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Abstract

Network embeddings, which learn low-
dimensional representations for each vertex in
a large-scale network, have received consider-
able attention in recent years. For a wide range
of applications, vertices in a network are typi-
cally accompanied by rich textual information
such as user profiles, paper abstracts, etc. We
propose to incorporate semantic features into
network embeddings by matching important
words between text sequences for all pairs of
vertices. We introduce a word-by-word align-
ment framework that measures the compati-
bility of embeddings between word pairs, and
then adaptively accumulates these alignment
features with a simple yet effective aggrega-
tion function. In experiments, we evaluate
the proposed framework on three real-world
benchmarks for downstream tasks, including
link prediction and multi-label vertex classi-
fication. Results demonstrate that our model
outperforms state-of-the-art network embed-
ding methods by a large margin.

1 Introduction

Networks are ubiquitous, with prominent exam-
ples including social networks (e.g., Facebook,
Twitter) or citation networks of research papers
(e.g., arXiv). When analyzing data from these
real-world networks, traditional methods often
represent vertices (nodes) as one-hot representa-
tions (containing the connectivity information of
each vertex with respect to all other vertices), usu-
ally suffering from issues related to the inherent
sparsity of large-scale networks. This results in
models that are not able to fully capture the re-
lationships between vertices of the network (Per-
ozzi et al., 2014; Tu et al., 2016). Alternatively,
network embedding (i.e., network representation
learning) has been considered, representing each
vertex of a network with a low-dimensional vec-
tor that preserves information on its similarity rel-
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Figure 1: Example of the text information (abstracts)
associated to two papers in a citation network. Key
words for matching are highlighted.

ative to other vertices. This approach has attracted
considerable attention in recent years (Tang and
Liu, 2009; Perozzi et al., 2014; Tang et al., 2015;
Grover and Leskovec, 2016; Wang et al., 2016;
Chen et al., 2016; Wang et al., 2017a; Zhang et al.,
2018).

Traditional network embedding approaches fo-
cus primarily on learning representations of ver-
tices that preserve local structure, as well as inter-
nal structural properties of the network. For in-
stance, Isomap (Tenenbaum et al., 2000), LINE
(Tang et al., 2015), and Grarep (Cao et al., 2015)
were proposed to preserve first-, second-, and
higher-order proximity between nodes, respec-
tively. DeepWalk (Perozzi et al., 2014), which
learns vertex representations from random-walk
sequences, similarly, only takes into account struc-
tural information of the network. However, in real-
world networks, vertices usually contain rich tex-
tual information (e.g., user profiles in Facebook,
paper abstracts in arXiv, user-generated content on
Twitter, etc.), which may be leveraged effectively
for learning more informative embeddings.

To address this opportunity, Yang et al. (2015)
proposed text-associated DeepWalk, to incorpo-
rate textual information into the vectorial rep-
resentations of vertices (embeddings). Sun
et al. (2016) employed deep recurrent neural net-
works to integrate the information from vertex-
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associated text into network representations. Fur-
ther, Tu et al. (2017) proposed to more effectively
model the semantic relationships between vertices
using a mutual attention mechanism.

Although these methods have demonstrated per-
formance gains over structure-only network em-
beddings, the relationship between text sequences
for a pair of vertices is accounted for solely
by comparing their sentence embeddings. How-
ever, as shown in Figure 1, to assess the simi-
larity between two research papers, a more effec-
tive strategy would compare and align (via local-
weighting) individual important words (keywords)
within a pair of abstracts, while information from
other words (e.g., stop words) that tend to be
less relevant can be effectively ignored (down-
weighted). This alignment mechanism is diffi-
cult to accomplish in models where text sequences
are first embedded into a common space and then
compared in pairs (He and Lin, 2016; Parikh et al.,
2016; Wang and Jiang, 2017; Wang et al., 2017b;
Shen et al., 2018a).

We propose to learn a semantic-aware Net-
work Embedding (NE) that incorporates word-
level alignment features abstracted from text se-
quences associated with vertex pairs. Given a
pair of sentences, our model first aligns each word
within one sentence with keywords from the other
sentence (adaptively up-weighted via an atten-
tion mechanism), producing a set of fine-grained
matching vectors. These features are then ac-
cumulated via a simple but efficient aggregation
function, obtaining the final representation for the
sentence. As a result, the word-by-word alignment
features (as illustrated in Figure 1) are explicitly
and effectively captured by our model. Further, the
learned network embeddings under our framework
are adaptive to the specific (local) vertices that are
considered, and thus are context-aware and espe-
cially suitable for downstream tasks, such as link
prediction. Moreover, since the word-by-word
matching procedure introduced here is highly par-
allelizable and does not require any complex en-
coding networks, such as Long Short-Term Mem-
ory (LSTM) or Convolutional Neural Networks
(CNNs), our framework requires significantly less
time for training, which is attractive for large-scale
network applications.

We evaluate our approach on three real-world
datasets spanning distinct network-embedding-
based applications: link prediction, vertex classi-

fication and visualization. We show that the pro-
posed word-by-word alignment mechanism effi-
ciently incorporates textual information into the
network embedding, and consistently exhibits su-
perior performance relative to several competi-
tive baselines. Analyses considering the extracted
word-by-word pairs further validate the effective-
ness of the proposed framework.

2 Proposed Methods

2.1 Problem Definition

A network (graph) is defined as G = {V ,E},
where V and E denote the set of N vertices
(nodes) and edges, respectively, where elements
of E are two-element subsets of V . Here we
only consider undirected networks, however, our
approach (introduced below) can be readily ex-
tended to the directed case. We also define W ,
the symmetric RN×N matrix whose elements,wij ,
denote the weights associated with edges in V ,
and T , the set of text sequences assigned to each
vertex. Edges and weights contain the structural
information of the network, while the text can
be used to characterize the semantic properties of
each vertex. Given network G, with the network
embedding we seek to encode each vertex into a
low-dimensional vector h (with dimension much
smaller than N ), while preserving structural and
semantic features of G.

2.2 Framework Overview

To incorporate both structural and semantic infor-
mation into the network embeddings, we specify
two types of (latent) embeddings: (i) hs, the struc-
tural embedding; and (ii) ht, the textual embed-
ding. Specifically, each vertex in G is encoded
into a low-dimensional embedding h = [hs;ht].
To learn these embeddings, we specify an objec-
tive that leverages the information from both W
and T , denoted as

L =
∑
e∈E
Lstruct(e) + Ltext(e) + Ljoint(e) , (1)

where Lstruct, Ltext and Ljoint denote structure,
text, and joint structure-text training losses, re-
spectively. For a vertex pair {vi, vj} weighted by
wij , Lstruct(vi, vj) in (1) is defined as (Tang et al.,
2015)

Lstruct(vi, vj) = wij log p(h
i
s|hj

s) , (2)
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where p(hi
s|hj

s) denotes the conditional proba-
bility between structural embeddings for vertices
{vi, vj}. To leverage the textual information in T ,
similar text-specific and joint structure-text train-
ing objectives are also defined

Ltext(vi, vj) = wijα1 log p(h
i
t|h

j
t ) , (3)

Ljoint(vi, vj) = wijα2 log p(h
i
t|hj

s) (4)

+ wijα3 log p(h
i
s|h

j
t ) , (5)

where p(hi
t|h

j
t ) and p(hi

t|hj
s) (or p(hi

s|h
j
t )) de-

note the conditional probability for a pair of text
embeddings and text embedding given structure
embedding (or vice versa), respectively, for ver-
tices {vi, vj}. Further, α1, α2 and α3 are hyper-
parameters that balance the impact of the different
training-loss components. Note that structural em-
beddings, hs, are treated directly as parameters,
while the text embeddings ht are learned based on
the text sequences associated with vertices.

For all conditional probability terms, we follow
Tang et al. (2015) and consider the second-order
proximity between vertex pairs. Thus, for vertices
{vi, vj}, the probability of generating hi condi-
tioned on hj may be written as

p(hi|hj) =
exp

(
hjThi

)
∑N

k=1 exp
(
hjThk

) . (6)

Note that (6) can be applied to both structural and
text embeddings in (2) and (3).

Inspired by Tu et al. (2017), we further as-
sume that vertices in the network play different
roles depending on the vertex with which they
interact. Thus, for a given vertex, the text em-
bedding, ht, is adaptive (specific) to the vertex
it is being conditioned on. This type of context-
aware textual embedding has demonstrated supe-
rior performance relative to context-free embed-
dings (Tu et al., 2017). In the following two
sections, we describe our strategy for encoding
the text sequence associated with an edge into its
adaptive textual embedding, via word-by-context
and word-by-word alignments.

2.3 Word-by-Context Alignment
We first introduce our base model, which re-
weights the importance of individual words within
a text sequence in the context of the edge be-
ing considered. Consider text sequences associ-
ated with two vertices connected by an edge, de-
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Figure 2: Schematic of the proposed fine-grained word
alignment module for incorporating textual information
into a network embedding. In this setup, word-by-word
matching features are explicitly abstracted to infer the
relationship between vertices.

noted ta and tb and contained in T . Text se-
quences ta and tb are of lengths Ma and Mb, re-
spectively, and are represented by Xa ∈ Rd×Ma

and Xb ∈ Rd×Mb , respectively, where d is the di-
mension of the word embedding. Further, x(i)

a de-
notes the embedding of the i-th word in sequence
ta.

Our goal is to encode text sequences ta and tb
into counterpart-aware vectorial representations
ha and hb. Thus, while inferring the adaptive tex-
tual embedding for sentence ta, we propose re-
weighting the importance of each word in ta to
explicitly account for its alignment with sentence
tb. The weight αi, corresponding to the i-th word
in ta, is generated as:

αi =
exp(tanh(W1cb +W2x

(i)
a ))∑Ma

j=1 exp(tanh(W1cb +W2x
(j)
a ))

, (7)

where W1 and W2 are model parameters and
cb =

∑Mb
i=1 x

b
i is the context vector of sequence

tb, obtained by simply averaging over all the word
embeddings in the sequence, similar to fastText
(Joulin et al., 2016). Further, the word-by-context
embedding for sequence ta is obtained by taking
the weighted average over all word embeddings

ha =
∑Ma

i=1αix
(i)
a . (8)

Intuitively, αi may be understood as the relevance
score between the ith word in ta and sequence tb.
Specifically, keywords within ta, in the context of
tb, should be assigned larger weights, while less
important words will be correspondingly down-
weighted. Similarly, hb is encoded as a weighted
embedding using (7) and (8).
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2.4 Fine-Grained Word-by-Word Alignment
With the alignment in the previous section, word-
by-context matching features αi are modeled;
however, the word-by-word alignment information
(fine-grained), which is key to characterize the re-
lationship between two vertices (as discussed in
the above), is not explicitly captured. So moti-
vated, we further propose an architecture to explic-
itly abstract word-by-word alignment information
from ta and tb, to learn the relationship between
the two vertices. This is inspired by the recent
success of Relation Networks (RNs) for relational
reasoning (Santoro et al., 2017).

As illustrated in Figure 2, given two input em-
bedding matrices Xa and Xb, we first compute
the affinity matrix A ∈ RMb×Ma , whose elements
represent the affinity scores corresponding to all
word pairs between sequences ta and tb

A = XT
b Xa . (9)

Subsequently, we compute the context-aware ma-
trix for sequence tb as

Ab = softmax(A) , X̃b = XbAb , (10)

where the softmax(·) function is applied column-
wise to A, and thus Ab contains the attention
weights (importance scores) across sequence tb
(columns), which account for each word in se-
quence ta (rows). Thus, matrix X̃b ∈ Rd×Ma

in (10) constitutes an attention-weighted embed-
ding for Xb. Specifically, the i-th column of X̃b,
denoted as x̃

(i)
b , can be understood as a weighted

average over all the words in tb, where higher at-
tention weights indicate better alignment (match)
with the i-th word in ta.

To abstract the word-by-word alignments, we
compare x

(i)
a with x̃

(i)
b , for i = 1, 2, ...,Ma, to

obtain the corresponding matching vector

m(i)
a = falign

(
x(i)
a , x̃

(i)
b

)
, (11)

where falign(·) represents the alignment function.
Inspired by the observation in Wang and Jiang
(2017) that simple comparison/alignment func-
tions based on element-wise operations exhibit ex-
cellent performance in matching text sequences,
here we use a combination of element-wise sub-
traction and multiplication as

falign(x
(i)
a , x̃(i)

a ) = [x(i)
a − x̃(i)

a ;x(i)
a � x̃(i)

a ] ,

where � denotes the element-wise Hadamard
product, then these two operations are concate-
nated to produce the matching vector m(i)

a . Note
these operators may be used individually or com-
bined as we will investigate in our experiments.

Subsequently, matching vectors from (11) are
aggregated to produce the final textual embedding
ha
t for sequence ta as

ha
t = faggregate

(
m(1)

a ,m(2)
a , ...,m(Ma)

a

)
, (12)

where faggregate denotes the aggregation function,
which we specify as the max-pooling pooling op-
eration. Notably, other commutative operators,
such as summation or average pooling, can be
otherwise employed. Although these aggregation
functions are simple and invariant to the order of
words in input sentences, they have been demon-
strated to be highly effective in relational reason-
ing (Parikh et al., 2016; Santoro et al., 2017). To
further explore this, in Section 5.3, we conduct
an ablation study comparing different choices of
alignment and aggregation functions.

The representation hb can be obtained in a simi-
lar manner through (9), (10), (11) and (12), but re-
placing (9) with A = XT

aXb (its transpose). Note
that this word-by-word alignment is more com-
putationally involved than word-by-context; how-
ever, the former has substantially fewer parame-
ters to learn, provided we no longer have to esti-
mate the parameters in (7).

2.5 Training and Inference
For large-scale networks, computing and optimiz-
ing the conditional probabilities in (1) using (6) is
computationally prohibitive, since it requires the
summation over all vertices V in G. To address
this limitation, we leverage the negative sampling
strategy introduced by Mikolov et al. (2013), i.e.,
we perform computations by sampling a subset of
negative edges. As a result, the conditional in (6)
can be rewritten as:

p(hi|hj) = log σ
(
hjThi

)
+

K∑
i=1

Ehi∼P (v)

[
log σ

(
−hjThi

)]
,

where σ(x) = 1/(1 + exp(−x)) is the sigmoid
function. Following Mikolov et al. (2013), we set
the noise distribution P (v) ∝ d3/4v , where dv is the
out-degree of vertex v ∈ V . The number of nega-
tive samples K is treated as a hyperparameter. We
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use Adam (Kingma and Ba, 2014) to update the
model parameters while minimizing the objective
in (1).

3 Related Work

Network embedding methods can be divided into
two categories: (i) methods that solely rely on the
structure, e.g., vertex information; and (ii) meth-
ods that leverage both the structure the network
and the information associated with its vertices.

For the first type of models, DeepWalk (Perozzi
et al., 2014) has been proposed to learn node rep-
resentations by generating node contexts via trun-
cated random walks; it is similar to the concept
of Skip-Gram (Mikolov et al., 2013), originally
introduced for learning word embeddings. LINE
(Tang et al., 2015) proposed a principled objective
to explicitly capture first-order and second-order
proximity information from the vertices of a net-
work. Further, Grover and Leskovec (2016) in-
troduced a biased random walk procedure to gen-
erate the neighborhood for a vertex, which infers
the node representations by maximizing the like-
lihood of preserving the local context information
of vertices. However, these algorithms generally
ignore rich heterogeneous information associated
with vertices. Here, we focus on incorporating tex-
tual information into network embeddings.

To learn semantic-aware network embeddings,
Text-Associated DeepWalk (TADW) (Yang et al.,
2015) proposed to integrate textual features into
network representations with matrix factoriza-
tion, by leveraging the equivalence between Deep-
Walk and matrix factorization. CENE (Content-
Enhanced Network Embedding) (Sun et al., 2016)
used bidirectional recurrent neural networks to ab-
stract the semantic information associated with
vertices, which further demonstrated the advan-
tages of employing textual information. To cap-
ture the interaction between sentences of vertex
pairs, Tu et al. (2017) further proposed Context-
Aware Network Embedding (CANE), that em-
ploys a mutual attention mechanism to adaptively
account for the textual information from neigh-
boring vertices. Despite showing improvement
over structure-only models, these semantic-aware
methods cannot capture word-level alignment in-
formation, which is important for inferring the re-
lationship between node pairs, as previously dis-
cussed. In this work, we introduce a Word-
Alignment-based Network Embedding (WANE)

framework, which aligns and aggregates word-by-
word matching features in an explicit manner, to
obtain more informative network representations.

4 Experimental Setup

Datasets We investigate the effectiveness of the
proposed WANE model on two standard network-
embedding-based tasks, i.e., link prediction and
multi-label vertex classification. The following
three real-world datasets are employed for quan-
titative evaluation: (i) Cora, a standard paper ci-
tation network that contains 2,277 machine learn-
ing papers (vertices) grouped into 7 categories and
connected by 5,214 citations (edges) (ii) HepTh,
another citation network of 1,038 papers with ab-
stract information and 1,990 citations; (iii) Zhihu,
a network of 10,000 active users from Zhihu, the
largest Q&A website in China, where 43,894 ver-
tices and descriptions of the Q&A topics are avail-
able. The average lengths of the text in the three
datasets are 90, 54, and 190, respectively. To
make direct comparison with existing work, we
employed the same preprocessing procedure1 of
Tu et al. (2017).

Training Details For fair comparison with
CANE (Tu et al., 2017), we set the dimension of
network embedding for our model to 200. The
number of negative samples K is selected from
{1, 3, 5} according to performance on the valida-
tion set. We set the batch size as 128, and the
model is trained using Adam (Kingma and Ba,
2014), with a learning rate of 1× 10−3 for all pa-
rameters. Dropout regularization is employed on
the word embedding layer, with rate selected from
{0.5, 0.7, 0.9}, also on the validation set. Our
code will be released to encourage future research.

Baselines To evaluate the effectiveness of our
framework, we consider several strong baseline
methods for comparisons, which can be catego-
rized into two types: (i) models that only ex-
ploit structural information: MMB (Airoldi et al.,
2008), DeepWalk (Perozzi et al., 2014), LINE
(Tang et al., 2015), and node2vec (Grover and
Leskovec, 2016). (ii) Models that take both
structural and textual information into account:
Naive combination (which simply concatenates
the structure-based embedding with CNN-based
text embeddings, as explored in (Tu et al., 2017),
TADW (Yang et al., 2015), CENE (Sun et al.,

1https://github.com/thunlp/CANE



1834

%Training Edges 15% 25% 35% 45% 55% 65% 75% 85% 95%
MMB 54.7 57.1 59.5 61.9 64.9 67.8 71.1 72.6 75.9

DeepWalk 56.0 63.0 70.2 75.5 80.1 85.2 85.3 87.8 90.3
LINE 55.0 58.6 66.4 73.0 77.6 82.8 85.6 88.4 89.3

node2vec 55.9 62.4 66.1 75.0 78.7 81.6 85.9 87.3 88.2
Naive combination 72.7 82.0 84.9 87.0 88.7 91.9 92.4 93.9 94.0

TADW 86.6 88.2 90.2 90.8 90.0 93.0 91.0 93.4 92.7
CENE 72.1 86.5 84.6 88.1 89.4 89.2 93.9 95.0 95.9
CANE 86.8 91.5 92.2 93.9 94.6 94.9 95.6 96.6 97.7
WANE 86.1 90.9 92.3 93.1 93.4 94.5 95.1 95.4 95.9

WANE-wc 88.7 92.1 92.9 94.4 94.8 95.1 95.7 96.5 97.4
WANE-ww 91.7 93.3 94.1 95.7 96.2 96.9 97.5 98.2 99.1

Table 1: AUC scores for link prediction on the Cora dataset.

%Training Edges 15% 25% 35% 45% 55% 65% 75% 85% 95%
MMB 54.6 57.9 57.3 61.6 66.2 68.4 73.6 76.0 80.3

DeepWalk 55.2 66.0 70.0 75.7 81.3 83.3 87.6 88.9 88.0
LINE 53.7 60.4 66.5 73.9 78.5 83.8 87.5 87.7 87.6

node2vec 57.1 63.6 69.9 76.2 84.3 87.3 88.4 89.2 89.2
Naive combination 78.7 82.1 84.7 88.7 88.7 91.8 92.1 92.0 92.7

TADW 87.0 89.5 91.8 90.8 91.1 92.6 93.5 91.9 91.7
CENE 86.2 84.6 89.8 91.2 92.3 91.8 93.2 92.9 93.2
CANE 90.0 91.2 92.0 93.0 94.2 94.6 95.4 95.7 96.3
WANE 88.5 90.7 91.1 92.6 93.5 94.2 94.9 95.3 95.8

WANE-wc 90.1 91.4 91.9 94.1 95.3 95.9 96.5 96.9 97.2
WANE-ww 92.3 94.1 95.7 96.7 97.5 97.5 97.7 98.2 98.7

Table 2: AUC scores for link prediction on the HepTh dataset.

2016), and CANE (Tu et al., 2017). It is worth not-
ing that unlike all these baselines, WANE explic-
itly captures word-by-word interactions between
text sequence pairs.

Evaluation Metrics We employ AUC (Hanley
and McNeil, 1982) as the evaluation metric for
link prediction, which measures the probability
that vertices within an existing edge, randomly
sampled from the test set, are more similar than
those from a random pair of non-existing vertices,
in terms of the inner product between their corre-
sponding embeddings.

For multi-label vertex classification and to en-
sure fair comparison, we follow Yang et al. (2015)
and employ a linear SVM on top of the learned
network representations, and evaluate classifica-
tion accuracy with different training ratios (vary-
ing from 10% to 50%). The experiments for each
setting are repeated 10 times and the average test
accuracy is reported.

5 Experimental Results

We experiment with three variants for our WANE
model: (i) WANE: where the word embeddings
of each text sequence are simply average to ob-
tain the sentence representations, similar to (Joulin
et al., 2016; Shen et al., 2018c). (ii) WANE-

wc: where the textual embeddings are inferred
with word-by-context alignment. (iii) WANE-ww:
where the word-by-word alignment mechanism is
leveraged to capture word-by-word matching fea-
tures between available sequence pairs.

5.1 Link Prediction

Table 1 presents link prediction results for all mod-
els on Cora dataset, where different ratios of edges
are used for training. It can be observed that when
only a small number of edges are available, e.g.,
15%, the performances of structure-only methods
is much worse than semantic-aware models that
have taken textual information into consideration
The perfromance gap tends to be smaller when a
larger proportion of edges are employed for train-
ing. This highlights the importance of incorporat-
ing associated text sequences into network embed-
dings, especially in the case of representing a rela-
tively sparse network. More importantly, the pro-
posed WANE-ww model consistently outperforms
other semantic-aware NE models by a substantial
margin, indicating that our model better abstracts
word-by-word alignment features from the text se-
quences available, thus yields more informative
network representations.

Further, WANE-ww also outperforms WANE or
WANE-wc on a wide range of edge training pro-
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%Training Edges 15% 25% 35% 45% 55% 65% 75% 85% 95%
MMB 51.0 51.5 53.7 58.6 61.6 66.1 68.8 68.9 72.4

DeepWalk 56.6 58.1 60.1 60.0 61.8 61.9 63.3 63.7 67.8
LINE 52.3 55.9 59.9 60.9 64.3 66.0 67.7 69.3 71.1

node2vec 54.2 57.1 57.3 58.3 58.7 62.5 66.2 67.6 68.5
Naive combination 55.1 56.7 58.9 62.6 64.4 68.7 68.9 69.0 71.5

TADW 52.3 54.2 55.6 57.3 60.8 62.4 65.2 63.8 69.0
CENE 56.2 57.4 60.3 63.0 66.3 66.0 70.2 69.8 73.8
CANE 56.8 59.3 62.9 64.5 68.9 70.4 71.4 73.6 75.4
WANE 52.1 56.6 60.7 64.2 67.5 69.1 71.3 72.8 73.9

WANE-wc 55.2 59.9 64.2 68.1 71.3 73.4 75.6 76.3 78.8
WANE-ww 58.7 63.5 68.3 71.9 74.9 77.0 79.7 80.0 82.6

Table 3: AUC scores for link prediction on the Zhihu dataset.
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Figure 3: (a, b) Ablation study on the choice of different alignment and aggregation functions. (c) Test accuracy
of supervised vertex classification on the Cora dataset.

portions. This suggests that: (i) adaptively as-
signing different weights to each word within a
text sequence (according to its paired sequence)
tends to be a better strategy than treating each
word equally (as in WANE). (ii) Solely consid-
ering the context-by-word alignment features (as
in WANE-wc) is not as efficient as abstracting
word-by-word matching information from text se-
quences. We observe the same trend and the supe-
riority of our WANE-ww models on the other two
datasets, HepTh and Zhihu datasets, as shown in
Table 2 and 3, respectively.

5.2 Multi-label Vertex Classification

We further evaluate the effectiveness of proposed
framework on vertex classification tasks with the
Cora dataset. Similar to Tu et al. (2017), we gen-
erate the global embedding for each vertex by tak-
ing the average over its context-aware embeddings
with all other connected vertices. As shown in Fig-
ure 3(c), semantic-aware NE methods (including
naive combination, TADW, CENE, CANE) ex-
hibit higher test accuracies than semantic-agnostic
models, demonstrating the advantages of incor-
porating textual information. Moreover, WANE-
ww consistently outperforms other competitive
semantic-aware models on a wide range of labeled
proportions, suggesting that explicitly capturing
word-by-word alignment features is not only use-

ful for vertex-pair-based tasks, such as link pre-
diction, but also results in better global embed-
dings which are required for vertex classification
tasks. These observations further demonstrate that
WANE-ww is an effective and robust framework
to extract informative network representations.

Semi-supervised classification We further con-
sider the case where the training ratio is less than
10%, and evaluate the learned network embedding
with a semi-supervised classifier. Following Yang
et al. (2015), we employ a Transductive SVM
(TSVM) classifier with a linear kernel (Joachims,
1998) for fairness. As illustrated in Table 4, the
proposed WANE-ww model exhibits superior per-
formances in most cases. This may be due to the
fact that WANE-ww extracts information from the
vertices and text sequences jointly, thus the ob-
tained vertex embeddings are less noisy and per-
form more consistently with relatively small train-
ing ratios (Yang et al., 2015).

5.3 Ablation Study

Motivated by the observation in Wang and Jiang
(2017) that the advantages of different functions
to match two vectors vary from task to task, we
further explore the choice of alignment and ag-
gregation functions in our WANE-ww model. To
match the word pairs between two sequences, we
experimented with three types of operations: sub-
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Figure 4: t-SNE visualization of the learned network
embeddings on the Cora dataset.

traction, multiplication, and Sub & Multi (the con-
catenation of both approaches). As shown in Fig-
ure 3(a) and 3(b), element-wise subtraction tends
to be the most effective operation performance-
wise on both Cora and Zhihu datasets, and per-
forms comparably to Sub & Multi on the HepTh
dataset. This finding is consistent with the results
in Wang and Jiang (2017), where they found that
simple comparison functions based on element-
wise operations work very well on matching text
sequences.

In terms of the aggregation functions, we com-
pare (one-layer) CNN, mean-pooling, and max-
pooling operations to accumulate the matching
vectors. As shown in Figure 3(b), max-pooling
has the best empirical results on all three datasets.
This may be attributed to the fact that the max-
pooling operation is better at selecting impor-
tant word-by-word alignment features, among all
matching vectors available, to infer the relation-
ship between vertices.

5.4 Qualitative Analysis

Embedding visualization To visualize the
learned network representations, we further em-
ploy t-SNE to map the low-dimensional vectors of
the vertices to a 2-D embedding space. We use the
Cora dataset because there are labels associated
with each vertex and WANE-ww to obtain the
network embeddings.

As shown in Figure 4 where each point indicates
one paper (vertex), and the color of each point in-
dicates the category it belongs to, the embeddings
of the same label are indeed very close in the 2-D
plot, while those with different labels are relatively
farther from each other. Note that the model is
not trained with any label information, indicating
that WANE-ww has extracted meaningful patterns
from the text and vertex information available.

Baseline Models 1% 3% 7% 10%
Text Only 33.0 43.0 57.1 62.8

Naive Combination 67.4 70.6 75.1 77.4
TADW 72.1 77.0 79.1 81.3
CENE 73.8 79.1 81.5 84.5
CANE 72.6 78.2 80.4 83.4

WANE-ww (ours) 73.4 79.6 82.7 85.1

Table 4: Semi-supervised vertex classification results
on the Cora dataset.

Case study The proposed word-by-word align-
ment mechanism can be used to highlight the most
informative words (and the corresponding match-
ing features) wrt the relationship between ver-
tices. We visualize the norm of matching vec-
tor obtained in (11) in Figure 5 for the Cora
dataset. It can be observed that matched key
words, e.g., ‘MCMC’, ‘convergence’, between the
text sequences are indeed assigned higher values
in the matching vectors. These words would be se-
lected preferentially by the final max-pooling ag-
gregation operation. This indicates that WANE-
ww is able to abstract important word-by-word
alignment features from paired text sequences.

(a) Sentence pairs associated with Edge #1

(b) Sentence pairs associated with Edge #2

Figure 5: Visualization of the word-level matching vec-
tors. Darker shades represent larger values of the norm
of m(i) at each word position.

6 Conclusions

We have presented a novel framework to in-
corporate the semantic information from vertex-
associated text sequences into network embed-
dings. An align-aggregate framework is intro-
duced, which first aligns a sentence pair by captur-
ing the word-by-word matching features, and then
adaptively aggregating these word-level alignment
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information with an efficient max-pooling func-
tion. The semantic features abstracted are fur-
ther encoded, along with the structural informa-
tion, into a shared space to obtain the final net-
work embedding. Compelling experimental re-
sults on several tasks demonstrated the advantages
of our approach. In future work, we aim to lever-
age abundant unlabeled text data to abstract more
informative sentence representations (Dai and Le,
2015; Zhang et al., 2017; Shen et al., 2017; Tang
and de Sa, 2018) . Another interesting direction
is to learn binary and compact network embed-
ding, which could be more efficient in terms of
both computation and memory, relative to its con-
tinuous counterpart (Shen et al., 2018b).
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