
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 458–468
Brussels, Belgium, October 31 - November 4, 2018. c©2018 Association for Computational Linguistics

458

A Discriminative Latent-Variable Model for Bilingual Lexicon Induction

Sebastian Ruder@,H∗ Ryan CotterellS,P∗ Yova KementchedjhievaZ Anders SøgaardZ
@Insight Research Centre, National University of Ireland, Galway, Ireland

HAylien Ltd., Dublin, Ireland
SThe Computer Laboratory, University of Cambridge, Cambridge, UK

PDepartment of Computer Science, Johns Hopkins University, Baltimore, USA
ZDepartment of Computer Science, University of Copenhagen, Copenhagen, Denmark

sebastian@ruder.io,ryan.cotterell@jhu.com,{yova|soegaard}@di.ku.dk

Abstract

We introduce a novel discriminative latent-
variable model for the task of bilingual lexi-
con induction. Our model combines the bi-
partite matching dictionary prior of Haghighi
et al. (2008) with a state-of-the-art embedding-
based approach. To train the model, we derive
an efficient Viterbi EM algorithm. We provide
empirical improvements on six language pairs
under two metrics and show that the prior the-
oretically and empirically helps to mitigate the
hubness problem. We also demonstrate how
previous work may be viewed as a similarly
fashioned latent-variable model, albeit with a
different prior.1

1 Introduction

Is there a more fundamental bilingual linguistic re-
source than a dictionary? The task of bilingual lexi-
con induction seeks to create a dictionary in a data-
driven manner directly from monolingual corpora
in the respective languages and, perhaps, a small
seed set of translations. From a practical point of
view, bilingual dictionaries have found uses in a
myriad of NLP tasks ranging from machine trans-
lation (Klementiev et al., 2012) to cross-lingual
named entity recognition (Mayhew et al., 2017). In
this work, we offer a probabilistic twist on the task,
developing a novel discriminative latent-variable
model that outperforms previous work.

Our proposed model is a bridge between cur-
rent state-of-the-art methods in bilingual lexicon
induction that take advantage of word embeddings,
e.g., the embeddings induced by Mikolov et al.
(2013b)’s skip-gram objective, and older ideas in
the literature that build explicit probabilistic models
for the task. We propose a discriminative probabil-
ity model, inspired by Irvine and Callison-Burch

∗The first two authors contributed equally.
1The code used to run the experiments is avail-

able at https://github.com/sebastianruder/
latent-variable-vecmap.

(2013), infused with the bipartite matching dictio-
nary prior of Haghighi et al. (2008). However, like
more recent approaches (Artetxe et al., 2017), our
model operates directly over pretrained word em-
beddings, induces a joint cross-lingual embedding
space, and scales to large vocabulary sizes. To train
our model, we derive a generalized expectation-
maximization algorithm (EM; Neal and Hinton,
1998) and employ an efficient matching algorithm.

Empirically, we experiment on three standard
and three extremely low-resource language pairs.
We evaluate intrinsically, comparing the quality
of the induced bilingual dictionary, as well as an-
alyzing the resulting bilingual word embeddings
themselves. The latent-variable model yields gains
over several previous approaches across language
pairs. It also enables us to make implicit mod-
eling assumptions explicit. To this end, we pro-
vide a reinterpretation of Artetxe et al. (2017) as a
latent-variable model with an IBM Model 1–style
(Brown et al., 1993) dictionary prior, which allows
a clean side-by-side analytical comparison. Viewed
in this light, the difference between our approach
and Artetxe et al. (2017), the strongest baseline,
is whether one-to-one alignments or one-to-many
alignments are admitted between the words of the
languages’ respective lexicons. Thus, we conclude
that our hard constraint on one-to-one alignments
is primarily responsible for the improvements over
Artetxe et al. (2017).

2 Background: Bilingual Lexicon
Induction and Word Embeddings

Bilingual lexicon induction2 is the task of finding
word-level translations between the lexicons of two
languages. For instance, the German word Hund
and the English word dog are roughly semantically

2For the purposes of this paper, we use bilingual lexicon
and (bilingual) dictionary synonymously. On the other hand,
unmodified lexicon always refers to a word list in a single
language.

https://github.com/sebastianruder/latent-variable-vecmap
https://github.com/sebastianruder/latent-variable-vecmap
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equivalent, so the pair Hund–dog should be an entry
in a German–English bilingual lexicon. The task
itself comes in a variety of flavors. We consider a
version of the task that only relies on monolingual
corpora in the tradition of Rapp (1995) and Fung
(1995). In other words, the goal is to produce a
bilingual lexicon primarily from unannotated raw
text in each of the respective languages. Impor-
tantly, we avoid reliance on bitext, i.e. corpora with
parallel sentences that are known translations of
each other, e.g., EuroParl (Koehn, 2005). The bi-
text assumption is quite common in the literature;
see Ruder et al. (2018, Table 2) for a survey. Ad-
ditionally, we will assume the existence of a small
seed set of word-level translations obtained from
a dictionary; we also experiment with seed sets
obtained from heuristics that do not rely on the
existence of linguistic resources.

2.1 Graph-Theoretic Formulation

To ease the later exposition, we will formulate the
task graph-theoretically. Let `src denote the source
language and `trg the target language. Suppose
the source language `src has nsrc word types in its
lexicon Vsrc and `trg has ntrg word types in its lexi-
con Vtrg. We will write vsrc(i) for the ith word type
in `src and vtrg(i) for the ith word type in `trg. We
can view the elements of Vsrc and Vtrg as sets of
vertices in a graph. Now consider the bipartite set
of vertices V = Vtrg ∪ Vsrc. In these terms, a bilin-
gual lexicon is just a bipartite graph G = (E, V )
and, thus, the task of bilingual lexicon induction is
a combinatorial problem: the search for a ‘good’
edge setE ⊆ Vtrg×Vsrc. We depict such a bipartite
graph in Figure 1. In §3, we will operationalize the
notion of ‘goodness’ by assigning a weight wij to
each possible edge between Vtrg and Vsrc.

When the edge set E takes the form of a match-
ing, we will denote it as m.3 In general, we will
be interested in partial matchings, where many ver-
tices have no incident edges. We will write M
for the set of all partial matchings on the bipar-
tite graph G. The set of vertices in Vtrg (respec-
tively Vsrc) with no incident edges will be termed
utrg (respectively usrc). Note that for any matching
m, we have the identity utrg = Vtrg \ {i : (i, j) ∈
m}.

3A matching is an edge set where none of the edges share
common vertices (West, 2000).
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Figure 1: Partial lexicons of German and English shown as a
bipartite graph. German is the target language and English is
the source language. The ntrg = 7 German words are shown
in blue and the nsrc = 6 English words are shown in green. A
bipartite matching m between the two sets of vertices is also
depicted. The German nodes in utrg are unmatched.

2.2 Word Embeddings

Word embeddings will also play a key role in our
model. For the remainder of the paper, we will as-
sume we have access to d-dimensional embeddings
for each language’s lexicon—for example, those
provided by a standard model such as skip-gram
(Mikolov et al., 2013b). Notationally, we define
the real matrices S ∈ Rd×nsrc and T ∈ Rd×ntrg .
Note that in this formulation si ∈ Rd, the ith col-
umn of S, is the word embedding corresponding
to vsrc(i). Likewise, note that ti ∈ Rd, the ith col-
umn of T , is the word embedding corresponding to
vtrg(i).

3 A Latent-Variable Model

The primary contribution of this paper is a novel
latent-variable model for bilingual lexicon induc-
tion. The latent variable will be the edge set E, as
discussed in §2.1. Given pretrained embeddings
for the source and target languages, arranged into
the matrices S and T , we define the density

p(T | S) :=
∑

m∈M
p(T | S,m) · p(m) (1)

where, recall from §2, M is the set of all bipar-
tite matchings on the graph G and m ∈ M is an
individual matching. Note that, then, p(m) is a
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distribution over all bipartite matchings on G such
as the matching shown in Figure 1. We will take
p(m) to be fixed as the uniform distribution for the
remainder of the exposition, though more compli-
cated distributions could be learned, of course. We
further define the distribution

pθ(T | S,m) :=
∏

(i,j)∈m

p(ti | sj)·
∏
i∈utrg

p(ti) (2)

Recall we write (i, j) ∈m to denote an edge in the
matching. Furthermore, for notational simplicity,
we have dropped the dependence of utrg on m.
(Recall utrg = Vtrg \ {i : (i, j) ∈ m}). Next, we
define the two densities present in equation (2) as
Gaussians:

pθ(t | s) := N (Ω s, I) (3)

∝ exp ||t− Ω s||22
pθ(t) := N (µ, I) (4)

Given a fixed matching m, we may create ma-
trices Sm ∈ Rd×|m| and Tm ∈ Rd×|m| such that
the rows correspond to word vectors of matched
vertices (translations under the matching m). Now,
after some algebra, we see that we can rewrite∏

(i,j)∈m p(ti | si) in matrix notation:

pθ(Tm | Sm,m) =
∏

(i,j)∈m

p(ti | sj) (5)

∝
∏

(i,j)∈m

exp ||ti − Ω sj ||22

= exp
∑

(i,j)∈m

||ti − Ω sj ||22

= exp ||Tm − ΩSm||2F (6)

where Ω ∈ Rd×d is an orthogonal matrix of param-
eters to be learned. The result of this derivation,
equation (6), will become useful during the discus-
sion of parameter estimation in §4.

We define the model’s parameters, to be opti-
mized, as θ = (Ω, µ).

Modeling Assumptions and their Limitations
In the previous section, we have formulated the
induction of a bilingual lexicon as the search for an
edge set E, which we treat as a latent variable that
we marginalize out in equation (2). Specifically,
we assume that E is a partial matching. Thus, for
every (i, j) ∈m, we have ti ∼ N (Ω sj , I), that is,
the embedding for vtrg(i) is assumed to have been

drawn from a Gaussian centered around the embed-
ding for vsrc(j), after an orthogonal transformation.
This gives rise to two modeling assumptions, which
we make explicit: (i) There exists a single source
for every word in the target lexicon and that source
cannot be used more than once.4 (ii) There ex-
ists an orthogonal transformation, after which the
embedding spaces are more or less equivalent.

Assumption (i) may be true for related languages,
but is likely false for morphologically rich lan-
guages that have a many-to-many relationship be-
tween the words in their respective lexicons. We
propose to ameliorate this using a rank constraint
that only considers the top n most frequent words
in both lexicons for matching in §6. In addition,
we experiment with priors that express different
matchings in §7.

As for assumption (ii), previous work (Xing
et al., 2015; Artetxe et al., 2017) has achieved
some success using an orthogonal transformation;
recently, however, Søgaard et al. (2018) demon-
strated that monolingual embedding spaces are not
approximately isomorphic and that there is a com-
plex relationship between word form and meaning,
which is only inadequately modeled by current ap-
proaches, which for example cannot model poly-
semy. Nevertheless, we will show that imbuing our
model with these assumptions helps empirically in
§6, giving them practical utility.

Why it Works: The Hubness Problem Why
should we expect the bipartite matching prior to
help, given that we know of cases when multi-
ple source words should match a target word?
One answer is because the bipartite prior helps
us obviate the hubness problem, a common issue
in word-embedding-based bilingual lexicon induc-
tion (Dinu et al., 2015). The hubness problem is
an intrinsic problem of high-dimensional vector
spaces where certain vectors will be universal near-
est neighbors, i.e. they will be the nearest neigh-
bor to a disproportionate number of other vectors
(Radovanović et al., 2010). Thus, if we allow one-
to-many alignments, we will find the embeddings
of certain elements of Vsrc acting as hubs, i.e. the
model will pick them to generate a disproportionate
number of target embeddings, which reduces the
quality of the embedding space.5

Another explanation for the positive effect of the

4This is true by the definition of a matching.
5In §5, we discuss the one-to-many alignment used in

several of our baseline systems.
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Algorithm 1 Viterbi EM for our latent-variable model

1: repeat
2: // Viterbi E-Step
3: m? ← argmaxm∈M log pθ(m | S, T )
4: u?trg ← Vtrg \ {i : (i, j) ∈m?}
5: // M-Step
6: UΣV > ← SVD

(
Tm?S>m?

)
7: Ω? ← UV >

8: µ? ← 1/|u?
trg| ·
∑

i∈u?
trg
ti

9: θ ← (Ω?, µ?)
10: until converged

one-to-one alignment prior is its connection to the
Wasserstein distance and computational optimal
transport (Villani, 2008). Concurrent work (Grave
et al., 2018) similarly has found the one-to-one
alignment prior to be beneficial.

4 Parameter Estimation

We will conduct parameter estimation through
Viterbi EM. We describe first the E-step, then the
M-step. Viterbi EM estimates the parameters by al-
ternating between the two steps until convergence.
We give the complete pseudocode in Algorithm 1.

4.1 Viterbi E-Step
The E-step asks us to compute the posterior of la-
tent bipartite matchings p(m | S, T ). Computation
of this distribution, however, is intractable as it
would require a sum over all bipartite matchings,
which is #P-hard (Valiant, 1979). Tricks from com-
binatorial optimization make it possible to max-
imize over all bipartite matchings in polynomial
time. Thus, we fall back on the Viterbi approxima-
tion for the E-step (Brown et al., 1993; Samdani
et al., 2012). The derivation will follow Haghighi
et al. (2008). In order to compute

m? = argmax
m∈M

log pθ(m | S, T ) (7)

we construct a fully connected bipartite graph G =
(E, Vsrc ∪ Vtrg), where E = Vsrc × Vtrg. We weight
each arc (i, j) ∈ E with the weight between the
projected source word and target word embeddings:
wij = log p(ti | sj)− log p(ti) = ||ti − Ω sj ||22 −
||ti−µ||22, where the normalizers of both Gaussians
cancel as both have the same covariance matrix,
i.e., I . Note that in the case where the ti and the
sj are of length 1, that is, ||ti||2 = ||sj ||2 = 1, and
µ = 0, we recover cosine distance between the
vectors up to an additive constant as orthogonal

matrices preserve length (the constant is always -1
as ||ti||2 = 1). We may ignore this constant during
the E-step’s combinatorial optimization. Note the
optimal partial matching will contain no edges with
weight wij < 0. For this reason, we remove such
edges from the bipartite graph. To find the maximal
partial bipartite matching onG to compute m?, we
employ an efficient algorithm as detailed in the next
section.

Finding a Maximal Bipartite Matching We
frame finding an optimal one-to-one alignment be-
tween nsrc source and ntrg words as a combina-
torial optimization problem, specifically, a linear
assignment problem (LAP; Bertsimas and Tsitsik-
lis, 1997). In its original formulation, the LAP re-
quires assigning a number of agents (source words)
to a number of tasks (target words) at a cost that
varies based on each assignment. An optimal solu-
tion assigns each source word to exactly one target
word and vice versa at minimum cost. The Hun-
garian algorithm (Kuhn, 1955) is one of the most
well-known approaches for solving the LAP, but
runs in O((nsrc + ntrg)

3). This works for smaller
vocabulary sizes,6 but is prohibitive for matching
cross-lingual word embeddings with large vocabu-
laries for real-world applications.7

For each source word, most target words, how-
ever, are unlikely candidates for alignment. We
thus propose to consider only the top k most similar
target words for alignment with every source word.
We sparsify the graph by weighting the edges for
all other words with −∞. The remaining weights
wij are chosen as discussed above. We employ a
version of the Jonker-Volgenant algorithm (Jonker
and Volgenant, 1987; Volgenant, 1996), which has
been optimized for LAP on sparse graphs, to find
the maximum-weight matching m? on G.8

4.2 M-Step

Next, we will describe the M-step. Given an op-
timal matching m? computed in §4.1, we search
for a matrix Ω ∈ Rd×d. We additionally enforce
the constraint that Ω is a real orthogonal matrix,
i.e., Ω>Ω = I . Previous work (Xing et al., 2015;

6Haghighi et al. (2008) use the Hungarian algorithm to find
a matching between 2000 source and target language words.

7For reference, in §6, we learn bilingual lexicons between
embeddings of 200,000 source and target language words.

8After acceptance to EMNLP 2018, Edouard Grave
pointed out that Sinkhorn propagation (Adams and Zemel,
2011; Mena et al., 2018) may have been a computationally
more effective manner to deal with the latent matchings.
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Artetxe et al., 2017) found that the orthogonality
constraint leads to noticeable improvements.

Our M-step optimizes two objectives indepen-
dently. First, making use of the result in equa-
tion (6), we optimize the following:

log p(Tm? | Sm? ,m?) (8)

= ||Tm? − ΩSm? ||2F + C

with respect to Ω subject to Ω>Ω = I . (Note we
may ignore the constantC during the optimization.)
Second, we optimize the objective

log
∏
i∈utrg

p(ti) =
∑
i∈utrg

||ti − µ||22 +D (9)

with respect to the mean parameter µ, which is
simply an average. Note, again, we may ignore the
constant D during optimization.

Optimizing equation (8) with respect to Ω
is known as the orthogonal Procrustes prob-
lem (Schönemann, 1966; Gower and Dijksterhuis,
2004) and has a closed form solution that ex-
ploits the singular value decomposition (Horn and
Johnson, 2012). Namely, we compute UΣV > =
T>mSm. Then, we directly arrive at the optimum:
Ω? = UV >. Optimizing equation (9) can also
been done in closed form; the point which min-
imizes distance to the data points (thereby maxi-
mizing the log-probability) is the centroid: µ? =
1/|utrg| ·

∑
i∈utrg

ti.

5 Reinterpretation of Artetxe et al.
(2017) as a Latent-Variable Model

The self-training method of Artetxe et al. (2017),
our strongest baseline in §6, may also be inter-
preted as a latent-variable model in the spirit of our
exposition in §3. Indeed, we only need to change
the edge-set prior p(m) to allow for edge sets other
than those that are matchings. Specifically, a match-
ing enforces a one-to-one alignment between types
in the respective lexicons. Artetxe et al. (2017), on
the other hand, allow for one-to-many alignments.
We show how this corresponds to an alignment dis-
tribution that is equivalent to IBM Model 1 (Brown
et al., 1993), and that Artetxe et al. (2017)’s self-
training method is actually a form of Viterbi EM.

To formalize Artetxe et al. (2017)’s contribution
as a latent-variable model, we lay down some more
notation. Let A = {1, . . . , nsrc + 1}ntrg , where
we define (nsrc + 1) to be none, a distinguished
symbol indicating unalignment. The set A is to be

interpreted as the set of all one-to-many alignments
a on the bipartite vertex set V = Vtrg ∪ Vsrc such
that ai = j means the ith vertex in Vtrg is aligned
to the jth vertex in Vsrc. Note that ai = (nsrc +
1) = none means that the ith element of Vtrg is
unaligned. Now, by analogy to our formulation in
§3, we define

p(T | S) :=
∑
a∈A

p(T | S,a) · p(a) (10)

=
∑
a∈A

ntrg∏
i=1

p(ti | sai , ai) · p(ai) (11)

=

ntrg∏
i=1

nsrc+1∑
ai=1

p(ti | sai , ai) · p(ai) (12)

The move from equation (11) to equation (12) is the
dynamic-programming trick introduced in Brown
et al. (1993). This reduces the number of terms in
the expression from exponentially many to polyno-
mially many. We take p(a) to be a uniform distri-
bution over all alignments with no parameters to
be learned.

Artetxe et al. (2017)’s Viterbi E-Step In the
context of Viterbi EM, it means the max over A
will decompose additively s

max
a∈A

log p(a | S, T ) =

ntrg∑
i=1

max
1≤ai≤(nsrc+1)

log p(ai | S, T )

thus, we can simply find a? component-wise as
follows:

a?i = argmax
1≤ai≤(nsrc+1)

log p(ai | ti, sai) (13)

Artetxe et al. (2017)’s M-step The M-step re-
mains unchanged from the exposition in §3 with the
exception that we fit Ω given matrices Sa and Ta
formed from a one-to-many alignment a, rather
than a matching m.

Why a Reinterpretation? The reinterpretation
of Artetxe et al. (2017) as a probabilistic model
yields a clear analytical comparison between our
method and theirs. The only difference between
the two is the constraint on the bilingual lexicon
that the model is allowed to induce.

6 Experiments

We first conduct experiments on bilingual dictio-
nary induction and cross-lingual word similarity
on three standard language pairs, English–Italian,
English–German, and English–Finnish.
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English–Italian English–German English–Finnish
5,000 25 num iden 5,000 25 num iden 5,000 25 num iden

Mikolov et al. (2013c) 34.93 00.00 0.00 1.87 35.00 0.00 0.07 19.20 25.91 0.00 0.00 7.02
Xing et al. (2015) 36.87 0.00 0.13 27.13 41.27 0.07 0.53 38.13 28.23 0.07 0.56 17.95
Zhang et al. (2016) 36.73 0.07 0.27 28.07 40.80 0.13 0.87 38.27 28.16 0.14 0.42 17.56
Artetxe et al. (2016) 39.27 0.07 0.40 31.07 41.87 0.13 0.73 41.53 30.62 0.21 0.77 22.61
Artetxe et al. (2017) 39.67 37.27 39.40 39.97 40.87 39.60 40.27 40.67 28.72 28.16 26.47 27.88
Ours (1:1) 41.00 39.63 40.47 41.07 42.60 42.40 42.60 43.20 29.78 0.07 3.02 29.76
Ours (1:1, rank constr.) 42.47 41.13 41.40 41.80 41.93 42.40 41.93 41.47 28.23 27.04 27.60 27.81

Table 1: Precision at 1 (P@1) scores for bilingual lexicon induction of different models with different seed dictionaries and
languages on the full vocabulary.

en-it en-de
Dict WS RG WS

Mikolov et al. (2013c) 5k .627 .643 .528
Xing et al. (2015) 5k .614 .700 .595
Zhang et al. (2016) 5k .616 .704 .596
Artetxe et al. (2016) 5k .617 .716 .597

Artetxe et al. (2017)
5k .624 .742 .616
25 .626 .749 .612

num .628 .739 .604

Ours (1:1)
5k .621 .733 .618
25 .621 .740 .617

num .624 .743 .617

Ours (1:1, rank constr.)
5k .623 .741 .609
25 .622 .753 .609

num .625 .755 .611

Table 2: Spearman correlations on English–Italian and
English–German cross-lingual word similarity datasets.

6.1 Experimental Details

Datasets For bilingual dictionary induction, we
use the English–Italian dataset by Dinu et al. (2015)
and the English–German and English–Finnish
datasets by Artetxe et al. (2017). For cross-lingual
word similarity, we use the RG-65 and WordSim-
353 cross-lingual datasets for English–German and
the WordSim-353 cross-lingual dataset for English–
Italian by Camacho-Collados et al. (2015).

Monolingual Embeddings We follow Artetxe
et al. (2017) and train monolingual embeddings
with word2vec, CBOW, and negative sampling
(Mikolov et al., 2013a) on a 2.8 billion word corpus
for English (ukWaC + Wikipedia + BNC), a 1.6
billion word corpus for Italian (itWaC), a 0.9 bil-
lion word corpus for German (SdeWaC), and a 2.8
billion word corpus for Finnish (Common Crawl).

Seed dictionaries Following Artetxe et al.
(2017), we use dictionaries of 5,000 words, 25
words, and a numeral dictionary consisting of

words matching the [0-9]+ regular expression
in both vocabularies.9 In line with Søgaard et al.
(2018), we additionally use a dictionary of identi-
cally spelled strings in both vocabularies.

Implementation details Similar to Artetxe et al.
(2017), we stop training when the improvement
on the average cosine similarity for the induced
dictionary is below 1× 10−6 between succeeding
iterations. Unless stated otherwise, we induce a
dictionary of 200,000 source and 200,000 target
words as in previous work (Mikolov et al., 2013c;
Artetxe et al., 2016). For optimal 1:1 alignment,
we have observed the best results by keeping the
top k = 3 most similar target words. If using a
rank constraint, we restrict the matching in the E-
step to the top 40,000 words in both languages.10

Finding an optimal alignment on the 200,000 ×
200,000 graph takes about 25 minutes on CPU;11

with a rank constraint, matching takes around three
minutes.

Baselines We compare our approach with and
without the rank constraint to the original bilin-
gual mapping approach by Mikolov et al. (2013c).
In addition, we compare with Zhang et al. (2016)
and Xing et al. (2015) who augment the former
with an orthogonality constraint and normalization
and an orthogonality constraint respectively. Fi-
nally, we compare with Artetxe et al. (2016) who
add dimension-wise mean centering to Xing et al.
(2015), and Artetxe et al. (2017).

Both Mikolov et al. (2013c) and Artetxe et al.
(2017) are special cases of our famework and com-
parisons to these approaches thus act as an ablation
study. Specifically, Mikolov et al. (2013c) does not

9The resulting dictionaries contain 2772, 2148, and 2345
entries for English–{Italian, German, Finnish} respectively.

10We validated both values with identical strings using the
5,000 word lexicon as validation set on English–Italian.

11Training takes a similar amount of time as (Artetxe et al.,
2017) due to faster convergence.
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employ orthogonal Procrustes, but rather allows
the learned matrix Ω to range freely. Likewise, as
discussed in §5, Artetxe et al. (2017) make use of
a Viterbi EM style algorithm with a different prior
over edge sets.12

6.2 Results

We show results for bilingual dictionary induc-
tion in Table 1 and for cross-lingual word simi-
larity in Table 2. Our method with a 1:1 prior
outperforms all baselines on English–German and
English–Italian.13 Interestingly, the 1:1 prior by
itself fails on English–Finnish with a 25 word and
numerals seed lexicon. We hypothesize that the
prior imposes too strong of a constraint to find a
good solution for a distant language pair from a
poor initialization. With a better—but still weakly
supervised—starting point using identical strings,
our approach finds a good solution. Alternatively,
we can mitigate this deficiency effectively using
a rank constraint, which allows our model to con-
verge to good solutions even with a 25 word or
numerals seed lexicon. The rank constraint gen-
erally performs similarly or boosts performance,
while being about 8 times faster. All approaches do
better with identical strings compared to numerals,
indicating that the former may be generally suitable
as a default weakly-supervised seed lexicon.

On cross-lingual word similarity, our approach
yields the best performance on WordSim-353 and
RG-65 for English–German and is only outper-
formed by Artetxe et al. (2017) on English–Italian
Wordsim-353.

7 Analysis

Vocabulary sizes The beneficial contribution of
the rank constraint demonstrates that in similar lan-
guages, many frequent words will have one-to-one
matchings, while it may be harder to find direct
matches for infrequent words. We would thus ex-
pect the latent variable model to perform better if
we only learn dictionaries for the top n most fre-
quent words in both languages. We show results for
our approach in comparison to the baselines in Fig-
ure 2 for English–Italian using a 5,000 word seed
lexicon across vocabularies consisting of different

12Other recent improvements such as symmetric reweight-
ing (Artetxe et al., 2018) are orthogonal to our method, which
is why we do not explicitly compare to them here.

13Note that results are not directly comparable to (Conneau
et al., 2018) due to the use of embeddings trained on different
monolingual corpora (WaCKy vs. Wikipedia).

numbers n of the most frequent words14.

Figure 2: Bilingual dictionary induction results of our method
and baselines for English–Italian with a 5,000 word seed lexi-
con across different vocabulary sizes.

The comparison approaches mostly perform sim-
ilar, while our approach performs particularly well
for the most frequent words in a language.

Different priors An advantage of having an ex-
plicit prior as part of the model is that we can ex-
periment with priors that satisfy different assump-
tions. Besides the 1:1 prior, we experiment with
a 2:2 prior and a 1:2 prior. For the 2:2 prior, we
create copies of the source and target words V ′src
and V ′trg and add these to our existing set of vertices
V ′ = (Vtrg+V ′trg, Vsrc+V ′src). We run the Viterbi
E-step on this new graph G′ and merge matched
pairs of words and their copies in the end. Similarly,
for the 1:2 prior, which allows one source word to
be matched to two target words, we augment the
vertices with a copy of the source words V ′src and
proceed as above. We show results for bilingual
dictionary induction with different priors across
different vocabulary sizes in Figure 3.

The 2:2 prior performs best for small vocabulary
sizes. As solving the linear assignment problem for
larger vocabularies becomes progressively more
challenging, the differences between the priors be-
come obscured and their performance converges.

Hubness problem We analyze empirically
whether the prior helps with the hubness problem.
Following Lazaridou et al. (2015), we define the
hubness Nk(y) at k of a target word y as follows:

Nk(y) = |{x ∈ Q | y ∈ NNk(x,G)}| (14)

where Q is a set of query source language words
and NNk(x,G) denotes the k nearest neighbors

14We only use the words in the 5,000 word seed lexicon that
are contained in the n most frequent words. We do not show
results for the 25 word seed lexicon and numerals as they are
not contained in the smallest n of most frequent words.
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(a) English–Italian (b) English–German (c) English–Finnish
Figure 3: Bilingual dictionary induction results of our method with different priors using a 5,000 word seed lexicon across
different vocabulary sizes.

Artetxe et al. (2017) Ours (1:1)

luis (20)
gleichgültigkeit
- ‘indifference’ (14)

ungarischen heuchelei
- ‘Hungarian’ (18) - ‘hypocrisy’ (13)
jorge (17) ahmed (13)

mohammed (17)
ideologie
- ‘ideology’ (13)

gewiß
eduardo (13)

- ‘certainly’ (17)

Table 3: Hubs in English–German cross-lingual embedding
space with degree of hubness. Non-name tokens are translated.

of x in the graph G.15 In accordance with Lazari-
dou et al. (2015), we set k = 20 and use the words
in the evaluation dictionary as query terms. We
show the target language words with the highest
hubness using our method and Artetxe et al. (2017)
for English–German with a 5,000 seed lexicon and
the full vocabulary in Table 3.16

Hubs are fewer and occur less often with our
method, demonstrating that the prior—to some
extent—aids with resolving hubness. Interestingly,
compared to Lazaridou et al. (2015), hubs seem to
occur less often and are more meaningful in current
cross-lingual word embedding models.17 For in-
stance, the neighbors of ‘gleichgültigkeit’ all relate
to indifference and words appearing close to ‘luis’
or ‘jorge’ are Spanish names. This suggests that
the prior might also be beneficial in other ways,
e.g. by enforcing more reliable translation pairs for
subsequent iterations.

15In other words, the hubness of a target word measures
how often it occurs in the neighborhood of the query terms.

16We verified that hubs are mostly consistent across runs
and similar across language pairs.

17Lazaridou et al. (2015) observed mostly rare words with
N20 values of up to 50 and many with N20 > 20.

en-tr en-bn en-hi et-fi

Artetxe et al. (2017) 28.93 0.87 2.07 30.18
Ours (1:1) 38.73 2.33 10.47 33.79
Ours (1:1, rank constr.) 42.40 11.93 31.80 34.78

Table 4: Bilingual dictionary induction results for English-
{Turkish, Bengali, Hindi} and Estonian-Finnish.

Low-resource languages Cross-lingual embed-
dings are particularly promising for low-resource
languages, where few labeled examples are typi-
cally available, but are not adequately reflected in
current benchmarks (besides the English–Finnish
language pair). We perform experiments with
our method with and without a rank constraint
and Artetxe et al. (2017) for three truly low-
resource language pairs, English–{Turkish, Ben-
gali, Hindi}. We additionally conduct an exper-
iment for Estonian-Finnish, similarly to Søgaard
et al. (2018). For all languages, we use fastText
embeddings (Bojanowski et al., 2017) trained on
Wikipedia, the evaluation dictionaries provided by
Conneau et al. (2018), and a seed lexicon based on
identical strings to reflect a realistic use case. We
note that English does not share scripts with Ben-
gali and Hindi, making this even more challenging.
We show results in Table 4.

Surprisingly, the method by Artetxe et al. (2017)
is unable to leverage the weak supervision and fails
to converge to a good solution for English-Bengali
and English-Hindi.18 Our method without a rank
constraint significantly outperforms Artetxe et al.
(2017), while particularly for English-Hindi the
rank constraint dramatically boosts performance.

Error analysis To illustrate the types of errors
the model of Artetxe et al. (2017) and our method
with a rank constraint make, we query both of them
with words from the test dictionary of Artetxe et al.

18One possible explanation is that Artetxe et al. (2017)
particularly rely on numerals, which are normalized in the
fastText embeddings.
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Query Gold Artetxe et al. (2017) Ours

unregierbar ungovernable untenable uninhabitable
nikolai nikolaj feodor nikolai
memoranden memorandums communiqus memos
argentinier argentinians brazilians argentines
trostloser bleaker dreary dark-coloured
umverteilungen redistributions inequities reforms
modischen modish trend-setting modish
tranquilizer tranquillizers clonidine opiates
sammelsurium hotchpotch assortment mishmash
demagogie demagogy opportunism demagogy
andris andris rehn viktor
dehnten halmahera overran stretched
deregulieren deregulate deregulate liberalise
eurokraten eurocrats bureaucrats eurosceptics
holte holte threw grabbed
reserviertheit aloofness disdain antipathy
reaktiv reactively reacting reactive
danuta danuta julie monika
scharfblick perspicacity sagacity astuteness

Table 5: Example translations for German-English.

(2017) in German and seek their nearest neighbours
in the English embedding space. P@1 over the
German-English test set is 36.38 and 39.18 for
Artetxe et al. (2017) and our method respectively.
We show examples where nearest neighbours of
the methods differ in Table 5.

Similar to Kementchedjhieva et al. (2018), we
find that morphologically related words are often
the source of mistakes. Other common sources of
mistakes in this dataset are names that are trans-
lated to different names and nearly synonymous
words being predicted. Both of these sources indi-
cate that while the learned alignment is generally
good, it is often not sufficiently precise.

8 Related work

Cross-lingual embedding priors Haghighi et al.
(2008) first proposed an EM self-learning method
for bilingual lexicon induction, representing words
with orthographic and context features and using
the Hungarian algorithm in the E-step to find an op-
timal 1:1 matching. Artetxe et al. (2017) proposed
a similar self-learning method that uses word em-
beddings, with an implicit one-to-many alignment
based on nearest neighbor queries. Vulić and Ko-
rhonen (2016) proposed a more strict one-to-many
alignment based on symmetric translation pairs,
which is also used by Conneau et al. (2018). Our
method bridges the gap between early latent vari-
able and word embedding-based approaches and
explicitly allows us to reason over its prior.

Hubness problem The hubness problem is an in-
trinsic problem in high-dimensional vector spaces
(Radovanović et al., 2010). Dinu et al. (2015) first
observed it for cross-lingual embedding spaces and

proposed to address it by re-ranking neighbor lists.
Lazaridou et al. (2015) proposed a max-marging ob-
jective as a solution, while more recent approaches
proposed to modify the nearest neighbor retrieval
by inverting the softmax (Smi, 2017) or scaling the
similarity values (Conneau et al., 2018).

9 Conclusion

We have presented a novel latent-variable model for
bilingual lexicon induction, building on the work
of Artetxe et al. (2017). Our model combines the
prior over bipartite matchings inspired by Haghighi
et al. (2008) and the discriminative, rather than gen-
erative, approach inspired by Irvine and Callison-
Burch (2013). We show empirical gains on six
language pairs and theoretically and empirically
demonstrate the application of the bipartite match-
ing prior to solving the hubness problem.
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