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Abstract

Word translation, or bilingual dictionary in-
duction, is an important capability that im-
pacts many multilingual language processing
tasks. Recent research has shown that word
translation can be achieved in an unsuper-
vised manner, without parallel seed dictionar-
ies or aligned corpora. However, state of the
art methods for unsupervised bilingual dictio-
nary induction are based on generative adver-
sarial models, and as such suffer from their
well known problems of instability and hyper-
parameter sensitivity. We present a statistical
dependency-based approach to bilingual dic-
tionary induction that is unsupervised — no
seed dictionary or parallel corpora required,;
and introduces no adversary — therefore being
much easier to train. Our method performs
comparably to adversarial alternatives and out-
performs prior non-adversarial methods.

1 Introduction

Translating words between languages, or more
generally inferring bilingual dictionaries, is a
long-studied research direction with applications
including machine translation (Lample et al.,
2017), multilingual word embeddings (Klemen-
tiev et al., 2012), and knowledge transfer to low
resource languages (Guo et al., 2016). Research
here has a long history under the guise of deci-
pherment (Knight et al., 2006). Current contempo-
rary methods have achieve effective word transla-
tion through theme-aligned corpora (Gouws et al.,
2015), or seed dictionaries (Mikolov et al., 2013).

Mikolov et al. (2013) showed that monolingual
word embeddings exhibit isomorphism across lan-
guages, and can be aligned with a simple lin-
ear transformation. Given two sets word vectors
learned independently from monolingual corpora,
and a dictionary of seed pairs to learn a linear
transformation for alignment; they were able to

estimate a complete bilingual lexicon. Many stud-
ies have since followed this approach, proposing
various improvements such as orthogonal map-
pings (Artetxe et al., 2016) and improved objec-
tives (Lazaridou et al., 2015).

Obtaining aligned corpora or bilingual seed dic-
tionaries is nevertheless not straightforward for all
language pairs. This has motivated a wave of
very recent research into unsupervised word trans-
lation: inducing bilingual dictionaries given only
monolingual word embeddings (Conneau et al.,
2018; Zhang et al., 2017b,a; Artetxe et al., 2017).
The most successful have leveraged ideas from
Generative Adversarial Networks (GANs) (Good-
fellow et al., 2014). In this approach the genera-
tor provides the cross-modal mapping, taking em-
beddings of dictionary words in one language and
‘generating’ their translation in another. The dis-
criminator tries to distinguish between this ‘fake’
set of translations and the true dictionary of em-
beddings in the target language. The two play a
competitive game, and if the generator learns to
fool the discriminator, then its cross-modal map-
ping should be capable of inducing a complete dic-
tionary, as per Mikolov et al. (2013).

Despite these successes, such adversarial meth-
ods have a number of well-known drawbacks (Ar-
jovsky et al., 2017): Due to the nature of their
min-max game, adversarial training is very un-
stable, and they are prone to divergence. It
is extremely hyper-parameter sensitive, requiring
problem-specific tuning. Convergence is also hard
to diagnose and does not correspond well to effi-
cacy of the generator in downstream tasks (Hoshen
and Wolf, 2018).

In this paper, we propose an alternative sta-
tistical dependency-based approach to unsuper-
vised word translation. Specifically, we propose to
search for the cross-lingual word pairing that max-
imizes statistical dependency in terms of squared
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loss mutual information (SMI) (Yamada et al.,
2015; Suzuki and Sugiyama, 2010). Compared
to prior statistical dependency-based approaches
such as Kernelized Sorting (KS) (Quadrianto
et al., 2009) we advance: (i) through use of SMI
rather than their Hilbert Schmidt Independence
Criterion (HSIC) and (ii) through jointly optimis-
ing cross-modal pairing with representation learn-
ing within each view. In contrast to prior work that
uses a fixed representation, by non-linearly pro-
jecting monolingual world vectors before match-
ing, we learn a new embedding where statistical
dependency is easier to establish. Our method: (i)
achieves similar unsupervised translation perfor-
mance to recent adversarial methods, while being
significantly easier to train and (ii) clearly outper-
forms prior non-adversarial methods.

2 Proposed model
2.1 Deep Distribution Matching

Let dataset D contain two sets of unpaired mono-
lingual word embeddings from two languages
D = ({zi}iy,{y;}]-1) where z,y € RY. Let
be a permutation function over {1,2,...,n}, and
II the corresponding permutation indicator ma-
trix: TI € {0,1}"*" 111, = 1,,and TI"1,,
1,.. Where 1,, is the n-dimensional vector with
all ones. We aim to optimize for both the per-
mutation IT (bilingual dictionary), and non-linear
transformations g, (-) and gy (-) of the respective
wordvectors, that maximize statistical dependency
between the views. While regularising by requir-
ing the original word embedding information is
preserved through reconstruction using decoders
fz(-) and fy(-). Our overall loss function is:

min_ Q(D; O, Oy) —

T Y

)\DH(D; 61137 @y)>

Regularizer Dependency

Dri(D; ©4,0y) = Dri({9a (1), 9y (yn(i)) }-1),
AUD;05,0y) = > ||zi — folgalz))|3

=1

+llyi — Fylay @)l

+ R(Oz) + R(Oy).
(D

where ®s parameterize the encoding and recon-
struction transformations, R(-) is a regularizer
(e.g., fo-norm and ¢1-norm), and Dyy (-, -) is a sta-
tistical dependency measure. Crucially compared
to prior methods such as matching CCA (Haghighi
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et al., 2008), dependency measures such as SMI do
not need comparable representations to get started,
making the bootstrapping problem less severe.

2.2 Dependence Estimation

Squared-Loss Mutual Information (SMI)
The squared loss mutual information between two
random variables & and y is defined as (Suzuki
and Sugiyama, 2010):

[ (et

which is the Pearson divergence (Pearson, 1900)
from p(x,y) to p(x)p(y). The SMI is an f-
divergence (Ali and Silvey, 1966). That is, it is
a non-negative measure and is zero only if the ran-
dom variables are independent.

To measure SMI from a set of samples we take
a direct density ratio estimation approach (Suzuki
and Sugiyama, 2010), which leads (Yamada et al.,
2015) to the estimator:

p(z,y)

2
@) —1> p(z)p(y)dzdy,

1

2itr (diag (&) KL) ~ .

SMI({(zi, yi) }iza) =
where K € R™"™ and L € R™™ " are the gram
matricies for « and y respectively, and

—

1
H = E(KKT) o(LL"),

-1 <

h = h,

1 —
“(KoL)l,, &= (H + >\In>
n

A > 0is a regularizer and I,, € R™*" is the iden-
tity matrix.

SMI for Matching SMI computes the depen-
dency between two sets of variables, under an as-
sumption of known correspondence. In our ap-
plication this corresponds to a measure of depen-
dency between two aligned sets of monolingual
wordvectors. To exploit SMI for matching, we
introduce a permutation variable II by replacing
L — TIT LTI in the estimator:

1

SMI({ (24, Ym(i)) 1) = itr (dlag () KTI LH)

that will enable optimizing II to maximize SMI.

2.3 Optimization of parameters

To initialize ®, and ©,, we first independently
estimate them using autoencoders. Then we em-
ploy an alternative optimization on Eq. (1) for



(©4,0y) and IT until convergence. We use 3
layer MLP neural networks for both f and g. Al-
gorithm 1 summarises the steps.

Optimization for ©, and ®,  With fixed per-
mutation matrix II (or ), the objective function

min Q(D; Oy, Oy) — AD(D; 04, 0,) (2)
Oz,0y
is an autoencoder optimization with regularizer
Drx(+), and can be solved with backpropagation.

Optimization for II  To find the permuta-
tion (word matching) IT that maximizes SMI
given fixed encoding parameters ©, ©,, we only
need to optimize the dependency term Dyy in
Eq. (1). We employ the LSOM algorithm (Yamada
et al., 2015). The estimator of SMI for samples

{gz(2i), 9y (Yn(i)) }i=1 encoded with gz, gy is:

— 1 R

SMI = _tr (diag (@) K@mHTL@yH) -
n

Which leads to the optimization problem:

max tr (diag (a@’n) K@mHTL@yH)

HE{O,l}nX"
st. M1, =1,I"1, =1,. (3)

Since the optimization problem is NP-hard, we
iteratively solve the relaxed problem (Yamada
et al., 2015):

TIneY — (1 o ’I’])HOld-i-

n arg{_[nax tr (diag (a@mm) Ko, HTL@y H°1d> ,

where 0 < 1 < 1 is a step size. The optimization
problem is a linear assignment problem (LAP).
Thus, we can efficiently solve the algorithm by
using the Hungarian method (Kuhn, 1955). To get
discrete II, we solve the last step by setting n = 1.

Intuitively, this can be seen as searching for
the permutation IT for which the data in the two
(initially unsorted views) have a matching within-
view affinity (gram) matrix, where matching is de-
fined by maximum SMIL.

3 Experiments

In this section, we evaluate the efficacy of our pro-
posed method against various state of the art meth-
ods for word translation.

Implementation Details Our autoencoder con-
sists of two layers with dropout and a tanh non-
linearity. We use polynomial kernel to compute
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Algorithm 1 SMI-based unsupervised word trans-
lation
Input: Unpaired word embeddings D =

({wi}zn:h {yj }?:1)'
1: Init: weights ©,, ©,, permutation matrix IT.
2: while not converged do
3 Update ©, ©,, given I1: Backprop (2).
4: Update II given @4, ©,: LSOM (3).
5. end while

Output: Permutation Matrix I1. Params @, ©,,.

the gram matrices K and L. For all pairs of lan-
guages, we fix the number of training epochs to
20. All the word vectors are £ unit normalized.
For CSLS we set the number of neighbors to 10.
For optimizing IT at each epoch, we set the step
size 7 = 0.75 and use 20 iterations. For the regu-
larization R(®), we use the sum of the Frobenius
norms of weight matrices. We train ® using full
batch gradient-descent, with learning rate 0.05.

Datasets = We performed experiments on the
publicly available English-Italian, English-
Spanish and English-Chinese datasets released
by (Dinu and Baroni, 2015; Zhang et al., 2017b;
Vulic and Moens, 2013). We name this collective
set of benchmarks BLI. We also conduct further
experiments on a much larger recent public
benchmark, MUSE (Conneau et al., 2018)!.

Setting and Metrics We evaluate all methods
in terms of Precision@1, following standard prac-
tice. We note that while various methods in the
literature were initially presented as fully super-
vised (Mikolov et al., 2013), semi-supervised (us-
ing a seed dictionary) (Haghighi et al., 2008), or
unsupervised (Zhang et al., 2017b), most of them
can be straightforwardly adapted to run in any of
these settings. Therefore we evaluate all methods
both in the unsupervised setting in which we are
primarily interested, and also the commonly eval-
uated semi-supervised setting with 500 seed pairs.

Competitors: Non-Adversarial In terms of
competitors that, like us, do not make use
of GANs, we evaluate: Translation Matrix
(Mikolov et al., 2013), which alternates between
estimating a linear transformation by least squares
and matching by nearest neighbour (NN). Mul-
tilingual Correlation (Faruqui and Dyer, 2014),
and Matching CCA (Haghighi et al., 2008),
which alternates between matching and estimat-

"https://github.com/facebookresearch/MUSE/



MUSE Dataset BLI Datasets
Methods es-en en-es it-en en-it zh-en en-zh | es-en en-es it-en en-it zh-en en-zh
TM (Mikolov et al., 2013) 5.6 4.8 52 48 2.6 1.8 32 29 46 42 3.2 2.0
CCA (Faruqui and Dyer, 2014) 6.1 5.6 58 52 3.1 2.3 5.3 5.0 46 4.1 3.2 2.9
MCCA (Haghighi et al., 2008) 5.7 5.1 54 48 3.0 2.2 2.9 2.5 42 4.1 2.8 1.9
KS (Quadrianto et al., 2009) 8.3 7.4 6.3 5.7 4.8 3.2 9.6 8.9 82 1713 3.7 3.5
Self-Training (Artetxe et al., 2017) | 124 122 10.7 10.2 5.8 5.6 15.8 145 13.7 127 148 13.4
EMDOT (Zhang et al., 2017b) 724 718 728 726 328 31.7 | 293 312 256 284 242 278
W-GAN (Zhang et al., 2017b) 782 774 753 748 386 375 | 234 267 240 253 212 228
GAN-NN (Conneau et al., 2018) 698 713 721 715 413 402 | 214 243 227 232 213 218
Deep-SMI (Ours) 759 80.6 757 752 385 38.1 | 27.3 282 257 264 225 223
Deep-SMI-CSLS 79.2 845 788 785 437 428 | 28.6 293 267 282 232 247
Table 1: Unsupervised word translation on MUSE and BLI datasets. Precision @ 1 metric. Top group: Con-
ventional methods. Middle group: Adversarial methods. Bottom group: Our methods. Language codes
zh=Chinese,en=English,es=Spanish,it=Italian
MUSE Dataset BLI Datasets
Methods es-en en-es it-en en-it zh-en en-zh | es-en en-es it-en en-it zh-en en-zh
TM (Mikolov et al., 2013) 32.6  30.1 343 336 324 312 | 282 321 292 321 285 274
CCA (Faruqui and Dyer, 2014) 273  27.1 254 242 231 202 | 258 283 243 251 192 228
MCCA (Haghighi et al., 2008) 263 258 227 213 245 238 | 242 261 17.6 192 184 21.6
KS (Quadrianto et al., 2009) 345 326 352 338 343 332 | 275 291 343 321 200 232
Self-Training (Artetxe et al., 2017) | 35.8 314 360 346 343 330 | 278 29.8 397 338 236 214
EMDOT (Zhang et al., 2017b) 782 763 750 746 332 320 | 302 284 31.7 303 293 287
W-GAN (Zhang et al., 2017b) 812 805 772 751 390 382 | 286 279 337 295 367 344
GAN-NN (Conneau et al., 2018) 748 723 743 725 432 427 | 228 261 279 271 242 236
Deep-SMI (Ours) 80.6 759 782 76.7 457 446 | 385 37.6 423 382 292 274
Deep-SMI-CSLS 845 792 797 787 423 444 | 286 293 267 282 232 247

Table 2: Semi-supervised word translation on MUSE and BLI using 500 seed pair initial dictionary. Precision @
1 metric. Top group: Conventional methods. Middle group: Adversarial methods. Bottom group: Our methods.

ing a joint linear subspace. Kernelized Sort-
ing (Quadrianto et al., 2009), which directly uses
HSIC-based statistical dependency to match het-
erogeneous data points. Self Training (Artetxe
et al.,, 2017) A recent state of the art method
that alternate between estimating an orthonormal
transformation, and NN matching.

Competitors: Adversarial In terms of com-
petitors that do make use of adversarial training,
we compare: W-GAN and EMDOT (Zhang et al.,
2017b) make use of adversarial learning using
Wasserstein GAN and Earth Movers Distance re-
spectively. GAN-NN (Conneau et al., 2018) uses
adversarial learning to train an orthogonal trans-
formation, along with some refinement steps and
an improvement to the conventional NN match-
ing procedure called ‘cross-domain similarity lo-

630

cal scaling’ (CSLS). Since this is a distinct step,
we also evaluate our method with CSLS.

We use the provided code for GAN-NN
and Self-Train, while re-implementing EDOT/W-
GAN to avoid dependency on theano.

3.1 Results

Fully Unsupervised Table 1 presents compar-
ative results for unsupervised word translation on
BLI and MUSE. From these we observe: (i) Our
method (bottom) is consistently and significantly
better than non-adversarial alternatives (top). (ii)
Compared to adversarial alternatives Deep-SMI
performs comparably.

All methods generally perform better on the
MUSE dataset than BLI. These differences are
due to a few factors: MUSE is a significantly
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Figure 1: Training process of Deep-SMI

larger dataset than BLI, benefitting methods that
can exploit a large amount of training data. In the
ground-truth annotation, BLI contains 1-1 transla-
tions while MUSE contains more realistic 1-many
translations (if any correct translation is picked,
a success is counted), making it easier to reach a
higher score.

Semi-supervised  Results using a 500-word
bilingual seed dictionary are presented in Table 2.
From these we observe: (i) The conventional
methods’ performances (top) jump up, showing
that they are more competitive if at least some
sparse data is available. (ii) Deep-SMI perfor-
mance also improves, and still outperforms the
classic methods significantly overall. (iii) Again,
we perform comparably to the GAN methods.

3.2 Discussion

Figure 1 shows the convergence process of Deep-
SMI. From this we see that: (i) Unlike the adver-
sarial methods, our objective (Eq. (1)) improves
smoothly over time, making convergence much
easier to assess. (ii) Unlike the adversarial meth-
ods, our accuracy generally mirrors the model’s
loss. In contrast, the various losses of the adver-
sarial approaches do not well reflect translation ac-
curacy, making model selection or early stopping
a challenge in itself. Please compare our Figure 1
with Fig 3 in Zhang et al. (2017b), and Fig 2 in
Conneau et al. (2018).

There are two steps in our optimization: match-
ing permutation IT and representation weights ©.
Although this is an alternating optimization, it is
analogous to an EM-type algorithm optimizing la-
tent variables (IT) and parameters (©). While
local minima are a risk, every optimisation step
for either variable reduces our objective Eq. (1).
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There is no min-max game, so no risk of di-
vergence as in the case of adversarial GAN-type
methods.

Our method can also be understood as provid-
ing an unsupervised Deep-CCA type model for re-
lating heterogeneous data across two views. This
is in contrast to the recently proposed unsuper-
vised shallow CCA (Hoshen and Wolf, 2018), and
conventional supervised Deep-CCA (Chang et al.,
2018) that requires paired data for training; and us-
ing SMI rather than correlation as the optimisation
objective.

4 Conclusion

We have presented an effective approach to unsu-
pervised word translation that performs compara-
bly to adversarial approaches while being signifi-
cantly easier to train and diagnose; as well as out-
performing prior non-adversarial approaches.
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