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Abstract

We present a model for semantic proto-role la-

beling (SPRL) using an adapted bidirectional

LSTM encoding strategy that we call Neural-

Davidsonian: predicate-argument structure is

represented as pairs of hidden states corre-

sponding to predicate and argument head to-

kens of the input sequence. We demonstrate:

(1) state-of-the-art results in SPRL, and (2)

that our network naturally shares parameters

between attributes, allowing for learning new

attribute types with limited added supervision.

1 Introduction

Universal Decompositional Semantics (UDS)

(White et al., 2016) is a contemporary seman-

tic representation of text (Abend and Rappoport,

2017) that forgoes traditional inventories of se-

mantic categories in favor of bundles of simple,

interpretable properties. In particular, UDS in-

cludes a practical implementation of Dowty’s the-

ory of thematic proto-roles (Dowty, 1991): ar-

guments are labeled with properties typical of

Dowty’s proto-agent (AWARENESS, VOLITION ...)

and proto-patient (CHANGED STATE ...).

Annotated corpora have allowed the exploration

of Semantic Proto-role Labeling (SPRL) 1 as a

natural language processing task (Reisinger et al.,

2015; White et al., 2016; Teichert et al., 2017).

For example, consider the following sentence, in

which a particular pair of predicate and argument

heads have been emphasized: “The cat ate the

rat.” An SPRL system must infer from the con-

text of the sentence whether the rat had VOLITION,

CHANGED-STATE, and EXISTED-AFTER the eat-

ing event (see Table 2 for more properties).
We present an intuitive neural model that

1SPRL and SPR refer to the labeling task and the under-
lying semantic representation, respectively.

The cat ate the rat
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Figure 1: BiLSTM sentence encoder with SPR de-

coder. Semantic proto-role labeling is with respect

to a specific predicate and argument within a sen-

tence, so the decoder receives the two correspond-

ing hidden states.

achieves state-of-the-art performance for SPRL.2

As depicted in Figure 1, our model’s architecture

is an extension of the bidirectional LSTM, cap-

turing a Neo-Davidsonian like intuition, wherein

select pairs of hidden states are concatenated to

yield a dense representation of predicate-argument

structure and fed to a prediction layer for end-

to-end training. We include a thorough quanti-

tative analysis highlighting the contrasting errors

between the proposed model and previous (non-

neural) state-of-the-art.

In addition, our network naturally shares a sub-

set of parameters between attributes. We demon-

strate how this allows learning to predict new at-

2Implementation available at https://github.

com/decomp-sem/neural-sprl.

https://github.com/decomp-sem/neural-sprl
https://github.com/decomp-sem/neural-sprl
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SPR Property Explanation of Property

INSTIGATION Arg caused the Pred to happen? X ✗

VOLITIONAL Arg chose to be involved in the Pred? X ✗

AWARE
Arg was/were aware of being

involved in the Pred?
X X

PHYSICALLY EXISTED Arg existed as a physical object? X X

EXISTED AFTER Arg existed after the Pred stopped? X ✗

CHANGED STATE
The Arg was/were altered or somehow

changed during or by the end of the Pred?
X X

Table 1: Example SPR annotations for the toy example “The cat ate the rat,” where the Predicate in

question is “ate” and the Argument in question is either “cat” or “rat.” Note that not all SPR properties

are listed, and the binary labels (X, ✗) are coarsened from a 5-point Likert scale.

tributes with limited supervision: a key finding

that could support efficient expansion of new SPR

attribute types in the future.

2 Background

Davidson (1967) is credited for representations

of meaning involving propositions composed of

a fixed arity predicate, all of its core argu-

ments arising from the natural language syn-

tax, and a distinguished event variable. The

earlier example could thus be denoted (modulo

tense) as (∃e)eat[(e, CAT, RAT)], where the vari-

able e is a reification of the eating event. The

order of the arguments in the predication im-

plies their role, where leaving arguments unspec-

ified (as in “The cat eats”) can be handled ei-

ther by introducing variables for unstated argu-

ments, e.g., (∃e)(∃x)[eat(e, CAT, x)], or by cre-

ating new predicates that correspond to differ-

ent arities, e.g., (∃e)eat intransitive[(e, CAT)].3

The Neo-Davidsonian approach (Castañeda, 1967;

Parsons, 1995), which we follow in this work, al-

lows for variable arity by mapping the argument

positions of individual predicates to generalized

semantic roles, shared across predicates,4 e.g.,

AGENT, PATIENT and THEME, in: (∃e)[eat(e) ∧
Agent(e, CAT) ∧ Patient(e, RAT)].

Dowty (1991) conjectured that the distinction

between the role of a prototypical Agent and

prototypical Patient could be decomposed into a

number of semantic properties such as “Did the

argument change state?”. Here we formulate this

3This formalism aligns with that used in PropBank
(Palmer et al., 2005), which associated numbered, core ar-
guments with each sense of a verb in their corpus annotation.

4For example, as seen in FrameNet (Baker et al., 1998).

as a Neo-Davidsonian representation employing

semantic proto-role (SPR) attributes:

(∃e) [eat(e)

∧ volition(e, CAT) ∧ instigation(e, CAT)...

∧ ¬volition(e, RAT) ∧ destroyed(e, RAT)... ]

Dowty’s theory was empirically verified by

Kako (2006), followed by pilot (Madnani et al.,

2010) and large-scale (Reisinger et al., 2015) cor-

pus annotation efforts, the latter introducing a lo-

gistic regression baseline for SPRL. Teichert et al.

(2017) refined the evaluation protocol,5 and devel-

oped a CRF (Lafferty et al., 2001) for the task, rep-

resenting existing state-of-the-art.

Full details about the SPR datasets introduced

by Reisinger et al. (2015) and White et al. (2016),

which we use in this work, are provided in Ap-

pendix B. For clarity, Table 1 shows a toy SPRL

example, including a few sample SPR properties

and explanations.

3 “Neural-Davidsonian” Model

Our proposed SPRL model (Fig. 1) determines the

value of each attribute (e.g., VOLITION) on an ar-

gument (a) with respect to a particular predication

(e) as a function on the latent states associated

with the pair, (e, a), in the context of a full sen-

tence. Our architecture encodes the sentence using

a shared, one-layer, bidirectional LSTM (Hochre-

iter and Schmidhuber, 1997; Graves et al., 2013).

We then obtain a continuous, vector representa-

tion hea = [he;ha], for each predicate-argument

pair as the concatenation of the hidden BiLSTM

5Splitting train/dev/test along Penn Treebank boundaries
and casting the SPRL task as multi-label binary classification.
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states he and ha corresponding to the syntactic

head of the predicate of e and argument a respec-

tively. These heads are obtained over gold syntac-

tic parses using the predicate-argument detection

tool, PredPatt (White et al., 2016).6

For each SPR attribute, a score is predicted by

passing hea through a separate two-layer percep-

tron, with the weights of the first layer shared

across all attributes:

Score(attr,hea) = Wattr [g (Wshared [hea])]

This architecture accomodates the definition of

SPRL as multi-label binary classification given

by Teichert et al. (2017) by treating the score

as the log-odds of the attribute being present

(i.e. P(attr|hea) = 1
1+exp[−Score(attr,hea)]

). This

architecture also supports SPRL as a scalar re-

gression task where the parameters of the network

are tuned to directly minimize the discrepancy

between the predicted score and a reference scalar

label. The loss for the binary and scalar models

are negative log-probability and squared error,

respectively; the losses are summed over all SPR

attributes.

Training with Auxiliary Tasks A benefit of the

shared neural-Davidsonian representation is that

it offers many levels at which multi-task learning

may be leveraged to improve parameter estima-

tion so as to produce semantically rich represen-

tations hea, he, and ha. For example, the sen-

tence encoder might be pre-trained as an encoder

for machine translation, the argument represen-

tation ha can be jointly trained to predict word-

sense, the predicate representation, he, could be

jointly trained to predict factuality (Saurı́ and

Pustejovsky, 2009; Rudinger et al., 2018), and

the predicate-argument representation, hea, could

be jointly trained to predict other semantic role

formalisms (e.g. PropBank SRL—suggesting a

neural-Davidsonian SRL model in contrast to re-

cent BIO-style neural models of SRL (He et al.,

2017)).

To evaluate this idea empirically, we exper-

imented with a number of multi-task training

strategies for SPRL. While all settings outper-

formed prior work in aggregate, simply initial-

izing the BiLSTM parameters with a pretrained

English-to-French machine translation encoder7

6Observed to be state-of-the-art by Zhang et al. (2017).
7using a modified version of OpenNMT-py (Klein et al.,

produced the best results,8 so we simplify discus-

sion by focusing on that model. The efficacy of

MT pretraining that we observe here comes as no

surprise given prior work demonstrating, e.g., the

utility of bitext for paraphrase (Ganitkevitch et al.,

2013), that NMT pretraining yields improved con-

textualized word embeddings9 (McCann et al.,

2017), and that NMT encoders specifically capture

useful features for SPRL (Poliak et al., 2018).

Full details about each multi-task experiment,

including a full set of ablation results, are reported

in Appendix A; details about the corresponding

datasets are in Appendix B.

Except in the ablation experiment of Figure

2, our model was trained on only the SPRL

data and splits used by Teichert et al. (2017)

(learning all properties jointly), using GloVe10

embeddings and with the MT-initialized BiLSTM.

Models were implemented in PyTorch and trained

end-to-end with Adam optimization (Kingma and

Ba, 2014) and a default learning rate of 10−3.

Each model was trained for ten epochs, selecting

the best-performing epoch on dev.

Prior Work in SPRL We additionally include

results from prior work: “LR” is the logistic-

regression model introduced by Reisinger et al.

(2015) and “CRF” is the CRF model (specifically

SPRL⋆) from Teichert et al. (2017). Although

White et al. (2016) released additional SPR an-

notations, we are unaware of any benchmark re-

sults on that data; however, our multi-task results

in Appendix A do use the data and we find (un-

surprisingly) that concurrent training on the two

SPR datasets can be helpful. Using only data and

splits from White et al. (2016), the scalar regres-

sion architecture of Table 6 achieves a Pearson’s ρ

of 0.577 on test.

There are a few noteworthy differences between

our neural model and the CRF of prior work.

As an adapted BiLSTM, our model easily ex-

2017) trained on the 109 Fr-En corpus (Callison-Burch et al.,
2009) (Appendix A).

8e.g. this initialization resulted in raising micro-averaged
F1 from 82.2 to 83.3

9More recent discoveries on the usefulness of language
model pretraining (Peters et al., 2018; Howard and Ruder,
2018) for RNN encoders suggest a promising direction for
future SPRL experiments.

10300-dimensional, uncased; glove.42B.300d from
https://nlp.stanford.edu/projects/glove/;
15,533 out-of-vocabulary words across all datasets were
assigned a random embedding (uniformly from [−.01, .01]).
Embeddings remained fixed during training.

https://nlp.stanford.edu/projects/glove/
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previous work this work
LR CRF binary scalar

instigation 76.7 85.6 88.6 0.858
volition 69.8 86.4 88.1 0.882
awareness 68.8 87.3 89.9 0.897
sentient 42.0 85.6 90.6 0.925
physically existed 50.0 76.4 82.7 0.834
existed before 79.5 84.8 85.1 0.710
existed during 93.1 95.1 95.0 0.673
existed after 82.3 87.5 85.9 0.619
created 0.0 44.4 39.7 0.549
destroyed 17.1 0.0 24.2 0.346
changed 54.0 67.8 70.7 0.592
changed state 54.6 66.1 71.0 0.604
changed possession 0.0 38.8 58.0 0.640
changed location 6.6 35.6 45.7 0.702
stationary 13.3 21.4 47.4 0.711
location 0.0 18.5 53.8 0.619
physical contact 21.5 40.7 47.2 0.741
manipulated 72.1 86.0 86.8 0.737

micro f1 71.0 81.7 83.3
macro f1 55.4⋆ 65.9⋆ 71.1
macro-avg pearson 0.753

Table 2: SPR comparison to Teichert et al. (2017).

Bold number indicate best F1 results in each row.

Right-most column is pearson correlation coefi-

cient for a model trained and tested on the scalar

regression formulation of the same data.

ploits the benefits of large-scale pretraining, in

the form of GloVe embeddings and MT pretrain-

ing, both absent in the CRF. Ablation experiments

(Appendix A) show the advantages conferred by

these features. In contrast, the discrete-featured

CRF model makes use of gold dependency labels,

as well as joint modeling of SPR attribute pairs

with explicit joint factors, both absent in our neu-

ral model. Future SPRL work could explore the

use of models like the LSTM-CRF (Lample et al.,

2016; Ma and Hovy, 2016) to combine the advan-

tages of both paradigms.

4 Experiments

Table 2 shows a side-by-side comparison of

our model with prior work. The full break-

down of F1 scores over each individual prop-

erty is provided. For every property except EX-

ISTED DURING, EXISTED AFTER, and CREATED

we are able to exceed prior performance. For

some properties, the absolute F1 gains are quite

large: DESTROYED (+24.2), CHANGED POSSES-

SION (+19.2.0), CHANGED LOCATION (+10.1),

STATIONARY (+26.0) and LOCATION (+35.3). We

also report performance with a scalar regression

version of the model, evaluated with Pearson cor-

relation. The scalar model is with respect to the

phys. contact volition

#
D

IF
F

E
R

∆
F

A
L

S
E

–

∆
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L
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#
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E
R

∆
F

A
L

S
E

–

∆
F

A
L

S
E

+

1 ALL 80 −14 6 80 −14 −10
2 PROPERNOUN 18 −2 −2 21 4 −5
3 ORG. 15 −9 2 31 −6 −1
4 PRONOUN 10 0 8 12 0 0
5 PHRASEVERB 14 −6 0 9 −4 1
6 METAPHOR 11 −5 −2 6 −2 0
7 LIGHTVERB 5 −2 1 5 −1 2

Table 3: Manual error analysis on a sample of in-

stances (80 for each property) where outputs of

CRF and the binary model from Table 2 differ.

Negative ∆ FALSE+ and ∆ FALSE– indicate the

neural model represents a net reduction in type I

and type II errors respectively over CRF. Posi-

tive values indicate a net increase in errors. Each

row corresponds to one of several (overlapping)

subsets of the 80 instances in disagreement: (1)

all (sampled) instances; (2) argument is a proper

noun; (3) argument is an organization or institu-

tion; (4) argument is a pronoun; (5) predicate is

phrasal or a particle verb construction; (6) pred-

icate is used metaphorically; (7) predicate is a

light-verb construction. #DIFFER is the size of the

respective subset.

original SPR annotations on a 5-point Likert scale,

instead of a binary cut-point along that scale (> 3).

Manual Analysis We select two properties

(VOLITION and MAKES PHYSICAL CONTACT) to

perform a manual error analysis with respect to

CRF
11 and our binary model from Table 2. For

each property, we sample 40 dev instances with

gold labels of “True” (> 3) and 40 instances of

“False” (≤ 3), restricted to cases where the two

system predictions disagree.12 We manually label

each of these instances for the six features shown

in Table 3. For example, given the input “He sits

down at the piano and plays,” our neural model

correctly predicts that He makes physical contact

during the sitting, while CRF does not. Since He is

a pronoun, and sits down is phrasal, this example

contributes −1 to ∆ FALSE– in rows 1, 4 and 5.

11We obtained the CRF dev system predictions of Teichert
et al. (2017) via personal communication with the authors.

12According to the reference, of the 1071 dev examples,
150 have physical contact and 350 have volition. The two
models compared here differed in phy. contact on 62 positive
and 44 negative instances and for volition on 43 positive and
54 negative instances.
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Figure 2: Effect of using only a fraction of the

training data for a property while either ignoring

or co-training with the full training data for the

other SPR1 properties. Measurements at 1%, 5%,

10%, 25%, 50%, and 100%.

For both properties our model appears more

likely to correctly classify the argument in cases

where the predicate is a phrasal verb. This is

likely a result of the fact that the BiLSTM has

stronger language-modeling capabilities than the

CRF, particularly with MT pretraining. In general,

our model increases the false-positive rate for

MAKES PHYSICAL CONTACT, but especially

when the argument is pronominal.

Learning New SPR Properties One motiva-

tion for the decompositional approach adopted by

SPRL is the ability to incrementally build up an in-

ventory of annotated properties according to need

and budget. Here we investigate (1) the degree to

which having less training data for a single prop-

erty degrades our F1 for that property on held-out

data and (2) the effect on degradation of concur-

rent training with the other properties. We focus

on two properties only: INSTIGATION, a canonical

example of a proto-agent property, and MANIP-

ULATED, which is a proto-patient property. For

each we consider six training set sizes (1, 5, 10,

25, 50 and 100 percent of the instances). Starting

with the same randomly initialized BiLSTM13, we

consider two training scenarios: (1) ignoring the

remaining properties or (2) including the model’s

loss on other properties with a weight of λ = 0.1
in the training objective.

Results are presented in Figure 2. We see that,

in every case, most of the performance is achieved

with only 25% of the training data. The curves

also suggest that training simultaneously on all

SPR properties allows the model to learn the tar-

13Note that this experiment does not make use of MT pre-
training as was used for Table 2, to best highlight the impact
of parameter sharing across attributes.

get property more quickly (i.e., with fewer training

samples) than if trained on that property in iso-

lation. For example, at 5% of the training train-

ing data, the “all properties” models are achiev-

ing roughly the same F1 on their respective tar-

get property as the “target property only” models

achieves at 50% of the data.14 As the SPR prop-

erties currently annotated are by no means seman-

tically exhaustive,15 this experiment indicates that

future annotation efforts may be well served by fa-

voring breadth over depth, collecting smaller num-

bers of examples for a larger set of attributes.

5 Conclusion

Inspired by: (1) the SPR decomposition of

predicate-argument relations into overlapping fea-

ture bundles and (2) the neo-Davidsonian formal-

ism for variable-arity predicates, we have pro-

posed a straightforward extension to a BiLSTM

classification framework in which the states of

pre-identified predicate and argument tokens are

pairwise concatenated and used as the target for

SPR prediction. We have shown that our Neural-

Davidsonian model outperforms the prior state of

the art in aggregate and showed especially large

gains for properties of CHANGED-POSSESSION,

STATIONARY, and LOCATION. Our architecture

naturally supports discrete or continuous label

paradigms, lends itself to multi-task initialization

or concurrent training, and allows for parameter

sharing across properties. We demonstrated this

sharing may be useful when some properties are

only sparsely annotated in the training data, which

is suggestive of future work in efficiently increas-

ing the range of annotated SPR property types.
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Name # Description

LR Logistic Regr. model,
Reisinger et al. (2015)

CRF CRF model,
Teichert et al. (2017)

SPR1 0 SPR1 basic model
SPR1-RAND 0 SPR1, random word embeddings
MT:SPR1 1a SPR1 after MT pretraining
PB:SPR1 1a SPR1 after PB pretraining
MT:PB:SPR1 1a SPR1 after MT+PB pretraining
SPR1+2 1b SPR1 and SPR2 concurrently
SPR1+WSD 1b SPR1 and WSD concurrently
MT:SPR1+2 1b SPR1+2 after MT pretraining
MT:SPR1+WSD 1b SPR1+WSD after MT pretraining
MT:SPR1S 1c SPR1 scalar after MT pretraining
PB:SPR1S 1c SPR1 scalar after PB pretraining
PS-MS 1d SPR1 propty-specific model sel.
SPR2 3 SPR2 basic scalar model
MT:SPR2 3 SPR2 after MT pretraining
PB:SPR2 3 SPR2 after PB pretraining
MT:PB:SPR2 3 SPR2 after MT+PB pretraining

Table 4: Name and short description of each ex-

perimental condition reported. MT: indicates pre-

training with machine translation; PB: indicates

pretraining with PropBank SRL.

A Mult-Task Investigation

Multi-task learning has been found to improve

performance on many NLP tasks, particularly for

neural models, and is rapidly becoming de rigueur

in the field. The strategy involves optimizing for

multiple training objectives corresponding to dif-

ferent (but usually related) tasks. Collobert and

Weston (2008) use multi-task learning to train a

convolutional neural network to perform multiple

core NLP tasks (POS tagging, named entity recog-

nition, etc.). Multi-task learning has also been

used to improve sentence compression (Klerke

et al., 2016), chunking and dependency parsing

(Hashimoto et al., 2017). Related work on UDS

(White et al., 2016) shows improvements on event

factuality prediction with multi-task learning on

BiLSTM models (Rudinger et al., 2018). To com-

plete the basic experiments reported in the main

text, here we include an investigation of the im-

pact of multi-task learning for SPRL.

We borrow insights from Mou et al. (2016) who

explore different multi-task strategies for NLP

including approach of initializing a network by

training it on a related task (“INIT”) versus inter-

spersing tasks during training (“MULT”). Here we

employ both of these strategies, referring to them

as pretraining and concurrent training. We also

use the terminology target task and auxiliary task

to differentiate the primary task(s) we are inter-

ested in from those that play only a supporting role

in training. In order to tune the impact of aux-

iliary tasks on the learned representation, Luong

et al. (2016) use a mixing parameter, αi, for each

task i. Each parameter update consists of selecting

a task with probability proportional to its αi and

then performing one update with respect to that

task alone. They show that the choice of α has a

large impact on the effect of multi-task training,

which influences our experiments here.

Please refer to Appendix B for details on the

datasets used in this section. In particular, with

a few exceptions, White et al. (2016) annotates

for the same set of properties as Reisinger et al.

(2015), but with slightly different protocol and on

a different genre. However, in this section we treat

the two datasets as if they were separate tasks. To

avoid cluttering the results in the main text, we

exclusively present results there on what we call

SPR1 which consists of the data from Reisinger

et al. (2015) and the train/dev/test splits of Teichert

et al. (2017). We refer to the analogous tasks built

on the data and splits of White et al. (2016) us-

ing the term SPR2. (We are not aware of any

prior published results on property prediction for

the SPR2.)

In addition to the binary and scalar SPR archi-

tectures outlined in Section 3 of the main paper,

we also considered concurrently training the BiL-

STM on a fine-grained word-sense disambigua-

tion task or on joint SPR1 and SPR2 prediction.

We also experimented with using machine trans-

lation and PropBank SRL to initialize the parame-

ters of the BiLSTM. Preliminary experimentation

on dev data with other combinations helped prune

down the set of interesting experiments to those

listed in Table 4 which assigns names to the mod-

els explored here. Our ablation study in Section

4 of the main paper uses the model named SPR1

while the other results in the main paper corre-

spond to MT:SPR1 in the case of binary prediction

and MT:SPR1S in the case of scalar prediction. Af-

ter detailing the additional components used for

pretraining or concurrent training, we present ag-

gregate results and for the best performing models

(according to dev) we present property-level ag-

gregate results.

A.1 Auxiliary Tasks

Each auxiliary task is implemented in the form of

a task-specific decoder with access to the hidden



952

states computed by the shared BiLSTM encoder.

In this way, the losses from these tasks backpropa-

gate through the BiLSTM. Here we describe each

task-specific decoder.

PropBank Decoder The network architecture

for the auxiliary task of predicting abstract role

types in PropBank is nearly identical to the ar-

chitecture for SPRL described in Section 3 of the

main paper. The main difference is that the Prop-

Bank task is a single-label, categorical classifica-

tion task.

P(rolei|hea) = softmaxi
(

Wpropbank [hea]
)

The loss from this decoder is the negative log of

the probability assigned to the correct label.

Supersense Decoder The word sense disam-

biguation decoder computes a probability distribu-

tion over 26 WordNet supersenses with a simple

single-layer feedforward network:

P(supersensei|ha) = softmaxi(W [ha])

where W ∈ R
1200×26 and ha is the RNN hid-

den state corresponding to the argument head to-

ken we wish to disambiguate. Since the gold la-

bel in the supersense prediction task is a distribu-

tion over supersenses, the loss from this decoder

is the cross-entropy between its predicted distri-

bution and the gold distribution.

French Translation Decoder Given the en-

coder hidden states, the goal of translation is to

generate the reference sequence of tokens Y =
y1, · · · , yn in the target language, i.e., French. We

employ the standard decoder architecture for neu-

ral machine translation. At each time step i, the

probability distribution of the decoded token yi is

defined as:

P (yi) = softmax
(

tanh(Wfr

[

si; ci
]

+ bfr)
)

where Wfr is a transform matrix, and bfr is a bias.

The inputs are the decoder hidden state si and the

context vector ci. The decoder hidden state si is

computed by:

si = RNN(yi−1, si−1)

where RNN is a recurrent neural network using L-

layer stacked LSTM, yi−1 is the word embedding

of token yi−1, and s0 is initialized by the last en-

coder left-to-right hidden state.

micro-F1 macro-F1

LR 71.0 55.4⋆

CRF 81.7 65.9⋆

SPR1-RAND 77.7 57.3

SPR1 82.2 69.3

MT:SPR1 83.3 71.1

PB:SPR1 82.3 67.9

MT:PB:SPR1 82.8 70.9

SPR1+2 83.3 70.4

SPR1+WSD 81.9 67.9

MT:SPR1+2 83.2 70.0

MT:SPR1+WSD 81.8 67.4

PS-MS 82.9 69.5

Table 5: Overall test performance for all settings

described in Experiments 1 and 1a-d. The tar-

get task is SPR1 as binary classification. Micro-

and macro-F1 are computed over all properties.

(⋆Baseline macro-F1 scores are computed from

property-specific precision and recall values in Te-

ichert et al. (2017) and may introduce rounding er-

rors.)

The context vector ci is computed by an at-

tention mechanism (Bahdanau et al., 2014; Luong

et al., 2015),

ci =
∑

t

αi,tht,

αi,t =
exp

(

s⊤
i
(Wαht + bα)

)

)
∑

k exp
(

s⊤
i
(Wαhk + bα)

) ,

where Wα is a transform matrix and bα is a bias.

The loss is the negative log-probability of the de-

coded sequence.

A.2 Results

In this section, we present a series of experiments

using different components of the neural archi-

tecture described in Section 3, with various train-

ing regimes. Each experimental setting is given a

name (in SMALLCAPS) and summarized in Table

4. Unless otherwise stated, the target task is SPR1

(classification). To ease comparison, we include

results from the main paper as well as additional

results.

Experiment 0: Embeddings By default, all

models reported in this paper employ pretrained

word embeddings (GloVe). In this experiment we

replaced the pretrained embeddings in the vanilla
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CRF SPR1 MT:SPR1 SPR1+2

instigation 85.6 84.6 88.6 85.6
volition 86.4 87.9 88.1 88.0
awareness 87.3 88.3 89.9 88.4
sentient 85.6 89.6 90.6 90.0
physically existed 76.4 82.3 82.7 80.2
existed before 84.8 86.0 85.1 86.8
existed during 95.1 94.2 95.0 94.8
existed after 87.5 86.9 85.9 87.5
created 44.4 46.6 39.7 51.6
destroyed 0.0 11.1 24.2 6.1
changed 67.8 67.4 70.7 68.1
changed state 66.1 66.8 71.0 67.1
changed possession 38.8 57.1 58.0 63.7
changed location 35.6 60.0 45.7 52.9
stationary 21.4 43.2 47.4 53.1
location 18.5 46.9 53.8 53.6
physical contact 40.7 52.7 47.2 54.7
manipulated 86.0 82.2 86.8 86.7

micro f1 81.7 82.2 83.3 83.3
macro f1 65.9 69.3 71.1 70.4

Table 6: Breakdown by property of binary classifi-

cation F1 on SPR1. All new results outperforming

prior work (CRF) in bold.

SPR1 model (SPR1) with randomly initialized

word embeddings (SPR1-RAND). The results (Ta-

ble 5) reveal substantial gains from the use of pre-

trained embeddings; this is likely due to the com-

paratively small size of the SPR1 training data.

Experiment 1a: Multi-task Pretraining We

pretrained the BiLSTM encoder with two separate

auxiliary tasks: French Translation and Prop-

Bank Role Labeling. There are three settings: (1)

Translation pretraining only (MT:SPR1), (2) Prop-

Bank pretraining only (PB:SPR1), and (3) Transla-

tion pretraining followed by PropBank pretraining

(MT:PB:SPR1). In each case, after pretraining, the

SPRL decoder is trained end-to-end, as in Experi-

ment 0 (on SPR1 data).

Experiment 1b: Multi-task Concurrent One

auxiliary task (Supersense or SPR2) is trained

concurrently with SPR1 training. In one epoch

of training, a training example is sampled at ran-

dom (without replacement) from either task un-

til all training instances have been sampled. The

loss from the auxiliary task (which, in both cases,

has more training instances than the target SPRL

task) is down-weighted in proportion to ratio of

the dataset sizes:

α =
|target task|

|auxiliary task|

SPR property SPR1S MT:SPR1S SPR2

instigation 0.835 0.858 0.590
volition 0.869 0.882 0.837
awareness 0.873 0.897 0.879
sentient 0.917 0.925 0.880
physically existed 0.820 0.834 -
existed before 0.696 0.710 0.618
existed during 0.666 0.673 0.358
existed after 0.612 0.619 0.478
created 0.540 0.549 -
destroyed 0.268 0.346 -
changed 0.619 0.592 -
changed state 0.616 0.604 0.352
changed possession 0.359 0.640 0.488
change of location 0.778 0.702 0.492
changed state continuous - - 0.373
was for benefit - - 0.578
stationary 0.705 0.711 -
location 0.627 0.619 -
physical contact 0.731 0.741 -
manipulated 0.715 0.737 -
was used - - 0.203
partitive - - 0.359

macro-avg pearson 0.743 0.753 0.591

Table 7: SPR1 and SPR2 as scalar prediction tasks.

Pearson correlation between predicted and gold

values.

The auxiliary task loss is further down-

weighted by a hyperparameter λ ∈
{1, 10−1, 10−2, 10−3, 10−4} which is chosen

based on dev results. We apply this training

regime with the auxiliary task of Supersense

prediction (SPR1+WSD) and the scalar SPR2

prediction task (SPR1+SPR2), described in

Experiment 2.

Experiment 1c: Multi-task Combination This

setting is identical to Experiment 1b, but includes

MT pretraining (the best-performing pretraining

setting on dev), as described in 1a. Accord-

ingly, the two experiments are MT:SPR1+WSD and

MT:SPR1+SPR2.

Experiment 1d: Property-Specific Model Selec-

tion (PS-MS) Experiments 1a–1c consider a va-

riety of pretraining tasks, co-training tasks, and

weight values, λ, in an effort to improve aggre-

gate F1 for SPR1. However, the SPR properties

are diverse, and we expect to find gains by choos-

ing training settings on a property-specific basis.

Here, for each property, we select from the set

of models considered in experiments 1a–1c the

one that achieves the highest dev F1 for the target

property. We report the results of applying those

property-specific models to the test data.
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SPR1S 0.743 SPR2 0.591

MT:SPR1S 0.753 MT:SPR2 0.577

PB:SPR1S 0.731 PB:SPR2 0.568

MT:PB:SPR1S 0.720 MT:PB:SPR2 0.564

Table 8: SPR1 and SPR2 as scalar prediction

tasks. The overall performance for each experi-

mental setting is reported as the average Pearson

correlation over all properties. Highest SPR1 and

SPR2 results are in bold.

Experiment 2: SPR as a scalar task In Exper-

iment 2, we trained the SPR decoder to predict

properties as scalar instead of binary values. Per-

formance is measured by Pearson correlation and

reported in Tables 8 and 7. In this case, we treat

SPR1 and SPR2 both as target tasks (separately).

By including SPR1 as a target task, we are able

to compare (1) SPR as a binary task and a scalar

task, as well as (2) SPR1 and SPR2 as scalar tasks.

These results constitute the first reported numbers

on SPR2.

We observe a few trends. First, it is generally

the case that properties with high F1 on the SPR1

binary task also have high Pearson correlation on

the SPR1 scalar task. The higher scoring proper-

ties in SPR1 scalar are also generally the higher

scoring properties in SPR2 (where the SPR1 and

SPR2 properties overlap), with a few notable ex-

ceptions, like INSTIGATION. Overall, correlation

values are lower in SPR2 than SPR1. This may

be the case for a few reasons. (1) The underlying

data in SPR1 and SPR2 are quite different. The

former consists of sentences from the Wall Street

Journal via PropBank (Palmer et al., 2005), while

the latter consists of sentences from the English

Web Treebank (Bies et al., 2012) via the Univer-

sal Dependencies; (2) certain filters were applied

in the construction of the SPR1 dataset to remove

instances where, e.g., predicates were embedded

in a clause, possibly resulting in an easier task; (3)

SPR1 labels came from a single annotator (after

determining in pilot studies that annotations from

this annotator correlated well with other annota-

tors), where SPR2 labels came from 24 different

annotators with scalar labels averaged over two-

way redundancy.

Discussion With SPR1 binary classification as

the target task, we see overall improvements from

various multi-task training regimes (Experiments

1a-d, Tables 5 and 6), using four different auxiliary

tasks: machine translation into French, PropBank

abstract role prediction, word sense disambigua-

tion (WordNet supersenses), and SPR2.16 These

auxiliary tasks exhibit a loose trade-off in terms

of the quantity of available data and the seman-

tic relatedness of the task: MT is the least related

task with the most available (parallel) data, while

SPR2 is the most related task with the smallest

quantity of data. While we hypothesized that the

relatedness of PropBank role labeling and word

sense disambiguation tasks might lead to gains in

SPR performance, we did not see substantial gains

in our experiments (PB:SPR1, SPR1+WSD). We

did, however, see improvements over the target-

task only model (SPR1) in the cases where we

added MT pretraining (MT:SPR1) or SPR2 con-

current training (SPR1+2). Interestingly, combin-

ing MT pretraining with SPR2 concurrent training

yielded no further gains (MT:SPR1+2).

B Data

SPR1 The SPR1.0 (“SPR1”) dataset introduced

by Reisinger et al. (2015) contains proto-role an-

notations on 4,912 Wall Street Journal sentences

from PropBank (Palmer et al., 2005) correspond-

ing to 9,738 predicate-argument pairs with 18

properties each, in total 175,284 property annota-

tions. All annotations were performed by a sin-

gle, trusted annotator. Each annotation is a rating

from 1 to 5 indicating the likelihood that the prop-

erty applies, with an additional “N/A” option if the

question of whether the property holds is nonsen-

sical in the context.

To compare with prior work (Teichert et al.,

2017), we treat the SPR1 data as a binary pre-

diction task: the values 4 and 5 are mapped to

True (property holds), while the values 1, 2, 3,

and “N/A” are mapped to False (property does not

hold). In additional experiments, we move to treat-

ing SPR1 as a scalar prediction task; in this case,

“N/A” is mapped to 1, and all other annotation val-

ues remain unchanged.

SPR2 The second SPR release (White et al.,

2016) contains annotations on 2,758 sentences

from the English Web Treebank (EWT) (Bies

et al., 2012) portion of the Universal Dependen-

cies (v1.2) (Silveira et al., 2014)17, corresponding

16Note that in some cases we treat SPR2 as an auxiliary
task, and in others, the target task.

17We exclude the SPR2 pilot data; if included, the SPR2
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to 6,091 predicate-argument pairs. With 14 proto-

role properties each, there are a total of 85,274 an-

notations, with two-way redundancy. As in SPR1,

the value of each annotation is an integral value 1-

5 or “N/A.” We treat SPR2 as a scalar prediction

task, first mapping “N/A” to 1, and then averag-

ing the two-way redundant annotation values to a

single value.

Word Sense Disambiguation Aligned with

proto-role property annotations in the SPR2 re-

lease are word sense disambiguation judgments

for the head tokens of arguments. Candi-

date word senses (fine-grained) from WordNet

(Fellbaum, 1998) were presented to Mechani-

cal Turk workers (at least three annotators per

instance), who selected every applicable sense

of the word in the given context. In this

work, we map the fine-grained word senses to

one of 26 coarse-grained WordNet noun su-

persenses (e.g., noun.animal, noun.event,

noun.quantity, etc.). In many cases, a word

may be mapped to more than one supersense. We

treat the supersense label on a word as a distri-

bution over supersenses, where the probability as-

signed to one supersense is proportional to the

number of annotators that (indirectly) selected that

supersense. In practice, the entropy of these re-

sulting supersense distributions is low, with an av-

erage perplexity of 1.42.

PropBank The PropBank project consists of

predicate-argument annotations over corpora for

which gold Penn TreeBank-style constituency

parses are available. We use the Unified Prop-

Bank release (Bonial et al., 2014; Ide and Puste-

jovsky, 2017), which contains annotations over

OntoNotes as well as the English Web TreeBank

(EWT). Each predicate in each corpus is anno-

tated for word sense, and each argument of each

predicate is given a label such as ARG0, ARG1,

etc., where the interpretation of the label is de-

fined relative to the word sense. We use Prop-

Bank Frames to map these sense-specific labels to

16 sense-independent labels such as PAG (proto-

agent), PPT (proto-patient), etc., and then formu-

late a task to predict the abstracted labels. Because

our model requires knowledge of predicate and ar-

gument head words, we ran the Stanford Univer-

sal Dependencies converter (Schuster and Man-

ning, 2016) over the gold constituency parses to

release contains annotations for 2,793 sentences.

obtain Universal Dependency parses, which were

then processed by the PredPatt framework (Zhang

et al., 2017; White et al., 2016) to identify head

words.

English-French Data The 109 French-English

parallel corpus (Callison-Burch et al., 2009) con-

tains 22,520,376 French-English sentence pairs,

made up of 811,203,407 French words and

668,412,817 English words. The corpus was con-

structed by crawling the websites of international

organizations such as the Canadian government,

the European Union, and the United Nations.


