples. Then we randomly select
200 examples and ask human annotators to pro-
vide rationales (see Appendix 2 for details). These
200 examples are treated as our labeled training
data for the target aspect. Unlabeled target data is
not required since both source and target tasks are
from the same domain. Table 1 summarizes the
statistics of the beer review dataset.

Domain transfer Our second experiment fo-
cuses on domain transfer from beer reviews to
different aspects of hotel reviews. We use the
TripAdvisor* hotel review dataset (Wang et al.,
2010), with the following three aspects as our
transfer target: location, cleanliness, and service.
For each aspect, reviews with ratings > 3 are la-
beled as positive and those with < 3 are labeled as
negative. Similarly, we collect human rationales
for 200 examples and treat them as our training
data (see Appendix 2 for details). Table 2 summa-
rizes the statistics of the hotel review dataset. In
this experiment, data from all three aspects of the
beer reviews are treated as the source tasks.

4.2 Baselines

We compare our approach (OURS) with four types
of baselines:

*nttps://www.tripadvisor.com

Basic classifier We train a linear SVM using
bag-of-ngrams representation on the labeled tar-
get data. We combine uni-gram, bi-grams, and tri-
grams as features and use tf-idf weighting.

Rationale augmented classifiers We evaluate
two previous methods that incorporate human ra-
tionales during training: 1) rationale augmented
SVM (RA-SVM) (Zaidan et al., 2007), an SVM-
based model that utilizes human rationales to regu-
larize the decision boundary of the classifier; 2) ra-
tionale augmented CNN (RA-CNN) (Zhang et al.,
2016). RA-CNN first trains a CNN-based sen-
tence classifier to estimate the probability that a
given sentence contains rationale words. Then
RA-CNN scales the contribution of each sentence
to the overall representation in proportion to these
estimates. The final prediction is made from this
overall representation.

Transfer methods We compare against two
variants of our method: 1) TRANS, an attention-
based classifier that does not use human rationales
from the target task; 2) RA-TRANS, an attention-
based classifier that directly uses human rationales
to supervise the attention. Specifically, TRANS
only optimizes the cross-entropy loss EZI;Z in the
objective (Eq. (2)). For RA-TRANS, the term £7,,
in the objective Eq. (2) is replaced by the cosine
distance between human rationales and the atten-
tion generated by itself. Note that both models still
have the ability to transfer, as their encoders are
both initialized from enc, which has been trained
on source data and unlabeled target data.

Oracle We also report the performance of an
ORACLE which shares the same architecture as
ours but is supervised by the oracle attention. The
oracle attention is derived from a held-out dataset
with large-scale annotations for the target task (see
Appendix 3 for details). This helps us analyze the
contribution of our R2A approach in isolation of
the inherent limitations of the target tasks.

4.3 Implementation details

We use pre-trained fastText embeddings (Bo-
janowski et al., 2017), a 200-dimension bi-
directional LSTM (Hochreiter and Schmidhu-
ber, 1997) for the language encoder, and a 50-
dimension bi-directional LSTM for the R2A en-
coder. Dropout (Srivastava et al., 2014) is ap-
plied with drop rate 0.1 on the word embeddings
and the last hidden layers of the classifiers. All
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Source Target SvM  RA-SvM¥  Ra-CNN' Trans®  RaA-TrRans*'  Ours#f  OracLE!
Beer aroma+palate  Beer look 74.41 74.83 74.94 72.75 76.41 79.53 80.29
Beer look+palate Beer aroma  68.57 69.23 67.55 69.92 76.45 77.94 78.11
Beer look+aroma Beer palate  63.88 67.82 65.72 74.66 73.40 75.24 75.50

Table 3: Accuracy of transferring between aspects.

Models with { use labeled data from source aspects.

Models with I use human rationales on the target aspect.

Source Target SvM  RA-SvM¥  RA-CNN' Transt  Ra-Trans*®  Ours*t  OracLEf
BeerJlrook Hotel location 78.65 79.09 79.28 80.42 82.10 84.52 85.43
Beer aroma  Hotel cleanliness  86.44 86.68 89.01 86.95 87.15 90.66 92.09
Beer;alate Hotel service 8534  86.61 87.91 87.37 86.40 89.93 92.42

Table 4: Accuracy of transferring between domains. Models with | use labeled data from source domains
and unlabeled data from the target domain. Models with I use human rationales on the target task.

parameters are optimized using Adam (Kingma
and Ba, 2014). We set the initial learning rate
to 0.001 and divide it by 10 once the perfor-
mance on the development set plateaus. For RA-
TRANS, OURS and ORACLE, we tuned )\Z;t from
{102,10%,10°,10~1, 1072}. For domain transfer,
we set A\;,, = 0.1, Ayg = 0.01 and A, = 0.01.
For aspect transfer, we adapt the same hyper-
parameters, but set A\, = 0 as both source tasks
and the target task come from the same domain.
To encourage the R2A-generated attention to be
consistent with the provided rationales in aspect
transfer, we augment the overall training objective
of R2A in Eq. (3.3) by a consistency regulariza-
tion, which is computed from the cosine distance
between the R2A-generated attention and the pro-
vided rationales.

In addition, computing L;,, is both time and
memory inefficient because the complexity is lin-
ear to the size of the vocabulary, which can be very
large. To expedite the training, we adopt a tech-
nique proposed by Mikolov et al. (2011), which
randomly splits the entire vocabulary into a pre-
defined number of bins and minimizes the loss of
the bin prediction instead of the exact token pre-
diction. We set the bin size as 100 for our experi-
ment.

5 Results

Aspect transfer Table 3 summarizes the results
of aspect transfer on the beer review dataset. Our
model (OURS) obtains substantial gains in accu-
racy over the baselines across all three target as-
pects. It closely matches the performance of OR-
ACLE with only 0.40% absolute difference.

Hotel Hotel Hotel

Model location cleanliness  service
OURS 84.52 90.66 89.93
w/0 Lyg 82.36 89.79 89.61
w/o Lim 82.47 90.05 89.75

Table 5: Ablation study on domain transfer from
beer to hotel.

Specifically, all rationale-augmented methods
(RA-SvM, RA-TRANS and OURS) outperform
their rationale-free counterparts on average. This
confirms the value of human rationales in the
low-resource settings. We observe that the trans-
fer baseline that directly uses rationale as aug-
mented supervision (RA-TRANS) underperforms
ORACLE by a large margin. This validates our
hypothesis that human rationales and attention are
different.

Domain transfer Table 4 presents the results
of domain transfer using 200 training examples.
We use the three aspects of the beer review data
together as our source tasks while use the three
aspects of hotel review data as the target. Our
model (OURS) shows marked performance im-
provement. The error reduction over the best base-
line is 15.08% on average.

We compare the learning curve in Figure 4. We
observe that the performance of our model steadily
improves as more annotations are provided, and
the improvement over other baselines is significant
and consistent.

Ablation study Table 5 presents the results of
an ablation study of our model in the setting of
domain transfer. As this table indicates, both the
language modeling objective and the Wasserstein
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Figure 4: Learning curve of transferring from beer review to three aspects of hotel review: location (left),
cleanliness (center) and service (right). For neural methods, we ran five different random seeds and plot
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Figure 5: t-SNE visualization of the learned hidden
representation5 for beer review (blue circle) and
hotel review (orange triangle).

Human R2A-generated
Target rationales attention
Location 0.5185 0.2371
Cleanliness 0.5948 0.3141
Service 0.5833 0.2871

Table 6: Avg. cosine distance to the oracle atten-
tion over the target training set. The R2A is trained
on beer reviews with unlabeled hotel reviews.

distance contribute similarly to the task, with the
Wasserstein distance having a bigger impact.

Visualization of representation Figure 5 visu-
alizes the hidden representation of 200 beer re-
views and 200 hotel reviews using t-SNE (Maaten
and Hinton, 2008). We observe that our model
successfully aligns the source and the target fea-
ture distribution. This indicates the effectiveness
of optimizing the Wasserstein distance objective.

Analysis of R2A-generated attention In order
to validate that the trained R2A model is able to
generate task-specific attention from human ratio-
nales, we perform both qualitative and quantitative

>Since the hidden representation is a sequence of variable

length, we applied t-SNE on the concatenation of the first and
last element: [hi™; ATV

analysis on the R2A-generated attention in the set-
ting of domain transfer. It is worth pointing out
that our R2A model has never seen any labeled
hotel reviews during training.

Table 6 presents the average cosine distance be-
tween the R2A-generated attention and the oracle
attention over the target training set. Compared
with human rationales, the R2A-generated atten-
tion is much closer to the oracle attention. This ex-
plains the large performance boost of our method.

Figure 6 visualize the R2A-generated atten-
tion on the same hotel review with human ra-
tionales corresponding to three different aspects.
We observe that the trained R2A model is able to
produce task-specific attention scores correspond-
ing to the provided human rationale. For exam-
ple, given the rationale sentence “not the cleanest
rooms but bed was clean and so was bathroom”,
R2A recognizes that not every token is equally im-
portant, and the attention should focus more on

LR N3

“clean”,

LN

cleanest”, “rooms” and ‘“bathroom”.

Annotating rationales versus annotating more
labeled data Providing rationales for the
training data roughly doubles the annotation
cost (Zaidan et al., 2007). Given the same
annotation budget, a natural question is: shall we
collect a few labeled examples with rationales
or annotate more labeled examples? To answer
this question, we vary the number of training
examples in the target task. Figure 7 shows the
corresponding learning curve of a classifier that
is trained without rationales. The reference line
represents the accuracy of our approach trained on
200 examples with rationales. We notice that in
order to reach the same level of performance, the
rationale-free classifier requires 800, 3100, and
1900 labeled examples on the three target tasks
respectively.
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Task: Hotel location Oracle attention

you get what you pay for . not the cleanest rooms but bed was clean and so was bathroom . bring your own towels though
as very thin . service was excellent , let us book in at 8:30am ! for [g€afion and price , this ca n’t be beaten , but it is

cheap for a reason . if you come expecting the hilton , then book the hilton ! for uk travellers , think of a blackpool b&b.

Task: Hotel location R2A-generated attention

you get what you pay for . not the cleanest rooms but bed was clean and so was bathroom . bring your own towels though
as very thin . service was excellent , let us book in at 8:30am ! for Jg€afion and price , this ca n’t be Béaten , but it is

cheap for a reason . if you come expecting the hilton , then book the hilton ! for uk travellers , think of a blackpool b&b.

Task: Hotel cleanliness Oracle attention

you get what you pay for . not the EI&afiest rooms but bed was EI€afi and so was bathroom . bring your own towels

though as very thin . service was excellent , let us book in at 8:30am ! for location and price , this ca n’t be beaten , but it
is cheap for a reason . if you come expecting the hilton , then book the hilton ! for uk travellers , think of a blackpool b&b.

Task: Hotel cleanliness R2A-generated attention

you get what you pay for . not the cleanest rooms but bed was EI€afi and so was bathroom . bring your own towels

though as very thin . service was excellent , let us book in at 8:30am ! for location and price , this ca n’t be beaten , but it
is cheap for a reason . if you come expecting the hilton , then book the hilton ! for uk travellers , think of a blackpool b&b.

Task: Hotel service Oracle Attention

you get what you pay for . not the cleanest rooms but bed was clean and so was bathroom . bring your own towels though
as very thin . service was EX@elIEH . let us book in at 8:30am ! for location and price , this ca n’t be beaten , but it is cheap
for a reason . if you come expecting the hilton , then book the hilton ! for uk travellers , think of a blackpool b&b.

Task: Hotel service R2A-generated attention

you get what you pay for . not the cleanest rooms but bed was clean and so was bathroom . bring your own towels though
as very thin . service was EX@elIEH , lct us book in at 8:30am ! for location and price , this ca n’t be beaten , but it is cheap
for a reason . if you come expecting the hilton , then book the hilton ! for uk travellers , think of a blackpool b&b.

Figure 6: Oracle attention versus R2A-generated attention on an example of hotel review for three differ-
ent tasks. Words are highlighted according to the attention scores. Human rationales are shown in bold
with underlines. The oracle attention is derived from large amounts of labeled hotel reviews. The R2A
is trained on labeled beer reviews with unlabeled hotel reviews.
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Figure 7: Learning curve of an attention-based classifier on three tasks: hotel location (left), hotel clean-
liness (center), hotel service (right). The performance of our approach trained on 200 examples with
human rationales is shown as a reference.

6 Conclusion supervision. Our model produces high-quality at-

tention for low-resource tasks.
In this paper, we propose a novel approach that uti-

lizes the connection between human rationalesand ~ Acknowledgments
machine attention to improve the performance of
low-resource tasks. Specifically, we learn a trans-
ferrable mapping from rationales to high-quality
attention on resource-rich tasks. The learned map-
ping is then used to provide an additional super-
vision for the target task. Experimental results on
both aspect and domain transfer validate that the
R2A-generated attention serves as a better form of
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