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Abstract
We present a simple and accurate span-based
model for semantic role labeling (SRL). Our
model directly takes into account all possible
argument spans and scores them for each label.
At decoding time, we greedily select higher
scoring labeled spans. One advantage of our
model is to allow us to design and use span-
level features, that are difficult to use in token-
based BIO tagging approaches. Experimental
results demonstrate that our ensemble model
achieves the state-of-the-art results, 87.4 F1
and 87.0 F1 on the CoNLL-2005 and 2012
datasets, respectively.

1 Introduction

Semantic Role Labeling (SRL) is a shallow se-
mantic parsing task whose goal is to recognize
the predicate-argument structure of each predicate.
Given a sentence and a target predicate, SRL sys-
tems have to predict semantic arguments of the
predicate. Each argument is a span, a unit that
consists of one or more words. A key to the ar-
gument span prediction is how to represent and
model spans.

One popular approach to it is based on BIO
tagging schemes. State-of-the-art neural SRL
models adopt this approach (Zhou and Xu, 2015;
He et al., 2017; Tan et al., 2018). Using features
induced by neural networks, they predict a BIO tag
for each word. Words at the beginning and inside
of argument spans have the “B” and “I” tags, and
words outside argument spans have the tag “O.”
While yielding high accuracies, this approach re-
constructs argument spans from the predicted BIO
tags instead of directly predicting the spans.

Another approach is based on labeled span pre-
diction (Täckström et al., 2015; FitzGerald et al.,
2015). This approach scores each span with its la-
bel. One advantage of this approach is to allow
us to design and use span-level features, that are

difficult to use in BIO tagging approaches. How-
ever, the performance has lagged behind that of the
state-of-the-art BIO-based neural models.

To fill this gap, this paper presents a simple
and accurate span-based model. Inspired by recent
span-based models in syntactic parsing and coref-
erence resolution (Stern et al., 2017; Lee et al.,
2017), our model directly scores all possible la-
beled spans based on span representations induced
from neural networks. At decoding time, we
greedily select higher scoring labeled spans. The
model parameters are learned by optimizing log-
likelihood of correct labeled spans.

We evaluate the performance of our span-based
model on the CoNLL-2005 and 2012 datasets
(Carreras and Màrquez, 2005; Pradhan et al.,
2012). Experimental results show that the span-
based model outperforms the BiLSTM-CRF
model. In addition, by using contextualized word
representations, ELMo (Peters et al., 2018), our
ensemble model achieves the state-of-the-art
results, 87.4 F1 and 87.0 F1 on the CoNLL-2005
and 2012 datasets, respectively. Empirical analy-
sis on these results shows that the label prediction
ability of our span-based model is better than that
of the CRF-based model. Another finding is that
ELMo improves the model performance for span
boundary identification.

In summary, our main contributions include:

• A simple span-based model that achieves the
state-of-the-art results.
• Quantitative and qualitative analysis on

strengths and weaknesses of the span-based
model.
• Empirical analysis on the performance gains

by ELMo.

Our code and scripts are publicly available.1

1https://github.com/hiroki13/span-based-srl.
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2 Model

We treat SRL as span selection, in which we select
appropriate spans from a set of possible spans for
each label. This section formalizes the problem
and provides our span selection model.

2.1 Span Selection Problem

Problem Setting

Given a sentence that consists of T words w1:T =
w1, · · · , wT and the target predicate position in-
dex p, the goal is to predict a set of labeled spans
Y = {⟨i, j, r⟩k}

|Y |
k=1.

Input : X = {w1:T , p},

Output : Y = {⟨i, j, r⟩k}
|Y |
k=1 .

Each labeled span ⟨i, j, r⟩ consists of word indices
i and j in the sentence (1 ≤ i ≤ j ≤ T ) and a
semantic role label r ∈ R.

One simple method to predict Y is to select the
highest scoring span (i, j) from all possible spans
S for each label r,

argmax
(i,j)∈S

SCOREr(i, j), r ∈ R . (1)

Function SCOREr(i, j) returns a real value for
each span (i, j) ∈ S (described in Section 2.2 in
more detail). The number of possible spans S in
the input sentence w1:T is T (T+1)

2 , and S is defined
as follows,

S = {(i, j) | i, j ∈ {1, · · · , T}, i ≤ j} .

Note that some semantic roles may not appear in
the sentence. To deal with the absence of some
labels, we define the predicate position span (p, p)
as a NULL span and train a model to select the
NULL span when there is no span for the label.2

Example

Consider the following sentence with the set of
correct labeled spans Y .

She1 kept2 a3 cat4
[ A0 ] [ A1 ]

Y = { ⟨1, 1,A0⟩, ⟨3, 4,A1⟩,
⟨2, 2,A2⟩, · · · , ⟨2, 2,TMP⟩ }

2Since the predicate itself can never be an argument of its
own, we define the position as the NULL span.

The input sentence is w1:4 = “She kept a cat”, and
the target predicate position is p = 2. The correct
labeled span ⟨1, 1,A0⟩ indicates that the A0 ar-
gument is “She”, and ⟨3, 4,A1⟩ indicates that the
A1 argument is “a cat”. The other labeled spans
⟨2, 2, ∗⟩ indicate there are no arguments.

All the possible spans in this sentence are as fol-
lows,

Sw1:4 = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2),
(2, 3), (2, 4), (3, 3), (3, 4), (4, 4)} ,

where the predicate span (2, 2) is treated as the
NULL span. Among these candidates, we select
the highest scoring span for each label. As a result,
we can obtain correct labeled spans Y .

2.2 Scoring Function
As the scoring function for each span in Eq. 1,
we model normalized distribution over all possi-
ble spans S for each label r,

SCOREr(i, j) = Pθ(i, j | r)

=
exp(Fθ(i, j, r))∑

(i′,j′)∈S

exp(Fθ(i
′, j′, r))

, (2)

where function Fθ returns a real value.
We train the parameters θ of Fθ on a training set,

D = {(X(n), Y (n))}|D|
n=1 ,

X = {w1:T , p} ,

Y = {⟨i, j, r⟩k}
|Y |
k=1 .

To train the parameters θ of Fθ, we minimize the
cross-entropy loss function,

L(θ) =
∑

(X,Y )∈D

ℓθ(X,Y ) , (3)

ℓθ(X,Y ) =
∑

⟨i,j,r⟩∈Y

log Pθ(i, j|r) ,

where function ℓθ(X,Y ) is a loss for each sample.

2.3 Function Fθ

Function Fθ in Eq. 2 consists of three types of
functions; the base feature function fbase, the span
feature function fspan and the labeling function
flabel as follows,

h1:T = fbase(w1:T , p) , (4)

hs = fspan(h1:T , s) , (5)

Fθ(i, j, r) = flabel(hs, r) . (6)
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Firstly, fbase calculates a base feature vector ht for
each word wt ∈ w1:T . Then, from a sequence of
the base feature vectors h1:T , fspan calculates a
span feature vector hs for a span s = (i, j). Fi-
nally, using hs, flabel calculates the score for the
span s = (i, j) with a label r.

Each function in Eqs. 4, 5 and 6 can arbitrarily
be defined. In Section 3, we describe our functions
used in this paper.

2.4 Inference
The simple argmax inference (Eq. 1) selects one
span for each label. While this argmax inference
is computationally efficient, it faces the following
two problematic issues.

(a) The argmax inference sometimes selects spans
that overlap with each other.

(b) The argmax inference cannot select multiple
spans for one label.

In terms of (a), for example, when ⟨1, 3,A0⟩ and
⟨2, 4,A1⟩ are selected, a part of these two spans
overlaps. In terms of (b), consider the following
sentence.

He came to the U.S. yesterday at 5 p.m.
[A0] [ A4 ] [ TMP ] [ TMP ]

In this example, the label TMP is assigned to the
two spans (“yesterday” and “at 5 p.m.”). Semantic
role labels are mainly categorized into (i) core la-
bels or (ii) adjunct labels. In the above example,
the labels A0 and A4 are regarded as core labels,
which indicate obligatory arguments for the pred-
icate. In contrast, the labels like TMP are regarded
as adjunct labels, which indicate optional argu-
ments for the predicate. As the example shows,
adjunct labels can be assigned to multiple spans.

To deal with these issues, we use a greedy
search that keeps the consistency among spans
and can return multiple spans for adjunct labels.
Specifically, we greedily select higher scoring la-
beled spans subject to two constraints.

Overlap Constraint: Any spans that overlap
with the selected spans cannot be selected.

Number Constraint: While multiple spans can
be selected for each adjunct label, at most one
span can be selected for each core label.

As a precise description of this algorithm, we de-
scribe the pseudo code and its explanation in Ap-
pendix A.
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Figure 1: Overall architecture of our BiLSTM-span
model.

3 Network Architecture

To compute the score for each span, we have intro-
duced three functions (fbase, fspan, flabel) in Sec-
tion 2.3. As an instantiation of each function, we
use neural networks. This section describes our
neural networks for each function and the overall
network architecture.

3.1 BiLSTM-Span Model
Figure 1 illustrates the overall architecture of our
model. The first component fbase uses bidirec-
tional LSTMs (BiLSTMs) (Schuster and Paliwal,
1997; Graves et al., 2005, 2013) to calculate the
base features. From the base features, the second
component fspan extracts span features. Based
on them, the final component flabel calculates the
score for each labeled span. In the following, we
describe these three components in detail.

Base Feature Function
As the base feature function fbase, we use BiL-
STMs,

fbase(w1:T , p) = BILSTM(w1:T , p) .

There are some variants of BiLSTMs. Following
the deep SRL models proposed by Zhou and Xu
(2015) and He et al. (2017), we stack BiLSTMs
in an interleaving fashion. The stacked BiLSTMs
process an input sequence in a left-to-right man-
ner at odd-numbered layers and in a right-to-left
manner at even-numbered layers.
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The first layer of the stacked BiLSTMs receives
word embeddings xword ∈ Rdword

and predicate
mark embeddings xmark ∈ Rdmark

. As the word
embeddings, we can use existing word embed-
dings. The mark embeddings are created from the
mark feature which has a binary value. The value
is 1 if the word is the target predicate and 0 other-
wise. For example, at the bottom part of Figure 1,
the word “bought” is the target predicate and as-
signed 1 as its mark feature.

Receiving these inputs, the stacked BiLSTMs
calculates the hidden states until the top layer. We
use these hidden states as the input feature vectors
h1:T for the span feature function fspan (Eq. 5).
Each vector ht ∈ h1:T has dhidden dimensions.
We provide a detailed description of the stacked
BiLSTMs in Appendix B.

Span Feature Function
From the base features induced by the BiLSTMs,
we create the span feature representations,

fspan(h1:T , s) = [hi + hj ;hi − hj ] , (7)

where the addition and subtraction features of the
i-th and j-th hidden states are concatenated and
used as the feature for a span s = (i, j). The re-
sulting vector hs is a 2dhidden dimensional vector.

The middle part of Figure 1 shows an example
of this process. For the span (3, 5), the span fea-
ture function fspan receives the 3rd and 5th fea-
tures (h3 and h5). Then, these two vectors are
added, and the 5th vector is subtracted from the
3rd vector. The resulting vectors are concatenated
and given to the labeling function flabel.

Our design of the span features is inspired by
the span (or segment) features used in syntac-
tic parsing (Wang and Chang, 2016; Stern et al.,
2017; Teranishi et al., 2017). While these neural
span features cannot be used in BIO-based SRL
models, they can easily be incorporated into span-
based models.

Labeling Function
Taking a span representation hs as input, the la-
beling function flabel returns the score for the span
s = (i, j) with a label r. Specifically, we use the
following labeling function,

flabel(hs, r) = W[r] · hs , (8)

where W ∈ R|R|×2dhidden has a row vector associ-
ated with each label r, and W[r] denotes the r-th

row vector. As the result of the inner product of
W[r] and hs, we obtain the score for a span (i, j)
with a label r.

The upper part of Figure 1 shows an example
of this process. The span representation hs for the
span s = (3, 5) is created from addition and sub-
traction of h3 and h5. Then, we calculate the inner
product of hs and W[r]. The score for the label
A0 is 2.1, and the score for the label A1 is 3.7. In
the same manner, by calculating the scores for all
the spans S and labels R, we can obtain the score
matrix (at the top part of Figure 1).

3.2 Ensembling
We propose an ensemble model that uses span
representations from multiple models. Each base
model trained with different random initializations
has variance in span representations. To take ad-
vantage of it, we introduce a variant of a mixture
of experts (MoE) (Shazeer et al., 2017), 3

hmoe
s = Wmoe

s ·
M∑

m=1

αm h(m)
s , (9)

fmoe
label(h

moe
s , r) = Wmoe[r] · hmoe

s . (10)

Firstly, we combine span representations h
(m)
s

from each model m ∈ {1, · · · ,M}. Wmoe
s is

a parameter matrix and {αm}Mm=1 are trainable,
softmax-normalized parameters. Then, using the
combined span representation hmoe

s , we calculate
the score in the same way as Eq. 8. We use the
same greedy search algorithm used for our base
model (Section 2.4).

During training, we update only the
parameters of the ensemble model, i.e.,
{Wmoe

s ,Wmoe, {αm}Mm=1}. That is, we fix
the parameters of each trained model m. As the
loss function, we use the cross-entropy (Eq. 3).

4 Experiments

4.1 Datasets
We use the CoNLL-2005 and 2012 datasets4. We
follow the standard train-development-test split
and use the official evaluation script5 from the
CoNLL-2005 shared task on both datasets.

3One popular ensemble model for SRL is the product of
experts (PoE) model (FitzGerald et al., 2015; He et al., 2017;
Tan et al., 2018). In our preliminary experiments, we tried
the PoE model but it did not improve the performance.

4We use the version of OntoNotes downloaded at:
http://cemantix.org/data/ontonotes.html.

5The script can be downloaded at:
http://www.lsi.upc.edu/ srlconll/soft.html
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Development Test WSJ Test Brown Test ALL
EMB MODEL P R F1 P R F1 P R F1 P R F1

SENNA
CRF 81.7 81.3 81.5 83.3 82.5 82.9 72.6 70.0 71.3 81.9 80.8 81.4
SPAN 83.6 81.4 82.5 84.7 82.3 83.5 76.0 70.4 73.1 83.6 80.7 82.1
SPAN (Ensemble) 85.6 82.6 84.1 86.6 83.6 85.1 78.2 71.8 74.8 85.5 82.0 83.7

ELMO
CRF 86.6 86.8 86.7 87.4 87.3 87.3 78.5 78.3 78.4 86.2 86.1 86.1
SPAN 87.4 86.3 86.9 88.2 87.0 87.6 79.9 77.5 78.7 87.1 85.7 86.4
SPAN (Ensemble) 88.0 86.9 87.4 89.2 87.9 88.5 81.0 78.4 79.6 88.1 86.6 87.4

Table 1: Experimental results on the CoNLL-2005 dataset, in terms of precision (P), recall (R) and F1. The bold
numbers denote the highest precision, recall and F1 scores among all the models.

Development Test
EMB MODEL P R F1 P R F1

SENNA
CRF 82.8 81.9 82.4 82.9 81.9 82.4
SPAN 84.3 81.5 82.9 84.4 81.7 83.0
SPAN (Ensemble) 86.0 83.0 84.5 86.1 83.3 84.7

ELMO
CRF 86.1 85.8 85.9 86.0 85.7 85.9
SPAN 87.2 85.5 86.3 87.1 85.3 86.2
SPAN (Ensemble) 88.6 85.7 87.1 88.5 85.5 87.0

Table 2: Experimental results on the CoNLL-2012 dataset.

CoNLL-05 CoNLL12
WSJ Brown ALL
SINGLE MODEL

ELMO-SPAN 87.6 78.7 86.4 86.2
He+ 18 87.4 80.4 - 85.5
Peters+ 18 - - - 84.6
Strubell+ 18 83.9 72.6 - -
Tan+ 18 84.8 74.1 83.4 82.7
He+ 17 83.1 72.1 81.6 81.7
Zhou+ 15 82.8 69.4 81.1 81.3
FitzGerald+ 15 79.4 71.2 - 79.6
Täckström+ 15 79.9 71.3 - 79.4
Toutanova+ 08 79.7 67.8 - -
Punyakanok+ 08 79.4 67.8 77.9 -

ENSEMBLE MODEL
ELMO-SPAN 88.5 79.6 87.4 87.0
Tan+ 18 86.1 74.8 84.6 83.9
He+ 17 84.6 73.6 83.2 83.4
FitzGerald+ 15 80.3 72.2 - 80.1
Toutanova+ 08 80.3 68.8 - -
Punyakanok+ 08 79.4 67.8 77.9 -

Table 3: Comparison with existing models. The num-
bers denote F1 scores on each test set.

4.2 Baseline Model

For comparison, as a model based on BIO tag-
ging approaches, we use the BiLSTM-CRF model
proposed by Zhou and Xu (2015). The BiLSTMs
for the base feature function fbase are the same as
those used in our BiLSTM-span model.

4.3 Model Setup

As the base function fbase, we use 4 BiLSTM
layers with 300 dimensional hidden units. To
optimize the model parameters, we use Adam
(Kingma and Ba, 2014). Other hyperparameters
are described in Appendix C in detail.

Word Embeddings

Word embeddings have a great influence on SRL
models. To validate the model performance, we
use two types of word embeddings.

• Typical word embeddings, SENNA6

(Collobert et al., 2011)
• Contextualized word embeddings, ELMo7

(Peters et al., 2018)

SENNA and ELMo can be regarded as different
types of embeddings in terms of the context sensi-
tivity. SENNA and other typical word embeddings
always assign an identical vector to each word re-
gardless of the input context. In contrast, ELMo
assigns different vectors to each word depending
on the input context. In this work, we use these
word embeddings that have different properties.8

These embeddings are fixed during training.

Training

As the objective function, we use the cross-
entropy Lθ in Eq. 3 with L2 weight decay,

Lθ =
∑

(X,Y )∈D

ℓθ(X,Y ) +
λ

2
||θ||2 , (11)

where the hyperparameter λ is the coefficient gov-
erning the L2 weight decay.

6http://ronan.collobert.com/senna/
7http://allennlp.org/elmo
8In our preliminary experiments, we also used the GloVe

embeddings (Pennington et al., 2014), but the performance
was worse than SENNA.
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4.4 Results

We report averaged scores across five different
runs of the model training.

Tables 1 and 2 show the experimental results
on the CoNLL-2005 and 2012 datasets. Over-
all, our span-based ensemble model using ELMo
achieved the best F1 scores, 87.4 F1 and 87.0 F1
on the CoNLL-2005 and CoNLL-2012 datasets,
respectively. In comparison with the CRF-based
single model, our span-based single model con-
sistently yielded better F1 scores regardless of
the word embeddings, SENNA and ELMO. Al-
though the performance difference was small be-
tween these models using ELMO, it seems natural
because both models got much better results and
approached to the performance upper bound.

Table 3 shows the comparison with existing
models in F1 scores. Our single and ensemble
models using ELMO achieved the best F1 scores
on all the test sets except the Brown test set.

5 Analysis

To better understand our span-based model, we ad-
dressed the following questions and obtained the
following findings.

Questions

(a) What are strengths and weaknesses of our
span-based model compared with the CRF-
based model?

(b) What aspect of SRL does ELMo improve?

Findings

(a) While the CRF-based model is better at span
boundary identification (Section 5.1), the
span-based model is better at label prediction,
especially for A2 (Section 5.2).

(b) ELMo improves the model performance for
span boundary identification (Section 5.1).

In addition, we have conducted qualitative analy-
sis on span and label representations learned in the
span-based model (Section 5.3).

5.1 Performance for Span Boundary
Identification

We analyze the results predicted by the single
models. We evaluate F1 scores only for the span
boundary match, shown by Table 4. We regard a
predicted boundary ⟨i, j, ∗⟩ as correct if it matches
the gold annotation regardless of its label.

CoNLL-05 CoNLL-12
EMB MODEL F1 diff F1 diff

SENNA
SPAN 86.6 -0.4 87.3 -0.6CRF 87.0 87.9

ELMO
SPAN 90.5 -0.7 90.3 -0.6CRF 91.2 90.9

Table 4: F1 scores only for span boundary match.

CoNLL-05 CoNLL-12
EMB MODEL Acc. diff Acc. diff

SENNA
SPAN 95.3 +1.5 95.1 +1.5CRF 93.8 93.6

ELMO
SPAN 96.1 +0.9 95.7 +1.3CRF 95.2 94.4

Table 5: Accuracies only for semantic role labels.

On both datasets, the CRF-based models
achieved better F1 than that of the span-based
models. Also, compared with SENNA, ELMO

yielded much better F1 by over 3.0. This suggests
that a factor of the overall SRL performance gain
by ELMO is the improvement of the model ability
to identify span boundaries.

5.2 Performance for Label Prediction

We analyze labels of the predicted results. For la-
beled spans whose boundaries match the gold an-
notation, we evaluate the label accuracies. As Ta-
ble 5 shows, the span-based models outperformed
the CRF-based models. Also, interestingly, the
performance gap between SENNA and ELMO was
not so big as that for span boundary identification.

Label-wise Performance

Table 6 shows F1 scores for frequent labels on
the CoNLL-2005 and 2012 datasets. For A0 and
A1, the performances of the CRF-based and span-
based models were almost the same. For A2, the
span-based models outperformed the CRF-based
model by about 1.0 F1 on the both datasets. 9

Label Confusion Matrix

Figure 2 shows a confusion matrix for labeling er-
rors of the span-based model using ELMo.10 Fol-
lowing He et al. (2017), we only count predicted
arguments that match the gold span boundaries.

9The PNC label got low scores on the CoNLL-2012
dataset in Table 6. Almost all the gold PNC (purpose) la-
bels are assigned to only the news article domain texts of the
CoNLL-2012 dataset. The other 6 domain texts have no or
very few PNC labels. This can lead to the low performance.

10We have observed the same tendency of labeling confu-
sions between the models using ELMo and SENNA.
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CoNLL-2005 CoNLL-2012
SENNA ELMO SENNA ELMO

Label CRF SPAN CRF SPAN CRF SPAN CRF SPAN
A0 89.9 90.2 93.0 93.2 89.9 90.0 92.5 92.5
A1 83.2 83.8 89.1 89.2 84.7 85.1 88.7 89.0
A2 70.9 73.1 80.0 81.2 78.6 79.4 83.2 84.2
A3 64.4 71.2 78.8 78.5 61.9 62.9 69.0 70.7
ADV 59.3 61.9 68.1 67.0 63.2 63.7 67.5 67.0
DIR 43.2 47.3 56.6 54.5 54.1 52.0 61.1 59.7
LOC 58.2 60.5 68.1 68.3 65.8 65.0 72.0 72.0
MNR 61.4 61.3 66.5 67.7 64.4 65.7 70.5 71.1
PNC 57.3 60.2 68.8 67.7 18.5 13.7 20.2 16.1
TMP 81.8 82.7 86.1 86.0 82.2 82.3 86.1 86.2
Overall 81.5 82.5 86.7 86.9 82.4 82.9 85.9 86.3

Table 6: F1 Scores for frequent labels on the development set of the CoNLL-2005 and 2012 datasets.

A0 A1 A2 A3 ADV DIR LOC MNR PNC TMP
A0

A1

A2

A3

ADV

DIR

LOC

MNR

PNC

TMP

pred / gold

Figure 2: Confusion matrix for labeling errors of our
span-based model using ELMo. Each cell shows the
percentage of predicted labels for each gold label.

The span-based model confused A0 and A1 ar-
guments the most. In particular, the model con-
fused them for ergative verbs. Consider the fol-
lowing two sentences:

People start their own business ...
[ A0 ]

.. Congress has started to jump on ...
[ A1 ]

where the constituents located at the syntactic sub-
jective position fulfill a different role A0 or A1 ac-
cording to their semantic properties, such as ani-
macy. Such arguments are difficult for SRL mod-
els to correctly identify.

Another point is the confusions of A2 with DIR
and LOC. As He et al. (2017) pointed out, A2 in
a lot of verb frames represents semantic relations
such as direction or location, which can cause the
confusions of A2 with such location-related ad-
juncts. To remedy these two problematic issues, it
can be a promising approach to incorporate frame
knowledge into SRL models by using verb frame
dictionaries.

“· · · toy makers to move [ across the border ] .”
GOLD:A2
PRED:DIR

Nearest neighbors of “across the border”
1 DIR across the Hudson
2 DIR outside their traditional tony circle
3 DIR across the floor
4 DIR through this congress
5 A2 off their foundations
6 DIR off its foundation
7 DIR off the center field wall
8 A3 out of bed
9 A2 through cottage rooftops

10 DIR through San Francisco

Table 7: Example of the CoNLL-2005 development
set, in which our model misclassified the label for the
span “across the border”. We collect 10 nearest neigh-
bors of this span from the training set.

5.3 Qualitative Analysis on Our Model

On Span Representations

Our span-based model computes and uses span
representations (Eq. 7) for label prediction. To
investigate a relation between the span represen-
tations and predicted labels, we qualitatively ana-
lyze nearest neighbors of each span representation
with its predicted label. Specifically, for each pre-
dicted span in the development set, we collect 10
nearest neighbor spans with their gold labels from
the training set.

Table 7 shows 10 nearest neighbors of a span
“across the border” for the predicate “move”. The
label of this span was misclassified, i.e., the pre-
dicted label is DIR but the gold is A2. Looking
at its nearest neighbor spans, they have different
gold labels, such as DIR, A2 and A3. Like this
case, we have observed that spans with a misclas-
sified label often have their nearest neighbors with
inconsistent labels.
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Figure 3: Label embedding distribution of our span-
based model.

On Label Embeddings
We analyze the label embeddings in the labeling
function (Eq. 8). Figure 3 shows the distribution
of the learned label embeddings. The adjunct la-
bels are close to each other, which are likely to
be less discriminative. Also, the core label A2
is close to the adjunct label DIR, which are often
confused by the model. To enhance the discrim-
inative power, it is promising to apply techniques
that keep label representations far away from each
other (Wen et al., 2016; Luo et al., 2017).

6 Related Work

6.1 Semantic Role Labeling Tasks
Automatic SRL has been widely studied
(Gildea and Jurafsky, 2002). There have been two
main styles of SRL.

• FrameNet-style SRL (Baker et al., 1998)
• PropBank-style SRL (Palmer et al., 2005)

In this paper, we have tackled PropBank-style
SRL.11

In PropBank-style SRL, there have been two
main task settings.

• Span-based SRL: CoNLL-2004 and 2005
shared tasks (Carreras and Marquez, 2004;
Carreras and Màrquez, 2005)
• Dependency-based SRL: CoNLL-2008 and

2009 shared tasks (Surdeanu et al., 2008;
Hajič et al., 2009)

11Detailed descriptions on FrameNet-style and PropBank-
style SRL can be found in Baker et al. (1998); Das et al.
(2014); Kingsbury and Palmer (2002); Palmer et al. (2005).

He hit the ball with the bat

A0 A1

A2

A0 A1
A2

Figure 4: Example of dependency-based SRL (the up-
per part) and span-based SRL (the lower part).

Figure 4 illustrates an example of span-based
and dependency-based SRL. In dependency-based
SRL (at the upper part of Figure 4), the correct
A2 argument for the predicate “hit” is the word
“with”. On one hand, in span-based SRL (at the
lower part of Figure 4), the correct A2 argument is
the span “with the bat”.

For span-based SRL, the CoNLL-2004 and
2005 shared tasks (Carreras and Marquez, 2004;
Carreras and Màrquez, 2005) provided the task
settings and datasets. In the task settings, various
SRL models, from traditional pipeline mod-
els to recent neural ones, have been proposed
and competed with each other (Pradhan et al.,
2005; He et al., 2017; Tan et al., 2018). For
dependency-based SRL, the CoNLL-2008
and 2009 shared tasks (Surdeanu et al., 2008;
Hajič et al., 2009) provided the task settings
and datasets. As in span-based SRL, recent
neural models achieved high-performance in
dependency-based SRL (Marcheggiani et al.,
2017; Marcheggiani and Titov, 2017; He et al.,
2018b; Cai et al., 2018). This paper focuses on
span-based SRL.

6.2 BIO-based SRL Models

Span-based SRL can be solved as BIO sequen-
tial tagging (Hacioglu et al., 2004; Pradhan et al.,
2005; Màrquez et al., 2005).

Neural models State-of-the-art SRL models
use neural networks based on the BIO tagging
approach. The pioneering neural SRL model
was proposed by Collobert et al. (2011). They
use convolutional neural networks (CNNs) and
CRFs. Instead of CNNs, Zhou and Xu (2015)
and He et al. (2017) used stacked BiLSTMs and
achieved strong performance without syntactic in-
puts. Tan et al. (2018) replaced stacked BiLSTMs
with self-attention architectures. Strubell et al.
(2018) improved the self-attention SRL model by
incorporating syntactic information.
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Word representations Typical word represen-
tations, such as SENNA (Collobert et al., 2011)
and GloVe (Pennington et al., 2014), have been
used and contributed to the performance im-
provement (Collobert et al., 2011; Zhou and Xu,
2015; He et al., 2017). Recently, Peters et al.
(2018) integrated contextualized word represen-
tation, ELMo, into the model of He et al. (2017)
and improved the performance by 3.2 F1 score.
Strubell and McCallum (2018) also integrated
ELMo into the model of Strubell et al. (2018) and
reported the performance improvement.

6.3 Span-based SRL Models

Another line of approaches to SRL is labeled span
modeling (Xue and Palmer, 2004; Koomen et al.,
2005; Toutanova et al., 2005).

Typical models Typically, in this approach,
models firstly identify candidate argument spans
(argument identification) and then classify each
span into one of the semantic role labels (argu-
ment classification). For inference, several ef-
fective methods have been proposed, such as
structural constraint inference by using integer
linear programming (Punyakanok et al., 2008) or
dynamic programming (Täckström et al., 2015;
FitzGerald et al., 2015).

Recent span-based model A very recent work,
He et al. (2018a), proposed a span-based SRL
model similar to our model. They also used BiL-
STMs to induce span representations in an end-
to-end fashion. A main difference is that while
they model P(r|i, j), we model P(i, j|r). In other
words, while their model seeks to select an ap-
propriate label for each span (label selection), our
model seeks to select appropriate spans for each
label (span selection). This point distinguishes be-
tween their model and ours.

FrameNet span-based model For FrameNet-
style SRL, Swayamdipta et al. (2017) used a
segmental RNN (Kong et al., 2016), combin-
ing bidirectional RNNs with semi-Markov CRFs
(Sarawagi and Cohen, 2004). Their model com-
putes span representations using BiLSTMs and
learns a conditional distribution over all possible
labeled spans of an input sequence. Although we
cannot compare our results with theirs, we can re-
gard that our model is simpler and effective for
PropBank-style SRL.

6.4 Span-based Models in Other NLP Tasks
In syntactic parsing, Wang and Chang (2016) pro-
posed an LSTM-based sentence segment embed-
ding method named LSTM-Minus. Stern et al.
(2017); Kitaev and Klein (2018) incorporated the
LSTM Minus into their parsing model and
achieved the best results in constituency pars-
ing. In coreference resolution, Lee et al. (2017,
2018) presented an end-to-end coreference reso-
lution model, which considers all spans in a docu-
ment as potential mentions and learn distributions
over possible antecedents for each. Our model can
be regarded as an extension of their model.

7 Conclusion and Future Work

We have presented a simple and accurate span-
based model. We treat SRL as span selection
and our model seeks to select appropriate spans
for each label. Experimental results have demon-
strated that despite the simplicity, the model out-
performs a strong BiLSTM-CRF model. Also, our
span-based ensemble model using ELMo achieves
the state-of-the-art results on the CoNLL-2005
and 2012 datasets. Through empirical analysis, we
have obtained some interesting findings. One of
them is that the span-based model is better at label
prediction compared with the CRF-based model.
Another one is that ELMo improves the model
performance for span boundary identification.

An interesting direction for future work con-
cerns evaluating span representations from our
span-based model. Since the investigation on
the characteristics of the representations can lead
to interesting findings, it is worthwhile evaluat-
ing them intrinsically and extrinsically. Another
promising direction is to explore methods of incor-
porating frame knowledge into SRL models. We
have observed that a lot of label confusions arise
due to the lack of such knowledge. The use of
frame knowledge to reduce these confusions is a
straightforward approach.
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A Span-Consistent Greedy Search

Algorithm 1 Span-Consistent Greedy Search

1: Input: Score Matrix M ∈ R|R|×|S|,
2: Predicate Position Index p
3: Core Label SetR(core)

4: spans← ϕ
5: used cores← ϕ
6: U ← {(i, j, r, score) ∈ flatten(M)}
7: U ← filter(U , p)
8: for (i, j, r, score) ∈ sort(U) do
9: if r /∈ used cores and

10: is overlap((i, j), spans) is False then
11: spans← spans ∪ {⟨i, j, r⟩}
12: if r ∈ R(core) then
13: used cores← used cores ∪ {r}
14: return spans

Algorithm 1 describes the pseudo code of the
greedy search algorithm introduced in Section 2.4.
This algorithm receives the three inputs (line 1-3).
M is the score matrix illustrated at the top part of
Figure 1 in Section 3. Each cell of the matrix rep-
resents the score of each span. p is a target predi-
cate position index. R(core) is the set of core labels.
At line 4, the variable “spans” is initialized. This
variable stores the selected spans to be returned as
the output. At line 5, the variable “used cores” is
initialized. This variable keeps track of the already
selected core labels.

At line 6, the score matrix M is converted to
tuples, (i, j, r, score), by the function flatten(·).
These tuples are stored in the variable U . At line 7,
from U , we remove the tuples that fall into any
one of the followings, (i) the tuples whose bound-
ary (i, j) overlaps with the predicate position p or
(ii) the tuples whose score is lower than that of the
predicate span tuples. In terms of (i), since spans
whose boundary (i, j) overlaps with the predi-
cate position, i ≤ p ≤ j, can never be a cor-
rect argument, we remove such tuples. In terms
of (ii), we remove the tuples (∗, ∗, r, score) whose
score is lower than that of the predicate span tuple
(p, p, r, score). In Section 2, we define the predi-
cate span (p, p) as the NULL span, implying that
we can regard the spans whose score is lower than
that of the NULL span as an inappropriate argu-
ment. Thus, we remove such tuples from the set
of the candidates U .

The main processing starts from line 8. Based
on the scores, the function sort(·) sorts the tuples

(i, j, r, score) in a descending order. At line 9-10,
there are constraints for output spans. At line 9,
“r /∈ used cores” represents the constraint that at
most one span can be selected for each core label.
At line 10, the function is overlap(·) takes as input
a span (i, j) and the set of the selected spans, and
returns the boolean value (“True” or “False”) that
represents whether the span overlaps with any one
of the selected spans or not.

At line 11, the span is added to the set of the
selected spans. At line 12-13, if the label r is in-
cluded in the core labelsR(core), the label is added
to “used cores”. At line 14, as the final output, the
set of the selected spans “spans” is returned.

B BiLSTMs

As the base feature function fbase (Eq. 4 in Sec-
tion 2.3), we use BiLSTMs,

fbase(w1:T , p) = BILSTM(w1:T , p) .

In particular, we use the stacked BiLSTMs
in an interleaving fashion (Zhou and Xu, 2015;
He et al., 2017). The stacked BiLSTMs process an
input sequence in a left-to-right manner for odd-
numbered layers and in a right-to-left manner for
even-numbered layers.

The stacked BiLSTMs consist of L layers. The
hidden state in each layer ℓ ∈ {1, · · · , L} is cal-
culated as follows,

h
(ℓ)
t =

{
LSTM(ℓ)(x

(ℓ)
t , h

(ℓ)
t−1) (ℓ = odd)

LSTM(ℓ)(x
(ℓ)
t , h

(ℓ)
t+1) (ℓ = even) .

Both of the odd- and even-numbered layers re-
ceive x

(ℓ)
t as the first input of the LSTM. For the

second input, odd-numbered layers receive h
(ℓ)
t−1,

whereas even-numbered layers receive h
(ℓ)
t+1.

Between the LSTM layers, we use the following
connection (Zhou and Xu, 2015),

x
(ℓ+1)
t = ReLU(W(ℓ) · [x(ℓ)

t ;h
(ℓ)
t ]) .

Here, we firstly concatenate x
(ℓ)
t and h

(ℓ)
t , and

then calculate the inner product of the concate-
nated vector and the parameter matrix W(ℓ) with
the rectified linear units (ReLU). As a result, we
obtain the input representation x

(ℓ+1)
t for the next

(ℓ+ 1-th) LSTM layer.
In the first layer, LSTM(1) receives an input fea-

ture vector x
(1)
t . Following He et al. (2017), we
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create this vector by concatenating a word embed-
ding and predicate mark embedding,

x
(1)
t = [xword

t ;xmark
t ] ,

where xword ∈ Rdword
and xmark ∈ Rdmark

. The
mark embedding is created from the binary mark
feature. The value is 1 if the word is the target
predicate and 0 otherwise.

After the L-th LSTM layer runs, we obtain
x
(L+1)
1:T = x

(L+1)
1 , · · · ,x(L+1)

T . We use them as
the input of the span feature function fspan (Eq. 5
in Section 2.3), i.e., h1:T = x

(L+1)
1:T . Each vector

ht ∈ h1:T has dhidden dimensions.

C Hyperparameters

Name Value

Word Embedding dword 50-dimensional SENNA
1024-dimensional ELMo

Mark Embedding dmark 50-dimensional vector
LSTM Layers L 4
LSTM Hidden Units dhidden 300 dimensions
Mini-batch Size 32
Optimization Adam
Learning Rate 0.001
L2 Regularization λ 0.0001
Dropout Ratio for BiLSTMs 0.1
Dropout Ratio for ELMo 0.5

Table 8: Hyperparameters for our span-based model.

C.1 Span-based Model
Table 8 lists the hyperparameters used for our
span-based model.

Word representation setup As word embed-
dings xword, we use two types of embeddings, (i)
SENNA (Collobert et al., 2011), 50-dimensional
word vectors (dword = 50), and (ii) ELMo
(Peters et al., 2018), 1024-dimensional vectors
(dword = 1024). During training, we fix these
word embeddings (not update them). As predi-
cate mark embeddings xmark, we use randomly
initialized 50-dimensional vectors (dmark = 50).
During training, we update them.

Network setup As the base feature function
fbase, we use 4 stacked BiLSTMs (2 forward and
2 backward LSTMs) with 300-dimensional hid-
den units (dhidden = 300). Following He et al.
(2017), we initialize all the parameter matrices
in BiLSTMs with random orthonormal matrices
(Saxe et al., 2013). Other parameters are initial-
ized following Glorot and Bengio (2010), and bias
parameters are initialized with zero vectors.

Regularization We set the coefficient λ for the
L2 weight decay (Eq. 11 in Section 4.3) to 0.0001.
We apply dropout (Srivastava et al., 2014) to the
input vectors of each LSTM with dropout ratio of
0.1 and the ELMo embeddings with dropout ratio
of 0.5.

Training To optimize the parameters, we use
Adam (Kingma and Ba, 2014) with β1 = 0.9 and
β2 = 0.999. The learning rate is initialized to
0.001. After training 50 epochs, we halve the
learning rate every 25 epochs. Parameter updates
are performed in mini-batches of 32. The num-
ber of training epochs is set to 100. We save the
parameters that achieve the best F1 score on the
development set and evaluate them on the test set.
Training our model on the CoNLL-2005 training
set takes about one day and on the CoNLL-2012
training set takes about two days on a single GPU,
respectively.

C.2 Ensemble Model
Our ensemble model uses span representations
h
(m)
s from base models m ∈ {1, · · · ,M} (Sec-

tion 3.2). We use 5 base models (M = 5) learned
over different runs. Note that, during training, we
fix the parameters of the five base models and up-
date only the parameters of the ensemble model.

Network setup The parameter matrix Wmoe
s

(Eq. 9 in Section 3.2) is initialized with the iden-
tity matrix. The scalar parameters {αm}Mm=1

(Eq. 9) are initialized with 0. Each row vector
Wmoe[r] of the parameter matrix Wmoe (Eq. 10)
is initialized with the averaged vector over the
row vectors W(m)[r] of each model m, i.e.,
1
M

∑M
m=1W

(m)[r].

Training To optimize the parameters, we use
Adam with β1 = 0.9 and β2 = 0.999. The learn-
ing rate is set to 0.0001. Parameter updates are
performed in mini-batches of 8. The number of
training epochs is set to 20. We save the parame-
ters that achieve the best F1 score on the develop-
ment set and evaluate them on the test set. Train-
ing one ensemble model on the CoNLL-2005 and
2012 training sets takes about one day on a single
GPU.


