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Abstract

Capturing the semantic relations of words
in a vector space contributes to many natu-
ral language processing tasks. One promis-
ing approach exploits lexico-syntactic pat-
terns as features of word pairs. In this
paper, we propose a novel model of this
pattern-based approach, neural latent rela-
tional analysis (NLRA). NLRA can general-
ize co-occurrences of word pairs and lexico-
syntactic patterns, and obtain embeddings of
the word pairs that do not co-occur. This
overcomes the critical data sparseness problem
encountered in previous pattern-based mod-
els. Our experimental results on measuring
relational similarity demonstrate that NLRA
outperforms the previous pattern-based mod-
els. In addition, when combined with a vec-
tor offset model, NLRA achieves a perfor-
mance comparable to that of the state-of-the-
art model that exploits additional semantic re-
lational data.

1 Introduction

Information on the semantic relations of words
is important for many natural language process-
ing tasks, such as recognizing textual entailment,
discourse classification, and question answering.
There are two main approaches to obtain the dis-
tributed relational representations of word pairs.

One is the vector offset method (Mikolov et al.,
2013a,b). This approach represents word pairs as
the vector offsets of their word embeddings. An-
other approach exploits lexico-syntactic patterns
to obtain word pair representations. As a pioneer
work, Turney (2005) introduced latent relational
analysis (LRA), based on the latent relation hy-
pothesis. It states that word pairs that co-occur in
similar lexico-syntactic patterns tend to have simi-
lar semantic relations (Turney, 2008b; Turney and
Pantel, 2010). LRA is expected to complement

the vector offset model because word embeddings
do not contain information on lexico-syntactic pat-
terns that connect word pairs in a corpus (Shwartz
et al., 2016).

However, LRA cannot obtain the representa-
tions of word pairs that do not co-occur in a cor-
pus. Even with a large corpus, observing a co-
occurrence of all semantically related word pairs
is nearly impossible because of Zipf’s law, which
states that most content words rarely occur. This
data sparseness problem is a major bottleneck of
pattern-based models such as LRA.

In this paper, we propose neural latent rela-
tional analysis (NLRA) to solve that data sparse-
ness problem. NLRA unsupervisedly learns the
embeddings of target word pairs and co-occurring
patterns from a corpus. In addition, it jointly
learns the mapping from the word embedding
space to the word-pair embedding space. By
this mapping, NLRA can generalize the co-
occurrences of word pairs and patterns, and obtain
the relational embeddings for arbitrary word pairs
even if they do not co-occur in the corpus.

Our experimental results on the task of mea-
suring relational similarity show that NLRA sig-
nificantly outperforms LRA, and it can also cap-
ture semantic relations of word pairs without co-
occurrences. Moreover, we show that combining
NLRA and the vector offset model improves the
performance and leads to competitive results to
those of the state-of-the-art method that exploits
additional semantic relational data.

2 Background

2.1 Vector Offset Model

The vector offset model (Mikolov et al., 2013a,b;
Levy and Goldberg, 2014) obtains word embed-
dings from a corpus and represents each word pair
(a, b) as the vector offset of their embedding as
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Figure 1: An illustration of NLRA

follows:
v(a,b) = vb − va (1)

where va and vb are the word embeddings of a and
b respectively.

This method regards relational information as
the change in multiple topicality dimensions from
one word to the other in the word embedding space
(Zhila et al., 2013). Meanwhile, it does not contain
the information of lexico-syntactic patterns that
were shown to capture complementary informa-
tion with word embeddings in previous studies on
the lexical semantic relation detection (Levy et al.,
2015; Shwartz et al., 2016).

2.2 Latent Relational Analysis
LRA takes a set of word pairs as input and gener-
ates the distributed representations of those word
pairs based on their co-occurring patterns.

Given target word pairs W =
{(a1, b1), . . . , (an, bn)}, LRA constructs a
list of lexico-syntactic patterns that connect those
pairs, such as is a or in the, from the corpus
for each word pair. Then, those patterns are
generalized by replacing any or all or none of the
intervening words with wildcards. As a feature
selection, the generalized patterns generated
from many word pairs are used as features. We
define the set of these target feature patterns as
C = {p1, . . . , pm}. Then, the 2n × 2m matrix
M is constructed. The rows of M correspond
to pairs (ai, bi) and reversed pairs (bi, ai). The
columns of M correspond to patterns XpiY and
swapped patterns Y piX , where X and Y are the
slots for the words of the word pairs. The value
of Mij represents the strength of the association
between the corresponding word pair and pattern,
which is calculated using weighting methods
such as positive pointwise mutual information

(PPMI). After these processes, the singular value
decomposition (SVD) is applied to M , and the
vector v(a,b) is assigned to each word pair (a, b).

Although pattern-based approaches such as
LRA have achieved promising results in some se-
mantic relational tasks (Turney, 2008a,b), they
have a crucial problem that a co-occurrence of
all semantically related word pairs cannot be ob-
served because of Zipf’s law, which states that the
frequency distribution of words has a long tail. In
other words, most words occur very rarely (Hanks,
2009). For the word pairs without co-occurrences,
LRA cannot obtain their vector representations.

3 Neural Latent Relational Analysis

We introduce NLRA, based on the latent rela-
tion hypothesis. NLRA represents the target word
pairs and lexico-syntactic patterns as embeddings.
Similar to the skip-gram model (Mikolov et al.,
2013a), NLRA updates those representations un-
supervisedly, such that the inner products of the
word pairs and patterns in which they co-occur in
a corpus have high values. Through this learning,
the word pairs that co-occur in similar patterns
have similar embeddings. Moreover, NLRA can
generalize the co-occurrences of the word pairs
and patterns by constructing the embeddings of
the word pairs from their word embeddings, thus
solving the data sparseness problem of word co-
occurrences. Therefore, NLRA can provide repre-
sentations that capture the information of lexico-
syntactic patterns even for the word pairs that do
not co-occur in a sentence.

Figure 1 is an illustration of our model. NLRA
encodes a word pair (a, b) into a dense vector as
follows:

h(a,b) =MLP ([va;vb;vb − va]) (2)
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where [va;vb;vb − va] is the concatenation of the
word embeddings of a and b and their vector off-
sets; MLP is a multilayer perceptron with nonlin-
ear activation functions.

A pattern p is a sequence of the words
w1, . . . , wk. The sequence of the corresponding
word embeddings w1, . . . ,wk are encoded using
long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997). Then, the final output vector
vp is used as the pattern embedding.

For unsupervised learning, we use the negative
sampling objective (Mikolov et al., 2013a). Given
a set of observed triples (a, b, p) ∈ D, where a and
b are words such that (a, b) ∈ W , or (b, a) ∈ W
and p is a co-occurring pattern from a corpus, the
objective is as follows:

L =
∑

(a,b,p)∈D

log σ(vp · h(a,b))

+
∑

(a,b,p′)∈D′

log σ(−vp′ · h(a,b)) (3)

where D′ is a set of randomly generated negative
samples and σ is the sigmoid function. We sam-
pled 10 negative patterns for each word pair. This
objective is maximized using the stochastic gradi-
ent descent.

After unsupervised learning, we can obtain
word pair representations v(a,b) as follows:

v(a,b) = [h(a,b);h(b,a)] (4)

4 Evaluation

4.1 Dataset

In our evaluation, we used the SemEval-2012 Task
2 dataset (Jurgens et al., 2012) for the task of
measuring relational similarity. This dataset con-
tains a collection of 79 fine-grained semantic re-
lations. For each relation, there are a few proto-
typical word pairs and a set of several dozen target
word pairs. The task is to rank the target pairs
based on the extent to which they exhibit the re-
lation. In our experiment, we calculated the score
of a target word pair with the average cosine sim-
ilarity between it and each prototypical word pair.
The models are evaluated in terms of the MaxDiff
accuracy and Spearman’s correlation. Following
previous works (Rink and Harabagiu, 2012; Zhila
et al., 2013), we used the test set that includes 69
semantic relations to evaluate the performance.

4.2 Baselines
VecOff. We used the 300-dimensional pre-trained
GloVe (Pennington et al., 2014)1 and represented
word pairs as described in Section 2.1.

LRA. We implemented LRA as described in Sec-
tion 2.2. We set W as the lemmatized word pairs
of the dataset. We used the English Wikipedia as
a corpus. For each word pair, we searched for pat-
terns of from one to three words. When searching
for patterns, the left word and right word adjacent
to the patterns were lemmatized to ignore their in-
flections. Following (Turney, 2008b), we selected
C as the top 20|W | generalized patterns. Then,
M was constructed using PPMI weighting, and its
dimensionality was reduced to 300 using SVD.

4.3 Our methods
NLRA. For each word pair in the dataset, co-
occurring patterns were extracted from the same
corpus in the same manner as with LRA, resulting
in D. For word embeddings, we used the same
pre-trained GloVe as VecOff. These embeddings
were updated during the training. For MLP , we
used three affine transformations followed by the
batch normalization (Ioffe and Szegedy, 2015) and
tanh activation. The size of each hidden layer of
the MLP was 300. To encode the patterns, we used
LSTM with the 300-dimensional hidden state. The
objective was optimized by AdaGrad (Duchi et al.,
2011) (whose learning rate was 0.01). We trained
the model for 50 epochs.

NLRA+VecOff. This method combines NLRA
and VecOff by averaging their score for a target
word pair.

4.4 Result and Analysis
Table 1 displays the overall result.

NLRA vs. LRA
First, NLRA outperformed LRA in terms of both
the average accuracy and correlation. These differ-
ences were statistically significant (p < 0.01) with
the paired t-test. These results indicate that gener-
alizing patterns with LSTM is better than by using
wildcards. Moreover, NLRA can successfully cal-
culate the relational similarity for the word pairs
that do not co-occur in the corpus. Table 2 shows
an example of the Reference–Express relation,
where the middle-score pair handshake:cordiality

1https://nlp.stanford.edu/projects/glove/
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Accuracy Correlation
Relation VecOff LRA NLRA NLRA+VecOff VecOff LRA NLRA NLRA+VecOff

Class-Inclusion 0.543 0.485 0.533 0.56 0.487 0.427 0.622 0.611
Part-Whole 0.45 0.427 0.465 0.488 0.304 0.282 0.38 0.395
Similar 0.414 0.346 0.412 0.436 0.267 0.123 0.271 0.315
Contrast 0.343 0.349 0.377 0.374 0.108 0.065 0.092 0.124
Attribute 0.462 0.414 0.447 0.486 0.406 0.299 0.367 0.456
Non-Attribute 0.39 0.366 0.369 0.381 0.217 0.16 0.125 0.174
Case Relations 0.468 0.438 0.536 0.558 0.391 0.291 0.553 0.544
Cause Purpose 0.444 0.471 0.448 0.485 0.345 0.387 0.397 0.454
Space-Time 0.5 0.428 0.516 0.525 0.424 0.31 0.489 0.493
Reference 0.441 0.447 0.449 0.465 0.297 0.346 0.404 0.378
Average 0.443 0.415 0.453 0.475 0.321 0.246 0.36 0.391

Table 1: Average MaxDiff accuracy and Spearman’s correlation of each major relation group.

Pair Human LRA NLRA
laugh:happiness 50 0.217 0.578
nod:agreement 46 0.245 0.347
tears:sadness 44 0.381 0.483

· · · · · ·
scream:terror 26 0.396 0.417
handshake:cordiality 24 0 (no pattern) 0.34
lie:dishonesty 16 0.206 0.394

· · · · · ·
discourse:relationship -60 0.331 0.275
friendliness:wink -68 0 (no pattern) 0.26

Table 2: The scores assigned by humans, LRA, and
NLRA for the Reference-Express relation. The pairs
are sorted in descending order according to the human
score.

and the low-score pair friendliness:wink have no
co-occurring pattern. In these cases, LRA could
not obtain the representations of those word pairs
nor correctly assign the score. By contrast, NLRA
could accomplish both because it could generalize
the co-occurrences of word pairs and patterns.

NLRA+VecOff vs. Other Models
Second, NLRA+VecOff outperformed the other
models. These differences were statistically
significant (the correlation difference between
NLRA+Vecoff and NLRA: p < 0.05; the other
differences: p < 0.01). These results indi-
cate that lexico-syntactic patterns and the vector
offset of word embeddings capture complemen-
tary information for measuring relational similar-
ity. This is inconsistent with the findings of Zhila
et al. (2013). That work combined heterogeneous
models, such as the vector offset model, pattern-
based model, etc., and stated that the pattern-based
model was less significant than the vector offset
model, based on their ablation study. We believe
that this was because their pattern-based model
did not generalize patterns with wildcards nor se-
lect useful features. Their pattern-based model
seemed to suffer from sparse feature space. In our
experiment, NLRA helped VecOff, for example,
for the Part-Whole relation, Cause Purpose rela-

Model Accuracy Correlation
Rink and Harabagiu (2012) 0.394 0.229
Mikolov et al. (2013b) 0.418 0.275
Levy and Goldberg (2014) 0.452 –
Zhila et al. (2013) 0.452 0.353
Iacobacci et al. (2015) 0.459 0.358
Turney (2013) 0.472 0.408
VecOff 0.443 0.321
LRA 0.415 0.264
NLRA 0.453 0.36
NLRA+VecOff 0.475 0.391

Table 3: Published results of other models on the Se-
mEval2012 Task 2 dataset.

tion, and Space-Time relation, where there seemed
to be prototypical patterns indicating those rela-
tions. Meanwhile, VecOff helped NLRA for the
Attribute relation, where the relational patterns
seemed to be diverse. These results showed that
the combined model is robust.

4.5 Comparison to other systems

We compared the results of our models to other
published results. Table 3 displays those results.
Rink and Harabagiu (2012) is the pattern-based
model with naive Bayes. Mikolov et al. (2013b),
Levy and Goldberg (2014), and Iacobacci et al.
(2015) are the vector offset models. Zhila et al.
(2013) is the model composed of various features.
Turney (2013) extracts the statistical features of
two word pairs from a word-context co-occurrence
matrix and trains the classifier with additional se-
mantic relational data to assign a relational simi-
larity for two word pairs.

NLRA+VecOff achieved a competitive perfor-
mance to the state-of-the-art method of Turney
(2013). Note that our method learns unsupervis-
edly and does not exploit additional resources, and
the method of Turney (2013) cannot obtain the dis-
tributed representation of word pairs.

A work similar to ours, Bollegala et al. (2015),
represented lexico-syntactic patterns as the vector
offset of co-occurring word pairs and updated the
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vector offsets of word pairs such that word pairs
that co-occur in similar patterns have similar off-
sets. They evaluated their model on all 79 seman-
tic relations of the dataset and achieved 0.449 ac-
curacy. In their setting, NLRA+VecOff achieved
0.47 accuracy, outperforming their model.

5 Related Work

5.1 Word Pairs and Co-occurring Patterns

Hearst (1992) detected the hypernymy relation
of word pairs from a corpus using several
handcrafted lexico-syntactic patterns. Turney
and Littman (2005) used 64 handcrafted lexico-
syntactic patterns as features of word pairs to rep-
resent word pairs as vectors. To obtain word-pair
embeddings, Turney (2005) extended the method
of Turney and Littman (2005) as LRA. Our work
is a neural extension of LRA.

Washio and Kato (2018) proposed the method
similar to ours in lexical semantic relation de-
tection. Their neural method modeled the co-
occurrences of word pairs and dependency paths
connecting two words to alleviate the data sparse-
ness problem of pattern-based lexical semantic
relation detection. While they assigned ran-
domly initialized embeddings to each dependency
path, our work encodes co-occurring patterns with
LSTM for better generalization. Jameel et al.
(2018) embedded word pairs with the context
words occurring around word pairs instead of
lexico-syntactic patterns. Their method cannot ob-
tain embeddings of word pairs that do not co-occur
in a corpus because they directly assigned embed-
dings to word pairs. By contrast, NLRA can ob-
tain embeddings for those word pairs.

In another research area, relation extraction,
several works have explored an idea similar to
the latent relation hypothesis (Riedel et al., 2013;
Toutanova et al., 2015; Verga et al., 2017). They
factorized a matrix of entity pairs and co-occurring
patterns, while they focused on named entity pairs
instead of word pairs and did not consider co-
occurrence frequencies.

5.2 Relation to Knowledge Graph
Embedding

Knowledge graph embedding (KGE) embeds enti-
ties and relations in knowledge graph (KG), where
entities and relations corresponds to nodes and
edges respectively (Nickel et al., 2011; Bordes
et al., 2013; Socher et al., 2013; Wang et al., 2014;

Lin et al., 2015; Yang et al., 2015; Nickel et al.,
2016; Trouillon et al., 2016; Liu et al., 2017; Wang
et al., 2017; Ishihara et al., 2018). By considering
words and lexico-syntactic patterns as nodes and
edges, respectively, a corpus can be viewed as a
graph, i.e., corpus graph (CG). Thus, NLRA can
be regarded as corpus graph embedding (CGE)
models based on the latent relation hypothesis.

Although KGE models can be easily applied to
CG, several differences exist between KG and CG.
First, the nodes and edges of CG are (sequences
of) linguistic expressions, such as tokens, lem-
mas, phrases, etc. Thus, the nodes and edges of
CG might exhibit compositionality and ambiguity,
while KG does not have those properties. Sec-
ond, the edges of CG have weights based on co-
occurrence frequencies unlike the edges of KG.
Finally, CG might have a large number of edges
types while the number of KG edges is at most
several thousands. An interesting research direc-
tion is exploring models suitable for CGE to cap-
ture the property of linguistic expressions and their
relations in the embedding space.

6 Conclusion

We presented NLRA, which learns the distributed
representation of word pairs capturing semantic
relational information through co-occurring pat-
terns encoded by LSTM. This model jointly learns
the mapping from the word embedding space
into the word-pair embedding space to general-
ize co-occurrences of word pairs and patterns.
Our experiment on measuring relational similarity
demonstrated that NLRA outperforms LRA and
can successfully solve the data sparseness prob-
lem of word co-occurrences, which is a major bot-
tleneck in pattern-based approaches. Moreover,
combining the vector offset model and NLRA
yielded competitive performance to the state-of-
the-art method, though our method relied only on
unsupervised learning. This combined model ex-
ploits the complementary information of lexico-
syntactic patterns and word embeddings.

In our future work, we will apply word-pair em-
beddings from NLRA to various downstream tasks
related to lexical relational information.
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