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Abstract

Depending on the surrounding context, an id-
iomatic expression may be interpreted figu-
ratively or literally. This paper proposes an
unsupervised learning method for recognizing
the intended usages of idioms. We treat the
possible usages as a latent variable in proba-
bilistic models and train them in a linguisti-
cally motivated feature space. Crucially, we
show that distributional semantics serves as a
helpful heuristic for formulating a literal us-
age metric to estimate the likelihood that the
idiom is intended literally. This information
can then guide the unsupervised training pro-
cess for the probabilistic models. Experiments
show that our overall model performs compet-
itively against supervised methods.

1 Introduction

Many idiomatic expressions may be interpreted
both figuratively or literally. Their intended us-
ages depend on how they fit with their contexts.
For example, the idiom ”spill the beans” is used
figuratively in the first instance below, and liter-
ally in the second:

(1) [fig.] The beans have been spilled.
From what I've read on Twitter I could
probably fill out the forms and submit
it to the FISA court. I don’t know what
the big secret is.!

(2) [lit.]  Spill the beans, flip the
fruit, bust open a box of hot pockets.
Make a general mess of the kitchen.”

This type of ambiguity is commonplace — prior
work suggests that about half out of a sample of

'"https://twitter.com/BTeboe/status/
958792419302100993

https://twitter.com/DukeRaccoon/
status/477530732173471744

60 idioms have a clear literal meaning as well as
a figurative one (Fazly et al., 2009). Being able
to distinguish the intended usage of an idiom in
context has been shown to benefit many natural
language processing (NLP) applications, e.g., ma-
chine translation and sentiment analysis (Salton
et al., 2014; Williams et al., 2015).

While supervised models for idiom usage
recognition have had some successes, they require
appropriately annotated training examples (Peng
et al., 2014; Byrne et al., 2013; Liu and Hwa,
2017). A more challenging problem is to recog-
nize idiom usages without a dictionary or some
annotated examples (Korkontzelos et al., 2013).
Some previous unsupervised models tried to ex-
ploit linguistic differences in usages. For exam-
ple, Fazly et al.(2009) observed that an idiom ap-
pearing in its canonical form is usually used fig-
uratively; Sporleder and Li(2009) relied on the
break in lexical coherence between the idioms and
the context to signal a figurative usage. These
heuristics, however, are not always applicable be-
cause the distinctions they depend upon may not
be present or obvious. To improve generaliza-
tion across different idioms and usage contexts,
we need a more reliable heuristic, and appropri-
ately incorporate it into an unsupervised learning
framework.

We propose a heuristic that differentiates usages
based on distributional semantics (Harris, 1954;
Turney and Pantel, 2010). Our key insight is that
when an idiom is used literally, its relationship
with its context is more predictable than when it is
used figuratively. This is because the literal mean-
ing of an idiom is compositional (Katz and Gies-
brecht, 2006), and the constituent words that make
up the idiom are also meant literally. For exam-
ple, in instance (2), spill is meant literally and can
take on objects other than beans; moreover, one of
the context words, mess, can often be seen to co-
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occur with spill in other text, even without beans.
Our strategy is to represent an idiom’s literal usage
in terms of the word embeddings of the idiom’s
constituent words and other words they frequently
co-occur with. Then, for any instance in which the
idiom’s usage is not known, we only need to deter-
mine the semantic similarity between that instance
and the idiom’s literal representation. We define a
literal usage metric that estimates the likelihood
that an instance would be labeled “literal”.

While the literal usage metric captures the dis-
tributional semantic information of the context, we
find that some other linguistic cues are also sig-
nificant for usage detection (such as whether the
subject of the sentence is a person); therefore, we
allow our model to further refine through unsu-
pervised methods. Specifically, we treat the usage
(figurative or literal) as a hidden variable in proba-
bilistic latent variable models, and we define a set
of features that are linguistically relevant for idiom
usage detection as observables. We integrate our
literal usage metric with the latent variable mod-
els by treating the metric outputs as soft labels to
guide the latent variable models toward grouping
by usages.

We hypothesize that unsupervised learning in
a more linguistically motivated feature space, in-
formed by soft labels from a semantically driven
metric, will produce more robust classifiers. We
conduct experiments comparing our approach
against other supervised and unsupervised base-
lines. Results suggest that our approach achieves
performances that are competitive to supervised
models.

2 Related Work

Despite the common perception that idioms are
mainly used figuratively, many can also be meant
literally. A number of models have been pro-
posed in the literature to recognize an idiom’s us-
ages under different context. Many rely on spe-
cific linguistic property to draw a clear-cut deci-
sion boundary between literal and figurative us-
ages. For example, Fazly et al. (2009) proposed
a method that relies on the concept of canonical
form. Based on the observation that while literal
usages are less syntactically restricted, figurative
usages tend to occur in a small number of canon-
ical form(s). As shown in the examples above,
however, this rule of thumb does not always hold.
Sporleder and Li (2009) proposed a method by

building a cohesion graph to include all content
words in the context; if removing the idiom im-
proves cohesion, they assume the instance is figu-
rative. Later, Li and Sporleder (2009) used their
cohesion graph method to label a subset of the
test data with high confidence. This subset is then
passed on as training data to the supervised classi-
fier, which then labels the remainder of the dataset.

When manually annotated examples are avail-
able, supervised classifiers are effective. Rajani
et al. (2014) extracted all non-stop-words in the
context and used them as “bag of words” fea-
tures to train a L2 regularized Logistic Regres-
sion (L2LR) classifier (Fan et al., 2008). As local
context of an idiom holds clues for discriminat-
ing between its literal and figurative usages, Liu
and Hwa (2017) find that context representation
also plays a significant role in idiom usage recog-
nition. They took an adaptive approach, applying
supervised ensemble learning over three classifiers
based on different context representations (Peng
et al., 2014; Birke and Sarkar, 2006; Rajani et al.,
2014).

3  Our Approach

Given a target idiomatic expression and a collec-
tion of instances in which the idiom occurs, our
proposed system (Figure 1) determines whether
the idiom in each instance is meant figuratively
or literally. We first build a Literal Usage Rep-
resentation for each idiom by leveraging the dis-
tributional semantics of its constituents (Sec 3.1).
Given an instance of idiom, we can determine its
usage by the semantic similarity between the con-
text of the instance and the Literal Usage Repre-
sentation. We define a Literal Usage Metric to
transform the semantic similarity score into soft
label, i.e., an initial rough estimation of the in-
stance’s usage (Sec 3.2). Finally, we treat the soft
labels as distant supervision for downstream prob-
abilistic latent variable models, in which the us-
ages are considered as the hidden variables and are
represented over a set of features.

3.1 Literal Usage Representation

An idiom co-occurs with different sets of words
depending on whether it is meant literally or fig-
uratively. For example, when used literally, get
wind is more likely to co-occur with words such
as rain, storm or weather; in contrast, when used
figuratively, it frequently co-occurs with rumor or
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Figure 1: An overview of our unsupervised idiom usage recognition model

story, etc. Comparing the two sets of words asso-
ciated with the idiom, we see that the literal set of
words also tend to co-occur with just wind, a con-
stituent word within the idiom. Therefore, even
without annotated data or dictionary, we may still
approximate a representation for the literal mean-
ing of an idiom by the idiom’s constituent words
and their semantic relationship to other words. To
do so, we begin by initializing a literal meaning
set to just the idiom’s main constituent words>; we
then grow the set by adding two types of semanti-
cally related words. First, we look for co-occuring
words in a large textual corpus (e.g., (David et al.,
2005)): for each constituent word w, we randomly
sample s sentences that contain w from the corpus;
we extract the top n most frequent words (exclud-
ing stop words) and add them to the literal mean-
ing set. Second, we look for words that are se-
mantically close in a word embedding space: we
train a continuous bag-of-words (CBOW) embed-
ding model (Mikolov et al., 2013) and add addi-
tional ¢ words that are the most related to w using
cosine similarity.

All together, the literal usage representation is a
collection of vectors, i.e., the embeddings of the
words in the final extended literal meaning set.
The size of the set depends on parameters s, n,
and t; if the chosen values are too small, we do not
end up with a word collection that is representative
enough; if the numbers are too large, we would
only be wasting computing resources chasing Zip-
fian tails. Parameter setting choices are discussed
further in the experiment section.

3We observe that the nouns tend to be the most indicative
of the idiom’s literal meaning, but if the idiom does not con-
tain any noun, we back off to any constituent word that is not
a stop word.

3.2 Literal Usage Metrics

Among all the instances to be classified, we expect
the context words of the literal cases to be more
semantically close to the literal usage representa-
tion we just formed. Let L denote the set of words
in the literal usage representation for the target id-
iom. For each instance, let C be the set of non-stop
context words in the instance. We calculate s, the
semantic similarity score between the context of
the instance and the literal usage representation as
follows:

1 1
s = @Zmzmm(c,l) (1)

ceC leL

where ¢ denotes a word in C, [ denotes a word
in L and sim(c, 1) refers to the cosine similarity
between the word embeddings of ¢ and /.

Let S = {s1,s2,...5,} be the set of semantic
similarity scores for all the instances we wish to
classify. Instances with higher scores are more
likely to use the idiom literally. A naive literal
usage metrics is to choose a predefined thresh-
old for all idioms and label all the instances with
score above the threshold as literal usages. This
approach is unlikely to work well in practice. As
noted by previous work, idioms have different lev-
els of semantic analyzability (Gibbs et al., 1989;
Cacciari and Levorato, 1998). When an idiom has
a high degree of semantic analyzability, its contex-
tual words will be more semantically close to the
literal usage representation, thus a higher thresh-
old is needed.

In this work, we select a different decision
threshold for each idiom adaptively based on
the similarity scores distribution. And most im-
portantly, rather than generate a hard label, we
transform these scores into a probabilistic metric,
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where 0 means the usage in the instance is almost
certainly figurative while 1.0 means it is literal.
We propose a metric based on the principle of
Minimum Variance (MinV). That is, we first sort
the scores in S and choose the threshold (from
these scores) that minimizes the sum of variances
of the two resulting clusters. For each instance 7,
we then apply the following metric to estimate the
probability that the idiom in instance ¢ is meant
literally based on its semantic similarity score s; :

1

Pri = 1+ e—kx(si—t)

2)
where k is a constant weighting factor and ¢ in-
dicates the learned threshold. The intuition is that
the larger the difference between s; and the thresh-
old is, the more likely the instance ¢ is literal; the
probability of literal usage is not linearly corre-
lated to the difference, we use the sigmoid func-
tion to account for this non-linearity. We incorpo-
rate k to scale the value of the difference since it is
generally very small (close to 0). Without £, all the
Pr values gravitate toward 0.5, rendering the soft
label being equivalent to random guess. We set k
to 5 for all the idioms based on a development set.

3.3 Heuristically Informed Usage
Recognition

The soft label, generated by MinV (the literal us-
age metric), captures the distributional semantic
information of the context. In practice, there are
a variety of other linguistic features which are also
informative of the intended usage of idiom. We
explore probabilistic latent variable models over a
collection of features that are linguistically rele-
vant for idiom usage detection. The soft label is
integrated into the unsupervised learning of hid-
den usages as a distant supervision. In this section,
we will describe the proposed features in the latent
variable models and how we integrate the soft la-
bel into the learning process.

3.3.1 Latent Variable Models

To predict an idiom’s usage in instances, we con-
sider two representative probabilistic latent vari-
able models: Latent Dirichlet Allocation (LDA)
(Blei et al., 2003)* and unsupervised Naive Bayes
(NB). For both models, the latent variable is the id-
iom usage (figurative vs. literal); the observables

4 Although originally conceived for modeling document
content, LDA can be applied to any kind of discrete input

are linguistic features that can be extracted from
the instances, described below:

Subordinate Clause We encode a binary fea-
ture indicating whether the target expression is fol-
lowed by a subordinate clause (the Stanford Parser
(Chen and Manning, 2014) is used). This feature is
useful for some idioms such as in the dark. It usu-
ally suggests a figurative usage as in You've kept
us totally in the dark about what happened that
night.

Selectional Preference Violation of selectional
preference is normally a signal of figurative usage
(e.g., having an abstract entity as the subject of
play with fire). We encode this feature if the head
word of the idiom is a verb and focus on the sub-
ject of the verb. We apply Stanford Name Entity
tagger (Finkel et al., 2005) with 3 classes ("Loca-
tion”, ”Person”, ”Organization”) on the sentence
containing the idiom. If the subject is labeled as an
Entity, its class will be encoded in the feature vec-
tor. Pronouns such as ”I” and “he” also indicate
the subject is a ”Person”. However, they are nor-
mally not tagged by Stanford Name Entity tagger.
To overcome this issue, we add Part-of-Speech of
the subject into the feature vector.

Abstractness Abstract words refer to things
which are hard to perceive directly with our
senses. Abstractness has been shown to be useful
in the detection of metaphor, another type of figu-
rative language (Turney et al., 2011). A figurative
usage of an idiomatic phrase may have relatively
more abstract contextual words. For example, in
the sentence She has lived life in the fast lane, the
word life is considered as an abstract word. This
is a useful indicator that in the fast lane is used
figuratively. We use the MRC Psycholinguistic
Database Machine Usable Dictionary (Coltheart,
1981) which contains a list of 4295 words with
their abstractness measure between 100 and 700.
We calculate the average abstractness score for all
the contextual words (with stop words being re-
moved) in the sentence containing the idiom. The
score is then transformed into categorical feature
to overcome sparsity problem based on the follow-
ing criteria: concrete (450 - 700), medium (350 -
450), abstract (100 - 350).

Neighboring Words Words preceding and fol-
lowing the idiomatic expression can be very in-
formative in terms of usage recognition. For ex-
ample, words such as relax or shower before the
idiom in hot water often signal a literal usage.
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Part-of-Speech of the Neighboring Words
Class of neighboring words might be useful as
well. For example, a pronoun preceding dog’s age
generally indicates a literal usage, as in I think my
dog’s age is starting to catch up. She sometimes
needs help to jump on to my bed, while a deter-
miner usually marks a figurative usage, as in It’s
been a dog’s age since I've used Twitter.

3.3.2 Incorporating Soft Label into Usage
Recognition

Given a collection of instances and their features,
either LDA or NB can separate the instances into
two groups (hopefully, by usages), but it does not
associate the right label (i.e., “figurative” or "lit-
eral”) to the groups. We do not want to rely on
any manual annotations for this step. Therefore,
we integrate the automatically generated soft la-
bels (based on MinV, our literal usage metric) into
the unsupervised learning procedure as a weak
form of supervision. Formally, we want to es-
timate each instance’s posterior distribution over
(literal/figurative) usages 64, and usage-feature
distribution ¢, . For LDA, we derive a Gibbs
sampling algorithm which incorporates the soft la-
bel into the learning procedure. We refer it as in-
formed Gibbs sampling (infGibbs). For unsuper-
vised naive Bayes model, we adapt the classical
Expectation-Maximization algorithm to integrate
the soft label. We refer it as informed Expectation-
Maximization (infEM).

Informed Gibbs Sampling The Gibbs sam-
pling algorithm (Griffiths and Steyvers, 2004)
used in traditional LDA initializes each word to-
ken a random hidden topic. The system needs to
interpret the learned topics post-hoc, e.g., by hu-
man annotation. In our case, for each feature f
in each instance, an initial random usage biased
by the instance’s soft label is assigned to f (i.e., a
Bernoulli trial). Since the soft label explicitly en-
codes an instance’s literal and figurative usage dis-
tribution, we do not need to interpret the learned
usages at the end of the algorithm. Based on these
assignments, we build a feature-usage counting
matrix OV and instance-usage counting matrix
CPY with dimensions |F| x 2 and |D| x 2 re-
spectively (|F| is the feature size and |D)| is the
number of instances): C’ij is the count of fea-
ture 7 assigned to usage j; C’QJU is the count of
features assigned to usage j in instance d. Then
for each feature f in each instance, we resample a
new usage for f and matrices C*'V and CPV will

be updated accordingly. This step will be repeated
for T times. The resampling equation is:

fi d;
_ cli 48 cte
W — U o . - 1,7 . . 1,]
p( i ]’ 15 f) bj Cgi),j+|F‘6 Ci’i7*+|U‘0‘
(3)

where ¢ indexes features in the instance d, j is
an index into literal and figurative usages, * in-
dicates a summation over that dimension and —
means excluding the corresponding instance. The
first factor p; is the soft label encoding prior us-
age distribution. The second factor represents the
probability of feature f under usage j (Cf Zl ;18
the count of the feature f assigned to usage j,
excluding the current usage assignment u;). The
third factor represents the probability of usage j in
the current instance (C’fii ; 1s the count of linguis-
tic features which are as7signed to usage j in the
current instance, excluding the current feature f).
The value of |U]| is 2, representing the number of
usages (i.e., figurative and literal). o and 3 are the
hyper-parameters from the Dirichlet priors (we set
both of them to 1). The core idea of Equation 3 is
to integrate both distribution semantic information
(soft label, the first factor) and linguistically mo-
tivated features (the second and third factors) into
the inference procedure.

The matrices of CFV and CPY from the last
10% = T iterations are averaged and then nor-
malized to approximate the true usage-feature dis-
tribution ¢, ¢ and instance-usage distribution 64,
respectively. The final result is determined by
04, 1.e., assigning each instance with the usage
of probability higher than 0.5. We do average to
have a more stable result because an accidental
bad sampling would affect our model negatively
if we only use the CFV and CPY from the last
iteration. This procedure is important for some id-
ioms if their feature space is sparse. The iteration
number T is set to 500 based on a development set.

Informed Expectation Maximization Com-
bining a Naive Bayes classifier with the EM algo-
rithm has been widely used in text classification
and word sense disambiguation (Hristea, 2013;
Nigam et al., 2000). In our case, we want to con-
struct a model to recover the missing literal and
figurative labels of the instances of the target id-
iom. This section describes two extensions to the
basic EM algorithm for idiom usage recognition.
The extensions help improve parameter estimation
by taking the automatically learned soft labels into
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consideration.

Our informed EM method extends a basic ver-
sion for NB (Hristea, 2013), where the initial pa-
rameter values 04, and ¢, are chosen randomly.
At each iteration, the E-step of the algorithm esti-
mates the expectations of the missing values (i.e.
the literal and figurative usage) given the latest it-
eration of the model parameters; the M-step max-
imizes the likelihood of the model parameters us-
ing the previously-computed expectations of the
missing values. As we’ve done with extending
Gibbs sampling for LDA, we also perform two
similar adaptations on conventional EM for NB
to incorporate soft labels. First, we assign each
instance an initial usage distribution 64, directly
using the soft label, and then initialize the usage-
feature distribution ¢, using these assignments.
We refer it as informed initialization. Second, in
the E-step, we multiply the expectation result of
the basic EM with the soft label as the new ex-
pected usage for each instance (i.e., updating 64,).
The M-step is the same as basic EM to update the
usage-feature distribution ¢, .

4 Evaluation

We conduct experiments to address three ques-
tions:

1. How effective is our overall approach? How
does it compare against previous work?

2. How effective is our literal usage metric (i.e.,
MinV) compared to other heuristics?

3. How effective is our literal usage metric at
informing downstream learning processes?

4.1 Experimental Setup

Models Our main experiments will evaluate the
two variants of the proposed fully unsupervised
model as described in section 3: MinV+infGibbs
and MinV+infEM. We report the average per-
formance of our models over 5 runs. Perform-
ing multiple runs is necessary because we have
a sampling process. They are compared with
three baseline unsupervised models: Sporleder
and Li (2009), Li and Sporleder (2009)° and Fazly
et al. (2009); and two baseline supervised models:
Rajani et al. (2014) and Liu and Hwa (2017) (us-
ing 5-fold cross validation).

SWe replace Normalized Google Distance (NGD) with
word embeddings to measure the semantic relatedness be-
tween words due to the query frequency restriction on the
API of NGD.

Parameter setting Recall that in order to build
the literal usage representation of an idiom, we
need to sample s sentences that contain each con-
stituent word w from an external corpus; extract
from them the top n most frequently co-occurring
words with w; then separately find ¢ words that
are semantically similar to w using word embed-
dings. To set parameters with values in reasonable
ranges, we evaluated MinV on a small develop-
ment set. We picked 10 idioms that are differ-
ent from the evaluation set, scraped 50 instances
from the web for each idiom, and labeled them
ourselves. We find that s >= 100, n=10, and ¢=5
yield good results.

We use the gensim toolkit (Rehtifek and Sojka,
2010) and train our word embedding model using
the continuous bag of word model on Text8 Cor-
pus®. Negative sampling is applied as the training
method; the men_count is set to 2. For the other
parameters, we use the default settings in gensim.
Evaluative Data Our goal is to compare all the
methods under two public available corpora: Se-
mEval 2013 Task 5B corpus (Korkontzelos et al.,
2013), which is used by prior supervised meth-
ods (Liu and Hwa, 2017; Rajani et al., 2014)
and verb—noun combination (VNC) dataset (Cook
etal., 2008), which is used by a prior unsupervised
method (Fazly et al., 2009). However, there are
some methods-datasets conflicts that have to be re-
solved. Because the idioms in the SemEval dataset
are all in their canonical forms, and because the id-
ioms are not restricted to the verb-noun combina-
tion, we cannot evaluate the method by Fazly et al.
on this dataset (as their method is tailored to verb-
noun combination). Some idioms from the VNC
dataset are almost always used figuratively (or lit-
erally), which presents a problem for supervised
methods. To facilitate full comparisons, we select
the subset of idioms from the VNC corpus whose
number of literal and figurative instances are both
higher than 10. A summary of the two corpora is
shown in Table 1. Note that each instance in Se-
mEval corpus has about 3~5 sentences; for con-
sistency, we use 3 sentences as the context: the
sentence with the target idiom and two neighbor-
ing sentences.

Evaluation metric Following the convention in
prior works, we report the F-score for the recogni-
tion of figurative usages and the overall accuracy.

®From http://mattmahoney.net/dc/text8s.
zip
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SemEval VNC
# of Idiom 10 11
# of Literal 1185 239
# of Figurative 1186 470
Idiom Type Mixture Verb-Noun
Syntactic Form Canonical Mixture
Context Size 3 ~ 5 Sentences 1 Sentence

Table 1: Statistics of the two corpora

4.2 The Performance of Our Full Models

Table 2 shows the result of our models and the
other comparative methods. Our proposed mod-
els show consistent performance across the two
corpora, outperforming the unsupervised base-
lines from Sporleder and Li (2009), Li and
Sporleder (2009) and the supervised model from
Rajani et al. (2014). Moreover, there is no statisti-
cal significance in the F-score difference between
the supervised ensemble model from Liu and Hwa
(2017) and our models.

On the VNC corpus, our models have compa-
rable average scores as that of Fazly et al. (2009);
our scores are more stable across different idioms.
While the method of Fazly et al. is nearly perfect
for some idioms (0.98 on “take heart”), it performs
poorly for others (e.g., 0.33 on ”pull leg”). Their
algorithm has trouble with idioms whose canoni-
cal and non-canonical forms can appear frequently
both in literal and figurative usages.

4.3 Effectiveness of MinV

The core of our approach is MinV, the literal us-
age metric we developed to generate soft labels to
guide the unsupervised learning. This experiment
examines its effectiveness by creating usage clas-
sifications directly from it (i.e., if MinV predicts
a probability of >0.5, predict “literal”). We com-
pare MinV against two alternative heuristics.
MinV is based on two core ideas. First, if an
idiom is used figuratively, we expect to see a big
difference (low similarity scores) between its con-
text and the semantic representation of idiom’s lit-
eral usage. The idea is similar to that of Sporleder
and Li (2009), but they relied on lexical chain
instead of distributional semantics. Second, in-
stead of choosing a predefined threshold to sep-
arate the raw semantic similarity scores, we se-
lect a different decision threshold for each idiom
adaptively based on the distribution of the scores.
So as an alternative, we compare MinV against a
Fixed-Threshold heuristic that labels an instance
as “literal” if its raw score is higher than some

global threshold (set to 0.346 based on develop-
ment data).

In Table 3, we observe that Minv outperforms
both Sporleder and Li’s model as well as Fixed-
Threshold, but using MinV by itself is not suffi-
cient. It has great fluctuations, e.g., the F-Score
for individual idioms varies from 0.43 to 0.88. Re-
call that MinV +infGibbs has a smaller fluctuation
across different idioms in Table 2. These results
suggest that the subsequent learning process is ef-
fective.

Through error analysis, we find two major fac-
tors contributing to the performance fluctuation.
First, the context itself could be misleading. An
error case of play ball by MinV is:

All 10-year-old Minnie Cruttwell wants to do is
play with the boys , but the Football Association
are not playing ball. She is a member of a mixed
team called Balham Blazers , but the FA say she
must join a girls’ team when she is 12.

The context words in bold (which are related to
the word “ball”) mislead MinV to predict a “lit-
eral” usage when it is actually a "figurative” usage
(since an organization such as the Football Asso-
ciation cannot literally play ball). Second, not all
content words in the context are relevant for dis-
tinguishing the idiom’s usage. A future direction
is to prune contextual words more intelligently.

4.4 Integration of MinV into Learning

We have argued that an advantage of using a met-
ric with a probabilistic interpretation instead of
a binary class heuristic is that its scores can be
incorporated into subsequent learning models as
soft labels. In this set of experiments, we evaluate
the impact of the metric on the learning methods.
First, we consider unsupervised learning without
input from the literal usage metric. We cluster
the instances with the original Gibbs sampling and
EM algorithms and then label the two clusters with
the majority usage within the clusters. Second,
we explore using the information from the literal
usage metric as ’noisy gold standard” to perform
supervised training on a nearest neighbors (NN)
classifier. Specifically, the literal and figurative
instances labeled by MinV with high confidence
(top 30%) are used as example set. Then for each
test instance, we calculate its cosine similarity (in
feature space) to the literal and figurative example
sets and assign the label of the closest set. We refer
this model as MinV +NN.
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SemEval VNC
Type Model Avg. Ffiq Avg.Acc Avg. Friq Avg.Acc

Unsupervised Sporleder & Li 0.58*% (0.42 ~ 0.72)  0.52*%(0.32 ~ 0.7) | 0.61* (0.46 ~ 0.73) 0.57*(0.41 ~ 0.75)
Li & Sporleder 0.64* (0.41 ~ 0.76) 0.62*(0.43 ~0.71) | 0.67* (0.48 ~ 0.77)  0.66*(0.52 ~ 0.77)
Fazly et al. - - 0.73(0.33 ~0.98) 0.74 (0.35 ~ 0.98)

Supervised Rajani et al. 0.71* (0.54 ~ 0.83)  0.75(0.67 ~ 0.81) | 0.69* (0.49 ~ 0.8) 0.7#(0.6 ~ 0.79)
Liu & Hwa 0.77 (0.68 ~ 0.85)  0.77(0.71 ~ 0.85) | 0.75(0.65 ~ 0.88)  0.75(0.67 ~ 0.89)

Our Model | MinV + infGibbs | 0.75 (0.64 ~0.91)  0.74(0.63 ~ 0.87) | 0.73 (0.64 ~ 0.86)  0.75(0.66 ~ 0.83)

MinV + infEM 0.73 (0.58 ~ 0.88)  0.73(0.61 ~ 0.85) | 0.72 (0.62 ~ 0.87) 0.72(0.6 ~ 0.84)

Table 2: The performances of different models. Avg. F'y;, denotes average figurative F-score, Avg.Acc
denotes average accuracy. We report the range in the parenthesis. * indicates the difference is significant
with our MinV+ infGibbs model at the 95% confidence level. Since the method from Fazly et al. (2009)
restricted their experiment to VNC type, we only report their performance on the VNC corpus.

Model Avg. Fpig

Avg.Acc

Fixed-Threshold
MinV
Sporleder & Li

0.6 (0.23 ~ 0.82)
0.66 (0.43 ~ 0.88)
0.59 (0.42 ~ 0.73)

0.62 (0.47 ~ 0.83)
0.65 (0.51 ~ 0.89)
0.54(0.32 ~ 0.75)

0.7

0.5 -

Table 3: A comparison of classifying by different i e

heuristics. Results are averaged across all the id-

ioms in the two corpora.

Model Avg. Fyig Avg.Acc
Gibbs 0.58 (0.31 ~0.78)  0.57 (0.4 ~ 0.78)
EM 0.56 (0.31 ~0.71) 0.6 (0.42 ~ 0.77)
MinV+NN | 0.68 (0.41 ~ 0.83) 0.67 (0.55 ~ 0.86)
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Table 4: The performance of MinV+NN and mod-
els without soft label on all the idioms in the two
corpora

Table 4 shows the performances of the new
models, which are all worse than our full models
MinV +infGibbs and MinV +nfEM. This high-
lights the advantage of integrating distributional
semantic information and local features into one
single learning procedure. Without the informed
prior (encoded by the soft labels), the Gibbs sam-
pling and EM algorithms only seek to maximize
the probability of the observed data, and may fail
to learn the underlying usage structure.

The model MinV +NN is not as competitive as
our full models. It is too sensitive to the selected
instances. Even though the training examples are
instances that MinV is the most confident about,
there are still mislabelled instances. These “noisy
training examples” would lead the NN classifier
to make unreliable predictions. In contrast, our
unsupervised learning is less sensitive to the per-
formance of MinV; it can achieve a decent perfor-
mance for an idiom even when the quality of the
soft labels is poor. For example, when using MinV
as a stand-alone model for break a leg, its figura-

Iteration

Figure 2: The performance of MinV+infGibbs on
the idiom “break a leg”

tive F-score is only 0.43, but through further train-
ing, the full model MinV+infGibbs achieves 0.64.
Fig. 2 shows the training curve. A possible rea-
son for this phenomenon is that the soft label is
integrated into the learning process by biasing the
sampling procedure (see Equation 3). We only en-
courage our model to follow the distributional se-
mantic evidence captured by soft label and do not
force it. So if there are strong evidences encoded
by the linguistically motivated features in the in-
stances to overcome the soft label it still has the
freedom to do so.

5 Conclusion

We have presented an unsupervised method for id-
iom usage recognition built upon the heuristic that
instances that use the idiom literally are semanti-
cally closer to constituent words of the idiom. Ex-
perimental results on two different corpora suggest
that our models are competitive against supervised
methods and prior unsupervised methods.
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