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Abstract

In this paper, we empirically evaluate the
utility of transfer and multi-task learning on
a challenging semantic classification task:
semantic interpretation of noun–noun com-
pounds. Through a comprehensive series of
experiments and in-depth error analysis, we
show that transfer learning via parameter ini-
tialization and multi-task learning via param-
eter sharing can help a neural classification
model generalize over a highly skewed distri-
bution of relations. Further, we demonstrate
how dual annotation with two distinct sets of
relations over the same set of compounds can
be exploited to improve the overall accuracy of
a neural classifier and its F1 scores on the less
frequent, but more difficult relations.

1 Introduction

Noun–noun compound interpretation is the task
of assigning semantic relations to pairs of nouns
(or more generally, pairs of noun phrases in
the case of multi-word compounds). For exam-
ple, given the nominal compound street protest,
the task of compound interpretation is to pre-
dict the semantic relation holding between street
and protest (a locative relation in this example).
Given the frequency of noun–noun compounds in
natural language – e.g. 3% of the tokens in the
British National Corpus (Burnard, 2000) are part
of noun–noun compounds (Ó Séaghdha, 2008) –
and its relevance to other natural language pro-
cessing (NLP) tasks such as question answering
and information retrieval (Nakov, 2008), noun–
noun compound interpretation has been the focus
of much work, in theoretical linguistics (Li, 1972;
Downing, 1977; Levi, 1978; Finin, 1980; Ry-
der, 1994), psycholinguistics (Gagné and Shoben,
1997; Marelli et al., 2017), and computational lin-
guistics (Lauer, 1995; Nakov, 2007; Ó Séaghdha
and Copestake, 2009; Girju et al., 2009; Kim and

Baldwin, 2013; Dima and Hinrichs, 2015). In
computational linguistics, noun–noun compound
interpretation is, by and large, approached as an
automatic classification problem. Hence several
machine learning (ML) algorithms and models
have been used to learn the semantics of nominal
compounds, including Maximum Entropy (Tratz
and Hovy, 2010), Support Vector Machines (Ó
Séaghdha and Copestake, 2013) and Neural Net-
works (Dima and Hinrichs, 2015; Vered and Wa-
terson, 2018). These models use information from
lexical semantics such as WordNet-based features
and distributional semantics such as word embed-
dings. Nonetheless, noun–noun compound inter-
pretation remains one of the more difficult NLP
problems because: 1) noun–noun compounding,
as a linguistic construction, is very productive and
2) the semantics of noun–noun compounds is not
easily derivable from the compounds’ constituents
(Vered and Waterson, 2018). Our work, in part,
contributes to advancing NLP research on noun–
noun compound interpretation through the use of
transfer and multi-task learning.

The interest in using transfer learning (TL) and
multi-task learning (MTL) in NLP has surged
over the past few years, showing ‘mixed’ results
depending on the so-called main and auxiliary
tasks involved, model architectures and datasets,
among other things (Collobert and Weston, 2008;
Mou et al., 2016; Søgaard and Goldberg, 2016;
Martı́nez Alonso and Plank, 2017; Bingel and
Søgaard, 2017). These ‘mixed’ results, coupled
with the fact that neither TL nor MTL has been
applied to noun–noun compounds interpretation
before, motivate our extensive empirical study on
the use of TL and MTL for compound interpreta-
tion, not only to supplement existing research on
the utility of TL and MTL for semantic NLP tasks
in general, but also to determine their benefits for
compound interpretation in particular.
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One of the primary motivations for using multi-
task learning is to improve generalization by
“leveraging the domain-specific information con-
tained in the training signals of related tasks”
Caruana (1997). In this work, we show that TL
and MTL can indeed be used as a kind of reg-
ularizer to learn to predict infrequent relations
given a highly skewed distribution of relations
from the noun–noun compound dataset of Fares
(2016) which is especially well suited for TL and
MTL experimentation as detailed in Section 3.

Our contributions can be summarized as:

1. Through careful result analysis, we find that
TL and MTL (mainly on the embedding
layer) do improve the overall accuracy and
the F1 scores of the less frequent relations in
a highly skewed dataset, in comparison to a
strong single-task learning baseline.

2. Even though our work focuses on TL and
MTL, to the best of our knowledge, we are
the first to report experimental results on the
comparatively recent dataset of Fares (2016).

2 Related Work

Noun–Noun Compound Interpretation Exist-
ing approaches to noun–noun compound interpre-
tation vary depending on the taxonomy of com-
pound relations as well as the machine learn-
ing models and features used to learn those rela-
tions. For example, Ó Séaghdha (2007) defines
a coarse-grained set of relations (viz. six rela-
tions based on theoretical work by Levi (1978)),
whereas Tratz and Hovy (2010) assume a con-
siderably more fine-grained taxonomy of 43 rela-
tions. Others question the very assumption that
noun–noun compounds are interpretable using a
finite, predefined set of relations (Downing, 1977;
Finin, 1980) and propose alternative paraphrasing-
based approaches (Nakov, 2007; Shwartz and Da-
gan, 2018). We here focus on the approaches
that cast the interpretation problem as a classi-
fication task over a finite predefined set of rela-
tions. A wide variety of machine learning models
have been already applied to learn this task, in-
cluding nearest neighbor classifiers using seman-
tic similarity based on lexical resources (Kim and
Baldwin, 2005), kernel-based methods like SVMs
using lexical and relational features (Ó Séaghdha
and Copestake, 2009), Maximum Entropy models
with a relatively large selection of lexical and sur-

face form features such as synonyms and affixes
(Tratz and Hovy, 2010) and, most recently, neu-
ral networks either solely relying on word embed-
dings to represent noun–noun compounds (Dima
and Hinrichs, 2015) or word embeddings and so-
called path embeddings (which encode informa-
tion about lemmas and part-of-speech tags, inter
alia) in a combined paraphrasing and classifica-
tion approach (Vered and Waterson, 2018). Of the
aforementioned studies, Tratz and Hovy (2010);
Dima and Hinrichs (2015); Vered and Waterson
(2018) have all used the same dataset by Tratz
and Hovy (2010). To the best of our knowledge,
TL and MTL have never been applied to com-
pound interpretation before, and in the following
we therefore review some of the previous work on
TL and MTL on other NLP tasks.

Transfer and Multi-Task Learning A number
of recent studies have presented comprehensive
experiments on the use of TL and MTL for a vari-
ety of NLP tasks including named entity recogni-
tion and semantic labeling (Martı́nez Alonso and
Plank, 2017), sentence-level sentiment classifica-
tion (Mou et al., 2016), super-tagging and chunk-
ing (Bingel and Søgaard, 2017) and semantic de-
pendency parsing (Peng et al., 2017). The com-
mon thread among the findings of these stud-
ies is that the benefits of TL and MTL largely
depend on the properties of the tasks at hand,
such as the skewedness of the data distribu-
tion (Martı́nez Alonso and Plank, 2017), the se-
mantic similarity between the source and target
tasks (Mou et al., 2016), the learning pattern of
the auxiliary and main tasks where “target tasks
that quickly plateau” benefit most from “non-
plateauing auxiliary tasks” (Bingel and Søgaard,
2017) and the “structural similarity” between the
tasks (Peng et al., 2017). In addition to the dif-
ference in the NLP tasks they experiment with,
the aforementioned studies assume slightly dif-
ferent definitions of TL and MTL (cf. Section 4).
Our work is similar in spirit to that of Peng et al.
(2017) in the sense that we use TL and MTL to
learn different ‘formalisms’ (semantic annotations
of noun–noun compounds in our case) on the same
dataset. However, our experimental setup is more
similar to the work by Mou et al. (2016) in that
we experiment with parameter initialization on all
the layers of the neural model and simultaneously
train one MTL model on two sets of relations (cf.
Section 5).



1490

3 Task Definition and Dataset

Given a set of labeled pairs of nouns, each a noun–
noun compound, the task is simply to learn to
classify the semantic relations holding between
each pair of compound constituents. The diffi-
culty of this task, obviously, depends on the label
set used and its distribution, among other things.
For all the experiments presented in this paper,
we adapt the noun–noun compounds dataset cre-
ated by Fares (2016) which consists of compounds
annotated with two different taxonomies of rela-
tions; in other words, for each noun–noun com-
pound there are two distinct relations, drawing on
different linguistic schools. The dataset was de-
rived from existing linguistic resources, such as
NomBank (Meyers et al., 2004) and the Prague
Czech-English Dependency Treebank 2.0 (Hajič
et al., 2012, PCEDT). Our motivation for using this
dataset is twofold: first, dual annotation with rela-
tions over the same underlying set of compounds
maximally enables TL and MTL perspectives; sec-
ond, alignment of two distinct annotation frame-
works over the same data facilitates contrastive
analysis and comparison across frameworks.

More specifically, we use a subset of the
dataset created by Fares (2016), by focusing on
type-based instances of so-called two-word com-
pounds.1 The original dataset by Fares (2016)
also includes multi-word compounds (i.e. com-
pounds consisting of more than two nouns) and
more than just one instance per compound type.
Furthermore, we define a three-way split of the
dataset; Table 1 presents the number of compound
types per split and the vocabulary size of each
split (i.e. the number of unique words in each
split); the latter is also broken down in terms of
words occurring in the right-most position (right
constituents) and the left-most position (left con-
stituents).2 Overall, the two label sets consists of
35 so-called PCEDT functors and 18 NomBank
argument and adjunct relations. As detailed in
Section 7.1, these label sets are far from being uni-
formly distributed.

Abstractly, many relations in PCEDT and
1Two-word compounds consist of two whitespace-

separated constituents. A single constituent, however, can
be a ‘simple’ noun (e.g. system) or a hyphenated noun (e.g.
land-ownership) leading to compounds like land-ownership
system. The representation of compounds with hyphenated
constituents is explained in Section 5.1

2We use the terms left and right constituents, instead of
modifier and head nouns, because the dataset does not make
explicit the notion of ‘headedness’.

Train Dev Test
Compounds 6932 920 1759
Vocab size 4102 1163 1772
Right constituents 2304 624 969
Left constituents 2405 618 985

Table 1: Characteristics of the noun–noun compound
dataset used in our experiments. The numbers in this
table correspond to a (sub)set of the dataset by Fares
(2016), see Section 3.

NomBank describe similar semantic concepts,
since they annotate the semantics of the same
text. For example, Fares (2016) reports that
the temporal and locative relations in NomBank
(ARGM-TMP and ARGM-LOC, respectively) and
their counterparts in PCEDT (TWHEN and LOC)
exhibit a relatively consistent behavior across
frameworks as they annotate many of the same
compounds. However, Fares (2016) also points
out that some abstractly similar relations do not
align well in practice; for example, the func-
tor AIM in PCEDT and the modifier argument
ARGM-PNC in NomBank express a somewhat
similar semantic concept (purpose) but the over-
lap between the sets of compounds they annotate
in practice is rather small. Nonetheless, it is plau-
sible to assume that the semantic similarity in the
label sets—whenever it exists—can be exploited
in the form of transfer and multi-task learning, not
least because the overall distribution of the rela-
tions in the two frameworks is different.

4 Transfer vs. Multi-Task Learning

In this section, we use the notations and definitions
by Pan and Yang (2010) to define our setup for
transfer and multi-task learning.

Our classification task T can be defined in terms
of all training pairs (X,Y ) and a probability dis-
tribution P (X), where X = xi, . . . , xN ∈ X and
Y = yi, . . . , yN ∈ Y; X is the input feature space,
Y is the set of all labels and N is the size of the
training data. A task’s domain D is defined by
{X , P (X)}. Our goal is to learn a function f(X)
that predicts Y based on the input features X . As-
suming two ML tasks, Ta and Tb, we would train
two models (i.e. learn two separate functions fa
and fb) to predict Ya and Yb in a single-task learn-
ing setup. However, if Ta and Tb are related some-
how, either explicitly or implicitly, TL and MTL
can improve the generalization of either task or
both (Caruana, 1997; Pan and Yang, 2010; Mou
et al., 2016). Two tasks are considered related
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when their domains, Da and Db, are similar but
their label sets are different Ya 6= Yb or when their
domains are different but their label sets are iden-
tical, i.e. Ya = Yb (Pan and Yang, 2010).3 As
such, noun–noun compound interpretation over
the dataset of Fares (2016) is a well suited candi-
date for TL and MTL, because the training exam-
ples are identical, i.e. XPCEDT = XNomBank, but
the label sets are different YPCEDT 6= YNomBank.

For the sake of clarity, we distinguish between
transfer learning and multi-task learning in this
paper, even though these two terms are at times
used somewhat interchangeably in the literature.
For example, what we call TL and MTL in this
paper are both referred to as transfer learning by
Mou et al. (2016). We define TL as using the pa-
rameters (i.e. weights in neural networks) of one
model trained on Ta to initialize another model for
Tb. Mou et al. (2016) refer to this method as “pa-
rameter initialization”.4 MTL, on the other hand,
here refers to training (parts of) the same model
to learn Ta and Tb, i.e. learning one set of param-
eters for both tasks. The idea is to train a sin-
gle model simultaneously on the two tasks where
one task is considered to introduce inductive bias
which would help the model generalize over the
main task. Note, however, that this does not nec-
essarily mean that we eventually want to use a sin-
gle model to predict both label sets in practice (cf.
Section 5.3).

5 Neural Classification Models

Here we present the neural classification models
used in our experiments. To isolate the effect of
TL and MTL, we first present a single-task learn-
ing model, which serves as our baseline model,
and then we use the same model to apply TL and
MTL.

5.1 Single-Task Learning Model

In our single-task learning (STL) setup, we train
and fine-tune a feed-forward neural network based
on the neural classifier proposed by Dima and Hin-
richs (2015), which consists of: 1) input layer, 2)
embedding layer, 3) hidden layer, and 4) output

3When the label sets are identical, TL practically becomes
a technique for domain adaptation. Though these two terms
have also been used interchangeably (Chung et al., 2018).

4Using pretrained word embeddings as input representa-
tion is in a sense a form of unsupervised transfer learning,
but in this work we focus on transfer learning based on su-
pervised learning.

layer. The input layer is simply two integers spec-
ifying the indices of a compound’s constituents in
the embedding layer where the word embedding
vectors are stored; the selected word embedding
vectors are then fed to a fully connected hidden
layer whose size is the same as the number of di-
mensions of the word embedding vectors. Finally,
a softmax function is applied on the output layer
and the most likely relation is selected.

The compound’s constituents are represented
using a 300-dimensional word embedding model
trained on an English Wikipedia dump (dated
February 2017) and English Gigaword Fifth Edi-
tion (Parker et al., 2011) using GloVe (Pennington
et al., 2014). The embedding model was trained
by Fares et al. (2017) who provide more details on
the hyperparameters used to train the embedding
model.5 When looking up a word in the embed-
ding model, if the word is not found we check if
the word is uppercased and look up the same word
in lowercase. If a word is hyphenated and is not
found in the embedding vocabulary, we split it on
the hyphen and average the vectors of its parts (if
they exist in the vocabulary). If after these steps
the word is still not found, we use a designated
vector for unknown words.

Architecture and Hyperparameters Our
choice of hyperparameters is motivated by several
rounds of experimentation on the single-task
learning model as well as the choices made by
Dima and Hinrichs (2015).

The weights of the embedding layer (i.e. the
word embeddings) are updated during training in
all the models. The optimization function we use
in all the models is Adaptive Moment Estimation,
known as Adam (Kingma and Ba, 2015) with η =
0.001 (the default learning rate). The loss function
is negative-log likelihood (aka categorical cross-
entropy). We use a Sigmoid activation function on
the hidden layer units. All the models are trained
using mini-batches of size five. The maximum
number of epochs is set to 50, but we also use an
early stopping criterion on the model’s accuracy
on the validation split (i.e. training is interrupted if
the validation accuracy doesn’t improve over five
consecutive epochs). We implement all the mod-
els in Keras with TensforFlow as backend. All the
TL and MTL models are trained with the same hy-
perparameters of the STL model.6

5vectors.nlpl.eu/repository
6github.com/ltgoslo/fun-nom

http://vectors.nlpl.eu/
https://github.com/ltgoslo/fun-nom
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5.2 Transfer Learning Models

Transfer learning in our experiments amounts to
training an STL model on PCEDT relations, for
example, and then using (some of) its weights to
initialize another model for NomBank relations.
Given the architecture of the neural classifier de-
scribed in Section 5.1, we identify three ways to
implement TL: 1) TLE: Transfer of the embed-
ding layer weights, 2) TLH: Transfer of the hid-
den layer weights, and 3) TLEH: Transfer of both
the embedding and hidden layer weights. Fur-
thermore, we distinguish between transfer learn-
ing from PCEDT to NomBank and vice versa; that
is, either task can be used as main task or auxil-
iary task. Hence, we either start by training on
NomBank and use the weights of the correspond-
ing transfer layer to initialize the PCEDT model or
the other way around. In total, this leads to six
setups, as shown in Table 2. Note that we do not
apply TL (or MTL) on the output layer because it
is task- or dataset-specific (Mou et al., 2016).

5.3 Multi-Task Learning Models

In MTL, we train one model simultaneously to
learn both PCEDT and NomBank relations, and
therefore all the MTL models have two objec-
tive functions and two output layers. We im-
plement two MTL setups: MTLE, which con-
sists of a shared embedding layer but two task-
specific hidden layers, and MTLF, which, apart
from the output layer, does not have task-specific
layers, i.e. both the embedding and hidden layers
are shared. We distinguish between the auxiliary
and main tasks based on which validation accu-
racy (NomBank’s or PCEDT’s) is monitored by
the early stopping criterion. Hence we end up with
a total of four MTL models as shown in Table 3.

6 Experimental Results

Tables 2 and 3 present the accuracies of the dif-
ferent TL and MTL models on the development
and test splits in NomBank and PCEDT. The top
row in both tables shows the accuracy of the STL
model. All the models were trained on the training
split only. There are several observations one can
draw from these tables. First, the accuracy of the
STL models drops when the models are evaluated
on the test split, whether on NomBank or PCEDT.
Second, all the TL models achieve better accuracy
on the test split of NomBank even though transfer
learning does not remarkably improve accuracy on

Model NomBank PCEDT
Dev Test Dev Test

STL 78.15 76.75 58.80 56.05
TLE 78.37 78.05 59.57 57.42
TLH 78.15 78.00 59.24 56.51
TLEH 78.48 78.00 59.89 56.68

Table 2: Accuracy (%) of the transfer learning models.

Model NomBank PCEDT
Dev Test Dev Test

STL 78.15 76.75 58.80 56.05
MTLE 77.93 78.45 59.89 56.96
MTLF 76.74 78.51 58.91 56.00

Table 3: Accuracy (%) of the MTL models.

the development split of the same dataset. The
MTL models, especially MTLF, have a negative
effect on the development accuracy of NomBank,
but we still see the same improvement, as in TL,
on the test split. Third, both the TL and MTL mod-
els exhibit less consistent effects on PCEDT (on
both the development and test splits) compared to
NomBank; for example, all the TL models lead
to about 1.25 points absolute improvement in ac-
curacy on NomBank, whereas in PCEDT TLE is
clearly better than the other two TL models (TLE
improves over the STL accuracy by 1.37 points).

Overall, the accuracy of the STL models drops
when evaluated on the test split of NomBank and
PCEDT (in comparison to their accuracy on the
development split); this might be an indicator of
overfitting, especially because we select the model
that performs best on the development split in our
stopping criterion. Both TL and MTL, on the other
hand, improve accuracy on the test splits, even
though the same stopping criterion was used for
STL, TL and MLT. We interpret this result as im-
provement in the models’ generalization ability.
However, given that these improvements are rel-
atively small, we next take a closer look at the re-
sults to understand if and how TL and MTL help.

7 Results Analysis

This section presents a systematic analysis of the
performance of the models based on insights from
the dataset used in the experiments as well as the
classification errors of the models. The discussion
in the following sections is based on the results
on the test split rather than the development split,
primarily because the former is larger in size.7

7One can also argue that result analysis on the test split is
stricter than on the validation split. While using an early stop-
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A0 A1 A2 A3 LOC MNR TMP
Count 132 1282 153 75 25 25 27
STL 49.82 87.54 45.78 60.81 28.57 29.41 66.67
TLE 55.02 87.98 41.61 60.14 27.91 33.33 63.83
TLH 54.81 87.93 42.51 60.00 25.00 35.29 65.31
TLEH 53.62 87.95 42.70 61.11 29.27 33.33 65.22
MTLE 54.07 88.34 42.86 61.97 30.00 28.57 66.67
MTLF 53.09 88.41 38.14 62.69 00.00 00.00 52.17

Table 4: Per-label F1 score on the NomBank test split.

7.1 Relation Distribution
To demonstrate the difficulty of the problem at
hand, we plot the distribution of the most frequent
relations in NomBank and PCEDT across the three
data splits in Figure 1. We find that almost 71.18%
of the relations in the NomBank training split are
of type ARG1 (proto-typical patient), and 52.20%
of the PCEDT relations are of type RSTR (an un-
derspecified adnominal modifier). Such highly
skewed distributions of the relations makes learn-
ing some of the other relations more difficult, if
not impossible in some cases. In fact, of the 15
NomBank relations observed in the test split, five
relations are never predicted by any of the STL,
TL and MTL models, and of the 26 PCEDT re-
lations observed in the test split only six are pre-
dicted. That said, the non-predicted relations are
extremely infrequent in the training split (e.g. 23
PCEDT functors occur less than 20 times in the
training split), and it is therefore questionable if
an ML model will be able to learn them under any
circumstances.

From this imbalanced distribution of relations,
it immediately follows that accuracy alone, as
evaluation measure, is not sufficient to identify the
best performing model. Therefore, in the follow-
ing section we report, and analyze, the F1 scores
of the predicted NomBank and PCEDT relations
across all the STL, TL and MTL models.

7.2 Per-Relation F1 Scores
Tables 4 and 5 show the per-relation F1 scores for
NomBank and PCEDT, respectively. Note that we
only include the results for the relations that are
actually predicted by at least one of the models.

We observe several interesting patterns in Ta-
bles 4 and 5. First, the MTLF model seems to be
confusing for both datasets: it leads to substan-

ping criterion based on the validation data can help prevent
overfitting on the training data, we still choose a model that
achieves the best accuracy on the validation split. In addition,
it’s unclear if early stopping helps when the validation split is
not fully representative of the problem (Prechelt, 2012).

ACT TWHEN APP PAT REG RSTR
Count 89 14 118 326 216 900
STL 43.90 42.11 22.78 42.83 20.51 68.81
TLE 49.37 70.97 27.67 41.60 30.77 69.67
TLH 53.99 62.07 25.00 43.01 26.09 68.99
TLEH 49.08 64.52 28.57 42.91 28.57 69.08
MTLE 54.09 66.67 24.05 42.03 27.21 69.31
MTLF 47.80 42.11 25.64 40.73 19.22 68.89

Table 5: Per-label F1 score on the PCEDT test split.

tially degraded F1 scores on four NomBank rela-
tions, including the locative modifier ARGM-LOC
and manner modifier ARGM-MNR (shortened to
LOC and MNR in Table 4) which the model is no
longer able to predict. The same model has the
worst F1 score, compared to all other models, for
two PCEDT relations, REG (which expresses a
circumstance) and PAT (patient). Given that the
MTLF model achieves the highest accuracy on the
NomBank test split (cf. Table 3), it becomes all
the more evident that mere accuracy scores are not
enough to judge the utility of TL and MTL for this
task (and dataset).

Second, with the exception of the MTLF model,
all the TL and MTL models consistently improve
the F1 score of all the PCEDT relations except
PAT. Most notably, the F1 scores of the relations
TWHEN and ACT see a remarkable boost, com-
pared to other PCEDT relations, when only the
embedding layer’s weights are shared (MTLE) or
transfered (TLE). This result can be partly ex-
plained by looking at the correspondence matrices
between NomBank arguments and PCEDT func-
tors shown in Tables 7 and 6, which show how
the PCEDT functors map to NomBank arguments
in the training split (Table 6) and the other way
around (Table 7). From Table 6, we see that 80%
of the compounds annotated as TWHEN in PCEDT
were annotated as ARGM-TMP in NomBank. In
addition, 47% of ACT (Actor) relations map to
ARG0 (Proto-Agent) in NomBank, even though
this mapping is not as clear as one would have
hoped, it is still relatively high if we consider how
other PCEDT relations map to ARG0. The cor-
respondence matrices also show that the assumed
theoretical similarities between the NomBank and
PCEDT relations do not always hold. Nonetheless,
even such ‘imperfect’ correspondence can provide
a ‘training signal’ that help the TL and MTL mod-
els learn relations such as TWHEN and ACT.

Since the TLE model outperforms STL on pre-
dicting REG by ten absolute points, we inspected
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Figure 1: Distribution of NomBank relations (left) and PCEDT relations (right)

all the REG compounds that were correctly classi-
fied by the TLE model but were misclassified by
the STL model and found that the latter misclassi-
fied them as RSTR which indicates that TL from
NomBank helps the TLE model recover from the
STL’s over-generalization in RSTR prediction.

The two NomBank relations that receive the
highest boost in F1 score (about five absolute
points) are ARG0 and ARGM-MNR, but the im-
provement in the latter relation corresponds to
only one more compound which might well be
predicted correctly by chance. Overall, TL and
MTL from NomBank to PCEDT is more helpful
than the other way around. One way to explain
this is considering the first rows in Tables 6 and
7, where we see that five PCEDT relations (includ-
ing the four most frequent ones) map to ARG1 in
NomBank in more than 60% of the cases for each
relation. This means that the weights learned to
predict PCEDT relations offer little or no inductive
bias for NomBank relations. Whereas if we con-
sider the mapping from NomBank to PCEDT, we
see that even though many NomBank arguments
map to RSTR in PCEDT the percentages are lower,
and hence the mapping is more ‘diverse’ (i.e. dis-
criminative) which seems to help the TL and MTL
models learn the less frequent PCEDT relations.

For completeness, we investigate why the
PCEDT functor AIM is never predicted even
though it is more frequent than TWHEN (cf.
Figure 1). We find that AIM is almost always mis-
classifed as RSTR by all the models. Furthermore,
we discover that AIM and RSTR have the highest
lexical overlap in the training set among all other
pairs of relations in PCEDT: 78.35% of the left
constituents and 73.26% of the right constituents
of the compounds annotated as AIM occur in other

RSTR PAT REG APP ACT AIM TWHEN
A1 0.70 0.90 0.78 0.62 0.47 0.65 0.10
A2 0.11 0.05 0.10 0.21 0.03 0.12 0.03
A0 0.06 0.01 0.04 0.13 0.47 0.07 -
A3 0.06 0.02 0.06 0.02 0.01 0.06 -
LOC 0.02 0.01 0.00 0.01 0.01 0.01 0.02
TMP 0.01 - 0.00 0.00 - - 0.80
MNR 0.02 0.00 0.00 - 0.01 - -
Count 3617 1312 777 499 273 116 59

Table 6: Correspondence matrix between PCEDT
functors and NomBank arguments. Slots with ‘-’ mean
zero, 0.00 is a very small number but not zero.

A1 A2 A0 A3 LOC TMP MNR
RSTR 0.51 0.54 0.47 0.63 0.66 0.36 0.78
PAT 0.24 0.09 0.03 0.08 0.07 - 0.05
REG 0.12 0.11 0.07 0.13 0.02 0.01 0.01
APP 0.06 0.14 0.13 0.03 0.05 0.01 -
ACT 0.03 0.01 0.26 0.01 0.03 - 0.03
AIM 0.02 0.02 0.02 0.02 0.01 - -
TWHEN 0.00 0.00 - - 0.01 0.46 -
Count 4932 715 495 358 119 103 79

Table 7: Correspondence matrix between NomBank
arguments and PCEDT functors.

compounds annotated as RSTR. This explains why
none of the models manage to learn the relation
AIM but raises a question about the models’ abil-
ity to learn relational representations; we pursue
this question further in Section 7.3.

Finally, to clearly demonstrate the benefits of
TL and MTL for NomBank and PCEDT, we re-
port the F1 macro-average scores in Table 8 (which
is arguably the appropriate evaluation measure for
imbalanced classification problems). Note that
the relations that are not predicted by any of the
models are not included in computing the macro-
average. From Table 8 it becomes crystal clear
that TL and MTL on the embedding layer yield re-
markable improvements for PCEDT with about 7–
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Model NomBank PCEDT
STL 52.66 40.15
TLE 52.83 48.34
TLH 52.98 46.52
TLEH 53.31 47.12
MTLE 53.21 47.23
MTLF 42.07 40.73

Table 8: Macro-average F1 score on the test split.

8 absolute points increase in macro-average F1, in
contrast to just 0.65 in the best case on NomBank.

7.3 Generalization on Unseen Compounds

Now we turn to analyze the models’ ability to
generalize over compounds unseen in the training
split. Recent work by Dima (2016) and Vered and
Waterson (2018) suggest that the gains achieved in
noun–noun compound interpretation using word
embeddings and somewhat similar neural classi-
fication models are in fact a by-product of lexical
memorization (Levy et al., 2015); in other words,
the classification models learn that a specific set
of nouns is a strong indicator of a specific rela-
tion. Therefore, in order to gauge the role of lexi-
cal memorization in our models also, we quantify
the number of unseen compounds that the STL, TL
and MTL models predict correctly.

We distinguish between ‘partly’ and ‘com-
pletely’ unseen compounds. A compound is con-
sidered ‘partly’ unseen if one of its constituents
(right or left) is not seen in the training data at all.
A completely unseen compound is one whose left
and right constituent are not seen in the training
data (i.e. completely unseen compounds are the
subset of compounds in the test split that have zero
lexical overlap with the training split). Overall, al-
most 20% of the compounds in the test split have
an unseen left constituent, about 16% of the com-
pounds have unseen right constituent and 4% are
completely unseen. In Table 9, we compare the
performance of the different models on these three
groups in terms of the proportion of compounds a
model misclassifies in each group.

From Table 9 we see that TL and MTL reduce
the NomBank generalization error in all cases, ex-
cept TLH and TLEH on completely unseen com-
pounds; the latter leads to higher generalization
error. The MTL models lead to the biggest er-
ror reduction across the three types of unseen
compounds; MTLE leads to about six points er-
ror reduction on compounds with unseen right
constituent and eleven points on completely un-

Model NomBank PCEDT
L R L&R L R L&R

Count 351 286 72 351 286 72
STL 27.92 39.51 50.00 45.01 47.55 41.67
TLE 25.93 36.71 48.61 43.87 47.55 41.67
TLH 26.21 38.11 50.00 46.15 49.30 47.22
TLEH 26.50 38.81 52.78 45.87 47.55 43.06
MTLE 24.50 33.22 38.89 44.44 47.20 43.06
MTLF 22.79 34.27 40.28 44.16 47.90 38.89

Table 9: Generalization error on the subset of unseen
compounds in the test split. L: Left constituent. R:
Right constituent. L&R: Completely unseen.

seen ones, and MTLF reduces the error on un-
seen left constituent by five points. Note, how-
ever, that these results have to be read together
with the Count row in Table 9 to get a complete
picture. For instance, an eleven-point decrease in
error on completely unseen compounds amounts
to eight compounds. In PCEDT, the largest error
reduction on unseen left constituents is 1.14 points
which amounts to four compounds, 0.35 (just one
compound) on unseen right constituents and 2.7
(or two compounds) on completely unseen com-
pounds.

Since we see larger reductions in the general-
ization error in NomBank, we manually inspect
the compounds that led to these reductions; i.e.
we inspect the distribution of relations in the set
of the correctly predicted unseen compounds. The
MTLE model reduces the generalization error on
completely unseen compounds by a total of eight
compounds compared to the STL model, but seven
of these compounds are annotated with ARG1
which is the most frequent relation in NomBank.
When it comes to the unseen right constituents, the
24 compounds MTLE improves on consist of 18
ARG1 compounds, 5 ARG0 compounds and one
ARG2 compound. We see a similar pattern upon
inspecting the gains of the TLE model; where most
of the improvement arises from predicting more
ARG1 and ARG0 correctly.

The majority of the partly or completely unseen
compounds that were misclassified by all models
are not of type ARG1 in NomBank or RSTR in
PCEDT. This, together with the fact that the cor-
rectly predicted unseen compounds are annotated
with the most frequent relations, indicate that the
classification models rely on lexical memorization
to learn the interpretation of compound relations.

Finally, to complement our understanding of the
effect of lexical memorization, we plot the ratio
of relation-specific constituents in NomBank and



1496

Figure 2: Ratio of relation-specific constituents in NomBank (left) and PCEDT (right).

PCEDT in Figure 2. We define relation-specific
constituents as left or right constituents that only
occur with one specific relation in the training
split, and their ratio is simply their proportion in
the overall set of left or right constituents per rela-
tion. Looking at Figure 2, we see that NomBank
relations have higher ratios of relation-specific
constituents in comparison to PCEDT, which ar-
guably makes learning the former comparatively
easier if the model is only to rely on lexical mem-
orization. Furthermore, ARGM-TMP in NomBank
and TWHEN in PCEDT stand out from other rela-
tions in Figure 2, which are also the two relations
with the second highest F1 score in their respec-
tive dataset—except in STL on PCEDT (cf. Ta-
bles 4 and 5). Lexical memorization is, therefore,
the most likely explanation of such relatively high
F1 scores. We also observe some correlation be-
tween lower ratios of relation-specific constituents
and relatively low F1 scores, e.g. APP and REG
in PCEDT. Based on these observations, we can-
not rule out that our models exhibit some degree
of lexical memorization effects, even though man-
ual result analysis also reveals ‘counter-examples’
where the models generalize and make correct pre-
dictions where lexical memorization is impossi-
ble.

8 Conclusion

Transfer and multi-task learning for NLP currently
receive a lot of attention, but for the time be-
ing there remains considerable uncertainty about
which task properties and experimental settings
actually are effective. In this work, we seek to
shed light on the utility of TL and MTL per-
spectives on the semantic interpretation of noun–
noun compounds. Through a comprehensive se-

ries of minimally contrasting experiments and in-
depth analysis of results and prediction errors, we
demonstrate the ability of both TL and MTL to
mitigate the challenges of class imbalance and
substantially improve prediction of low-frequency
relations. In a nutshell, our TL and in particular
MTL models make quantitatively and qualitatively
better predictions, especially so on the ‘hardest’
inputs involving at least one constituent not seen in
the training data—but clear indicators of remain-
ing ‘lexical memorization’ effects arise from our
error analysis of unseen compounds.

In general, transfer of representations or shar-
ing across tasks is most effective at the embed-
ding layers, i.e. the model-internal representation
of the two compound constituents involved. In
multi-task learning, full sharing of the model ar-
chitecture across tasks worsens the model’s ability
to generalize on the less frequent relations.

We experience the dataset by Fares (2016) as
an interesting opportunity for innovative neural
approaches to compound interpretation, as it re-
lates this sub-problem to broad-coverage semantic
role labeling or semantic dependency parsing in
PCEDT and NomBank. In future work, we plan
to incorporate other NLP tasks defined over these
frameworks to learn noun–noun compound inter-
pretation using TL and MTL. Such tasks include
semantic role labeling of nominal predicates in
NomBank annotations as well as verbal predicates
in PropBank (Kingsbury and Palmer, 2002).
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Diarmuid Ó Séaghdha and Ann Copestake. 2013.
Interpreting compound nouns with kernel meth-
ods. Journal of Natural Language Engineering,
19(3):331 – 356.

Sinno Jialin Pan and Qiang Yang. 2010. A Survey on
Transfer Learning. IEEE Transactions on Knowl-
edge and Data Engineering, 22(10):1345 – 1359.

Robert Parker, David Graff, Junbo Kong, Ke Chen, and
Kazuaki Maeda. 2011. English Gigaword Fifth Edi-
tion LDC2011T07. Technical report, Technical Re-
port. Linguistic Data Consortium, Philadelphia.

Hao Peng, Sam Thomson, and Noah A. Smith. 2017.
Deep multitask learning for semantic dependency
parsing. In Proceedings of the 55th Meeting of
the Association for Computational Linguistics, page
2037 – 2048, Vancouver, Canada.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global Vectors for Word
Representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), page 1532 – 1543, Doha,
Qatar. Association for Computational Linguistics.

Lutz Prechelt. 2012. Early stopping — but when? In
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